一种有机发光材料及其制备有机电致发光器件的应用

文档序号:1766331 发布日期:2019-12-03 浏览:25次 >En<

阅读说明:本技术 一种有机发光材料及其制备有机电致发光器件的应用 (A kind of luminous organic material and its application for preparing organic electroluminescence device ) 是由 邢其锋 李之洋 邵爽 于 2018-05-25 设计创作,主要内容包括:本发明涉及一种新型有机化合物,具体涉及一种有机发光材料,并进一步公开其制备方法,以及制备有机电致发光器件的应用。本发明公开的一类有机发光材料,具有多环共轭特性的三亚苯稠合芳香环的母体结构,原子间的键能高,具有良好的热稳定性,并有利于分子间的固态堆积,用作发光层材料使用能有效提高材料的寿命。(The present invention relates to a kind of novel organic compounds, and in particular to a kind of luminous organic material, and preparation method is further disclosed, and prepares the application of organic electroluminescence device.One kind luminous organic material disclosed by the invention, the precursor structure of triphenylene condensed aromatic ring with conjugated polycyclic characteristic, interatomic bond energy is high, has good thermal stability, and be conducive to intermolecular solid-state accumulation, the service life that can effectively improve material is used as emitting layer material.)

一种有机发光材料及其制备有机电致发光器件的应用

技术领域

本发明涉及一种新型有机化合物,具体涉及一种有机发光材料,并进一步公开其制备方法,以及制备有机电致发光器件的应用。

背景技术

电致发光(electroluminescence,EL)是指发光材料在电场作用下,受到电流和电场的激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。有机电致发光显示器(以下简称OLED)具有自主发光、低电压直流驱动、全固化、视角宽、重量轻、组成和工艺简单等一系列的优点,与液晶显示器相比,有机电致发光显示器不需要背光源,且视角大、功率低,其响应速度可达液晶显示器的1000倍,其制造成本却低于同等分辨率的液晶显示器。因此,有机电致发光器件具有十分广阔的应用前景。

随着OLED技术在照明和显示两大领域的不断推进,人们对于影响OLED器件性能的高效有机材料的研究更加关注,一个效率好寿命长的有机电致发光器件通常是器件结构与各种有机材料的优化搭配的结果,这就为化学家们设计开发各种结构的功能化材料提供了极大的机遇和挑战。

相对于无机发光材料,有机电致发光材料具有很多优点,比如:加工性能好,可以通过蒸镀或者旋涂的方法在任何基板上成膜,可以实现柔性显示和大面积显示;可以通过改变分子的结构,调节材料的光学性能、电学性能和稳定性等,材料的选择具有很大的空间。在最常见的OLED器件结构里,通常包括以下种类的有机材料:空穴注入材料、空穴传输材料、电子传输材料,以及各色的发光材料(染料或者掺杂客体材料)和相应的主体材料等。目前应用的磷光主体材料往往都是具有单一载流子传输能力,诸如空穴类传输主体以及电子类传输主体,但是,单一的载流子传输能力会造成发光层中电子和空穴的不匹配,从而造成严重的效率滚降以及寿命缩短。

目前,在磷光主体材料的使用过程中,采用双极性材料或者是双主体材料搭配的形式来解决单主体材料载流子不平衡的问题。双极性材料是指在一个化合物中同时实现电子和空穴的共同传输,但其分子结构较为复杂;双主体材料则是指使用两种材料搭配使用来实现发光层中电子和空穴的传输与结合,其中,一种材料作为电子型材料,另外一种材料则作为空穴型材料,电子和空穴经过两种材料的传导后,在界面处相结合。相比于双极性材料,双主体材料中使用的两种材料来源更加广泛,并且可以采取不同材料的组合方式来实现更好的器件性能。

现有技术中,如中国专利CN107445962A、US20150001489A1、WO2013009095A1中都公开了适用于有机电致发光器件的三亚苯稠环化合物。但是,CN107445962A中公开的二氮杂化的芳杂环与稠合形成的咔唑环的距离较远,导致电荷互相作用较弱,会使得器件的效率较低;而US20150001489A1和WO2013009095 A1中公开的化合物,三亚苯片段形成杂稠环的结构是芳香环,其材料的能级较低,电荷迁移率也较低,使得器件效率较低。为了满足OLED器件性能不断提升的需求,需要开发性能更优异的有机材料,这对于OLED行业的发展具有很重要的意义。

发明内容

为此,本发明所要解决的技术问题在于提供一种有机发光材料,并进一步提供了上述衍生物用于有机电致发光显示领域的应用。

为解决上述技术问题,本发明所述的一种有机发光材料,具有如下通式(Ⅰ)所示的结构:

其中,所述m为0-6的整数,所述n为0-8的整数,所述q为1或2;

所述Ar选自取代或未取代的C6-C30芳基、取代或未取代的C3-C30的杂芳基中;

所述L选自化学键、取代或未取代的C6-C12的亚芳基、取代或未取代的C3-C12的亚杂芳基中;

所述X彼此独立的为C、CH或N,且至少一个X为N;

所述Y彼此独立的为C、CH或N;

所述R1、R2彼此相同或不同,选自氢、C1-C10烷基、取代或未取代的C6-C30芳基、取代或未取代的C3-C30杂芳基;

当m≥2时,相邻所述R1基团之间彼此稠合成环;和/或,

当n≥2时,相邻所述R2基团之间彼此稠合成环;

所述Ar、L、R1、R2所选基团的取代基彼此独立的选自卤素、硝基、氰基、C1-C4的烷基、苯基、联苯基、三联苯基或萘基。

所述Ar选自如下结构的基团,所述*表示Ar与L的键合位置:

所述R1、R2彼此独立的选自取代或未取代的如下基团:苯基、联苯基、三联苯基、萘基、菲基、三亚苯基、芴基、吡啶基、哒嗪基、嘧啶基、吡嗪基、喹啉基、异喹啉基、喹唑啉基、喹喔啉基、噌啉基、萘啶基、三嗪基、吡啶并吡嗪基、呋喃基、苯并呋喃基、二苯并呋喃基、氮杂-二苯并呋喃基、噻吩基、苯并噻吩基、二苯并噻吩基、氮杂-二苯并噻吩基、菲基、9,9-二甲基芴基、螺芴基、芳胺、咔唑基团;

当m≥2时,相邻所述R1基团之间彼此稠合成环,即与其母环形成形成相应结构的稠环芳基或稠环杂芳基;和/或,

且n≥2,相邻所述R2基团之间彼此稠合成环,即与其母环形成形成相应结构的稠环芳基或稠环杂芳基;

所述的稠环芳基或稠环杂芳基独立的为萘基、芴基、喹啉基、异喹啉基、喹唑啉基、喹喔啉基、噌啉基、萘啶基、苯并呋喃基、二苯并呋喃基、氮杂-二苯并呋喃基、苯并噻吩基、二苯并噻吩基、氮杂-二苯并噻吩基、菲基、9,9-二甲基芴基、螺芴基。

所述L选自单键、亚苯基、亚联苯、亚萘基、亚菲基、亚吡啶基、亚嘧啶基、亚吡嗪基或亚三嗪基。

最优的,所述有机发光材料选自如下A1-A56所示的结构:

本发明还公开了所述的有机发光材料在制备有机电致发光器件的应用。

所述有机发光材料用作发光主体材料。

本发明还公开了一种有机电致发光器件,包括基板,以及依次形成在所述基板上的阳极层、至少包含一层发光层的有机层和阴极层;

所述有机层包括有机发光层,所述有机发光层的主体材料包括至少一种所述的有机发光材料。

进一步的,所述有机层还包括空穴注入层、空穴阻挡层、电子阻挡层、电子传输层或电子注入层的一种或者多种。

本发明公开的一类有机发光材料,具有多环共轭特性的三亚苯稠合芳香环的母体结构,原子间的键能高,具有良好的热稳定性,并有利于分子间的固态堆积,用作发光层材料使用能有效提高材料的寿命。

本发明所述三亚苯稠环衍生物,当母体片段上的取代基为吸电的杂环片段时,所得衍生物有助于提高电子的传输效率,其作为电子型主体材料能够有效提升主体材料的发光效率;而当母体片段上的取代基片段为供电芳胺基团时,所得衍生物有助于提高空穴的注入效率,能明显的达到降低电压的效果;而当吸电杂环基团与供电芳胺片段同时存在母核结构上时,所得衍生物其载流子平衡将会得到提升,具体表现为主体材料的发光效率和寿命都会得到提升,具有更优异的性能。同时,本发明所述衍生物的制备工艺简单易行,原料易得,适合于量产放大。

具体实施方式

合成实施例

本发明所述三亚苯稠环衍生物的合成路径如下:

基于上述合成方程式,本发明不同的所述三亚苯稠环衍生物在合成过程中,仅需要根据目标产物的结构特征,通过替换不同的R-X2进行合成即可以获得不同的目标化合物。并且需要说明的是,上述举例示出的合成方法中使用的是C-N偶联法进行合成,但是并不限于该偶联方法,本领域技术人员也可以根据目标产物的结构选取现有技术中的其他合适的方法。下述合成实施例以部分目标化合物为代表进行期合成过程的阐述。

合成实施例1化合物A1的合成

于反应瓶中,加入2-硼酸酯-三亚苯35.4g(100mmol)、2-溴-3-硝基吡啶22.5g(110mmol)、四(三苯基膦钯)0.9g(0.785mmol,0.5%)、甲苯1500ml、乙醇1000ml、碳酸钾43.3g(314mmol)/水1000ml,80℃反应3.5h。反应完毕后停止反应,并将反应物冷却至室温,过滤,所得到的固体通过甲苯中重结晶纯化,得到白色粉末M1。

在N2保护,加入35g(100mmol)上述产物M1,并加入17.7g三苯基膦(100mmol)和1000ml邻二氯苯,加热回流,反应12h,反应完毕后蒸除溶剂,硅胶柱层析,得到M2中间体。

于反应瓶中,加入21.8g(100mmol)上述产物M2,以及2-氯-4,6-二苯基三嗪16.5g(110mmol)、Pd2(dba)3 0.9g(0.785mmol,0.5%、甲苯1500ml、碳酸钾43.3g(314mmol),于100℃下反应3.5h。反应完毕后停止反应,并将反应物冷却至室温,过滤,所得到的固体通过甲苯中重结晶纯化,得到白色粉末A1。

1H NMR(CDCl3,400MHz)9.08(s,1H),8.98(s,1H),8.61(s,2H),8.32(d,J=12.0Hz,4H),8.11(s,2H),7.85(d,J=8.0Hz,4H),7.70(s,2H),7.66(m,6H),7.51(m,9H),7.12(s,2H)。

合成实施例2化合物A12的合成

于反应瓶中,加入2-硼酸酯-三亚苯35.4g(100mmol)、2-溴-3-硝基吡啶22.5g(110mmol)、四(三苯基膦钯)0.9g(0.785mmol,0.5%)、甲苯1500ml、乙醇1000ml,以及碳酸钾43.3g(314mmol)/水1000ml,于80℃反应3.5h。反应完毕后停止反应,反应物冷却至室温,过滤,所得到的固体通过甲苯中重结晶纯化,得到白色粉末M1。

在N2保护,加入35g(100mmol)上述产物M1,并加入17.7g三苯基膦(100mmol)、1000ml邻二氯苯,加热回流,进行反应12h,反应完毕后蒸除溶剂,硅胶柱层析,得到M2中间体。

取31.8g(100mmol)上述中间体M2,并加入200mlDMF,滴加入溴素(100mmol),于室温反应约24h,反应液加入水,过滤,水洗,得到中间体M3。

于反应瓶中,加入39.6g(100mmol)中间体M3,并加入2-溴二苯并噻吩30.1g(110mmol)、四(三苯基膦钯)0.9g(0.785mmol,0.5%)、甲苯1500ml、乙醇1000ml,以及碳酸钾43.3g(314mmol)/水1000ml,于80℃进行反应3.5h。反应完毕后停止反应,冷却至室温,过滤,所得到的固体通过甲苯中重结晶纯化,得到白色粉末M4。

于反应瓶中,加入50g(100mmol)上述产物M4,并加入2-(3-溴苯基)-嘧啶16.5g(110mmol)、Pd2(dba)3 0.9g(0.785mmol,0.5%)、甲苯1500ml、以及碳酸钾43.3g(314mmol),于100℃反应3.5h。反应完毕后停止反应,冷却至室温,过滤,所得到的固体通过甲苯中重结晶纯化,得到白色粉末A12。

1H NMR(CDCl3,400MHz)9.11(s,1H),9.00(d,J=10.0Hz,2H),8.73(s,1H),8.61(s,1H),8.56(s,1H),8.44(d,J=8.0Hz,2H),8.39–8.13(m,4H),8.11(d,J=6.4Hz,2H),7.99(s,2H),7.87(d,J=8.0Hz,2H),7.81(s,1H),7.70–7.51(m,4H),7.31(s,1H),7.22(s,1H),7.12(s,1H)。

本发明其他可选化合物均可按照上述实施例1-2的思路选择合适结构的原料进行近似过程的合成,此处不再赘述。

器件实施例

本发明器件实施例中选用的有机发光二极管包括位于基板上的第一电极和第二电极,以及位于电极之间的有机层,所述有机层可以为多层结构。比如,该有机材料层可以包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。所述基板使用现有技术中有机发光显示器所用的常规基板,例如,玻璃、聚合物材料以及带有TFT元器件的玻璃和聚合物材料等。

所述阳极材料可以是现有技术中已知的铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO2)、氧化锌(ZnO)等透明导电材料,也可以是银及其合金、铝及其合金等金属材料,也可以是PEDOT等有机导电材料,及上述材料的多层结构。

所述阴极材料可以选自但不限于镁银混合物、LiF/Al、ITO等金属、金属混合物、氧化物等材料及结构。

所述OLED器件中还可以包括位于发光层与阳极之间的空穴注入层、空穴传输层,这些层可以但不限于以下所罗列的HT1-HT31的一种或多种的组合。

器件发光层可以包含主体材料和发光染料,其中,主体材料包括但不限于如下GPH1-GPH80中所示常规材料的一种或多种的组合。

所述发光染料可以选用但不限于以下所罗列的GPD1-GPD57材料的一种或多种的组合。

所述电子传输层材料包括但不限于以下所罗列的ET1-ET57材料中的一种或多种的组合。

所述器件中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于现有技术中LiQ、LiF、NaCl、CsF、Li2O、Cs2CO3、BaO、Na、Li、Ca等材料中一种或几种的组合。

本发明器件实施例中所述有机电致发光器件制备过程如下:

将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮-乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;

把上述带有阳极的玻璃基片置于真空腔内,抽真空至小于10-5,在上述阳极层膜上真空蒸镀HT-11作为空穴注入层,蒸镀速率为0.1nm/s,蒸镀膜厚为10nm;

在空穴注入层之上真空蒸镀HT-5材料作为器件的空穴传输层,蒸镀速率为0.1nm/s,蒸镀总膜厚为80nm;

在空穴传输层之上真空蒸镀器件的发光层,发光层包括主体材料和染料材料,利用多源共蒸的方法,选用如下表1中给出的本发明制得主体材料进行蒸镀,或者本发明制得主体材料与材料GHP-16共蒸,调节主体材料的蒸镀速率为0.1nm/s,以染料GPD-1蒸镀速率3%比例设定,蒸镀总膜厚为30nm;并以现有技术中主体材料R-1~R-3制得相同结构器件作为对照;

在发光层之上真空蒸镀器件的电子传输层,选用材料ET42,其蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm;

在电子传输层(ETL)上真空蒸镀厚度为0.5nm的LiF作为电子注入层,厚度为150nm的Al层作为器件的阴极。

对由上述过程制备的有机电致发光器件进行如下性能测定:

在同样亮度下,使用数字源表及亮度计测定实施例以及对比例制备得到的有机电致发光器件的驱动电压和电流效率以及器件的寿命,具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到10000cd/m2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率;LT95的寿命测试如下:使用亮度计在10000cd/m2亮度下,保持恒定的电流,测量有机电致发光器件的亮度降为9500cd/m2的时间,单位为小时。

以本发明所述主体材料和现有技术主体材料制得有机电致发光器件性能见下表1所示。

表1有机电致发光器件性能结果

从上表数据可知,本发明制得的新型有机材料用于有机电致发光器件主体材料,可以有效的降低起降电压,提高电流效率,延长器件寿命,是性能良好的主体材料,尤其是以本发明所述主体材料与现有技术主体材料混合的双主体材料器件,其器件性能进一步提升,特别是电流效率更优。

本发明器件性能和对比例器件R-1~R-3相比较,在电压、效率和寿命方面都有提升和改进。由R-1主体材料形成的对比例器件,其分子内的电荷作用力较弱,电荷传输的效率降低,因而相比于本发明结构,电压偏高,效率偏低;而由R-2和R-3作为主体材料形成的器件,相比于本发明化合物形成的器件,由于化合物母体结构的能级较低,电荷的迁移率也较低,因而表现为电压高,效率低;本发明结构的杂稠环片段,能级较高,对电荷的稳定性更强,因而表现为材料的寿命也有提高。

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

32页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:细胞松弛素类化合物、其制备方法及应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类