基于2-苯乙烯基吲哚盐类衍生物长波发射可区分检测Cys/Hcy荧光探针及其应用

文档序号:1766382 发布日期:2019-12-03 浏览:41次 >En<

阅读说明:本技术 基于2-苯乙烯基吲哚盐类衍生物长波发射可区分检测Cys/Hcy荧光探针及其应用 (Detection Cys/Hcy fluorescence probe and its application can be distinguished based on 2- styryl indole salts derivative longwave transmissions ) 是由 徐永霞 朱文慧 李秋莹 赵洪雷 周诗怡 钟克利 汤立军 于 2019-09-06 设计创作,主要内容包括:一种基于2-苯乙烯基吲哚盐类衍生物长波发射可区分检测Cys/Hcy荧光探针及其应用,该荧光探针L的结构式为:&lt;Image he="434" wi="518" file="DDA0002193229560000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;该荧光探针L是以2-苯乙烯基吲哚盐为底物,与4-氯-7-硝基苯并-2-氧杂-1,3-二唑、三乙胺,通过温和简单的反应,获得具有长波发射的荧光探针L。该荧光探针L合成步骤简单,长波长发射,响应时间较短,在含水介质中只对Cys/Hcy的有识别,并可区分检测Cys/Hcy,具有高灵敏性,可应用在细胞中作为非疾病诊断和非疾病治疗目的的检测。(One kind can distinguish detection Cys/Hcy fluorescence probe and its application, the structural formula of fluorescence probe L based on 2- styryl indole salts derivative longwave transmissions are as follows: Fluorescence probe L is to obtain the fluorescence probe L with longwave transmissions by mild simple reaction with chloro- 7- nitro benzo -2- oxa- -1, the 3- diazole of 4-, triethylamine using 2- styryl indoles salt as substrate.Fluorescence probe L synthesis step is simple, long wavelength emission, and the response time is shorter, only there is identification to Cys/Hcy in water-bearing media, and detection Cys/Hcy can be distinguished, there is high sensitivity, can be applicable to the detection in cell as non-disease diagnosis and non-disease therapeutic purposes.)

基于2-苯乙烯基吲哚盐类衍生物长波发射可区分检测Cys/ Hcy荧光探针及其应用

技术领域

本发明涉及一种基于2-苯乙烯基吲哚盐类衍生物长波发射可区分检测Cys/Hcy荧光探针及其应用。

背景技术

半胱氨酸(Cys),高半胱氨酸(Hcy)和还原型谷胱甘肽(GSH)是生物体中常见的生物硫醇,并且在各种生理和病理过程中起重要作用,其中Cys是GSH的前体,参与蛋白质合成,解毒和代谢。Hcy已被确定为许多疾病的独立危险因素,其微小升高(超过15μM)可导致严重的同型高半胱氨酸血症。GSH作为细胞内最丰富的硫醇,在对抗氧化应激和维持氧化还原稳态中起重要作用。目前检测三种生物硫醇常见的经典方法包括电化学法、比色法、亚甲蓝法和气相色谱法。与传统方法相比,荧光分析技术以其成本低、操作简单、灵敏度高、实时无损生物成像等优点受到人们的广泛关注。

近年来,科研人员设计和开发了许多用于体外和体内检测生物硫醇(包括Hcy、Cys和GSH)的荧光探针,具有较好的选择性,如Org.Biomol.Chem.,(2019),17,1436-1441;Tetrahedron,(2017),73,6651-6656,但其合成路线相对复杂;Dyes Pigm.,(2018),158,151-156;New J.Chem.,(2018),42,18172-18181,但其发射波长较短;Biosensors andBioelectronics,(2016),81,341-348;CN106588912;不能区分识别Cys/Hcy;Talanta,(2016),146,41-48;Analyst,2019,144,3676-3684;不能快速检测。可见,现有报道的探针均有一定的缺陷,同时Hcy、Cys和GSH由于结构和反应能力的相似性,将它们区分检测,仍然是一项具有挑战性的任务。

发明内容

本发明要解决的技术问题是提供一种基于2-苯乙烯基吲哚盐类衍生物长波发射可区分检测Cys/Hcy荧光探针及其应用,该荧光探针合成步骤简单,长波长发射,响应时间较短,在含水介质中只对Cys/Hcy的有识别,并可区分检测Cys/Hcy,具有高灵敏性,可应用在细胞中作为非疾病诊断和非疾病治疗目的检测。

本发明的技术方案是:

一种长波发射可区分检测Cys/Hcy荧光探针,该荧光探针L是基于2-苯乙烯基吲哚盐类衍生物,结构式如下:

进一步的,所述长波发射可区分检测Cys/Hcy荧光探针,其具体合成步骤如下:

以CH2Cl2为溶剂,将化合物14-氯-7-硝基苯并-2-氧杂-1,3-二唑(Cl-NBD)、三乙胺按照摩尔比1:(1~2):(0.1~0.5)进行投料,室温下搅拌6小时~12小时,反应结束后加水,萃取干燥,得到粗产物,用硅胶柱色谱法进行纯化,用甲醇和二氯甲烷作为洗脱剂进行分离,得到荧光探针L

所述甲醇和二氯甲烷的体积比为1:50~1:100。

一种长波发射可区分检测Cys/Hcy荧光探针在区分检测Cys和Hcy中的应用,其特殊之处在于:体积比为2:8的THF与PBS的缓冲溶液中对Cys和Hcy进行检测,所述应用为非疾病诊断和非疾病治疗目的。

一种长波发射可区分检测Cys/Hcy荧光探针在区分检测Cys和Hcy中的应用,其特殊之处在于:在pH=7.4、体积比为2:8的THF与PBS缓冲溶液中,用荧光探针L检测时,30秒内在592nm处的荧光强度明显增强,说明存在Cys。

一种长波发射可区分检测Cys/Hcy荧光探针在区分检测Cys和Hcy中的应用,其特殊之处在于:在pH=10、体积比为2:8的THF与PBS缓冲溶液中,用荧光探针L检测时,在592nm处的荧光强度明显增强,说明存在Hcy。

一种长波发射可区分检测Cys/Hcy荧光探针在区分检测Cys和Hcy中的应用,其特殊之处在于:在细胞中对Cys/Hcy进行检测,所述应用为非疾病诊断和非疾病治疗目的。

本发明的有益效果是:

荧光探针合成过程简单,分离提纯容易;荧光探针可以在水介质中长波长荧光增强识别Cys/Hcy,具有高度的选择性和良好的灵敏度,检测限达到10-6mol/L;在pH=6-9范围内能够快速检测,在30秒内只对Cys有响应,在pH=10时只对Hcy有响应,因此,可区分检测Cys和Hcy;此外,该荧光探针可以作为非疾病诊断和非疾病治疗目的应用到细胞中检测Cys/Hcy中。

附图说明

图1是本发明荧光探针L的1H NMR谱图;

图2是本发明荧光探针L的13C NMR谱图;

图3是本发明荧光探针L与Br-,I-,NO2 -,CO3 2-,Cys,HCO3 -,Ac-,HPO4 2-,H2PO4 -,PO4 3-,CN-,SCN-,Hcy,HS-,SO4 2-,SO3 2-,HSO3 -,HSO4 -,N3 -,S2O3 2-作用前后的荧光发射光谱图;

图4是本发明荧光探针L与不同倍数Cys作用前后的荧光发射光谱变化图;

图5是本发明荧光探针L与不同倍数Hcy作用前后的荧光发射光谱变化图;

图6是本发明荧光探针L加不同阴离子再加Hcy后的荧光变化光谱图;

图7是本发明荧光探针L加不同阴离子再加Cys后的荧光变化光谱图;

图8是本发明荧光探针L识别Hcy的时间响应图;

图9是本发明荧光探针L识别Cys的时间响应图;

图10是本发明荧光探针L识别Hcy的pH响应图;

图11是本发明荧光探针L识别Cys的pH响应图;

图12是本发明荧光探针L在pH=10时的选择荧光变化图;

图13是本发明荧光探针L在pH=10时加不同阴离子再加Hcy后的荧光变化光谱图;

图14是本发明荧光探针L在细胞中检测Hcy的荧光变化图。

具体实施方式

下面结合具体实施例对本发明的技术方案作进一步详细地说明。

实施例1

荧光探针L的具体合成步骤如下:

将化合物1(487.17mg,1mmol),4-氯-7-硝基苯并-2-氧杂-1,3-二唑(139.46mg,1.2mmol),三乙胺(101mg,0.1mmol)溶解于干CH2Cl2(20mL)中,在室温下搅拌6小时。然后加入水,用乙酸乙酯萃取混合物,用无水Na2SO4干燥有机层,移除溶剂,用甲醇/二氯甲烷(1:50,v/v)作为洗脱液,通过柱色谱法纯化粗产物,得到化合物L(184mg,34.9%)。1H NMR(400MHz,DMSO-d6)δ8.69(d,J=8.3Hz,1H),8.40(d,J=9.2Hz,1H),8.13(d,J=15.7Hz,1H),7.73(t,J=7.5Hz,2H),7.54(td,J=7.7,1.3Hz,1H),7.46(t,J=7.5Hz,1H),7.36(d,J=15.7Hz,1H),6.98(dd,J=9.2,2.4Hz,2H),6.95(d,J=2.4Hz,1H),4.44(q,J=7.2Hz,2H),3.56(q,J=7.0Hz,4H),1.46(s,6H),1.30(t,J=7.2Hz,3H),1.17(t,J=7.0Hz,6H).

13C NMR(101MHz,DMSO-d6)δ177.66,163.09,155.31,142.08,141.75,129.20,127.20,123.27,113.04,112.56,107.54,96.60,56.37,49.88,44.71,27.54,18.85,13.12.

HRMS(ESI+)Calcd for C30H32N5O4[M-I]+:526.2449,found:526.2713。

实施例2

荧光探针L的具体合成步骤如下:

将化合物1(487.17mg,1mmol),4-氯-7-硝基苯并-2-氧杂-1,3-二唑(174.32mg,1.5mmol),三乙胺(303mg,0.3mmol)溶解于干CH2Cl2(20mL)中,在室温下搅拌9小时。然后加入水,用乙酸乙酯萃取混合物,用无水Na2SO4干燥有机层,移除溶剂,用甲醇/二氯甲烷(1:80,v/v)作为洗脱液,通过柱色谱法纯化粗产物,得到化合物L(150mg,28.6%)。本实施例荧光探针L1H NMR谱图和13C NMR谱图如图1和图2。HRMS(ESI+)Calcd for C30H32N5O4[M-I]+:526.2449,found:526.2713。

实施例3

荧光探针L的具体合成步骤如下:

将化合物1(487.17mg,1mmol),2 4-氯-7-硝基苯并-2-氧杂-1,3-二唑(232.43mg,2mmol),三乙胺(505mg,0.5mmol)溶解于干CH2Cl2(20mL)中,在室温下搅拌混合物12小时。然后加入水,用乙酸乙酯萃取混合物,用无水Na2SO4干燥有机层,移除溶剂,用甲醇/二氯甲烷(1:100,v/v)作为洗脱液,通过柱色谱法纯化粗产物,得到化合物L(113mg,21.5%)。本实施例荧光探针L1H NMR谱图和13C NMR谱图如图1和图2。HRMS(ESI+)Calcd for C30H32N5O4[M-I]+:526.2449,found:526.2713。

本发明实施例1合成的荧光探针L在450nm激发波长下对Cys/Hcy选择性的检测:

10μmol/L荧光探针L的PBS:THF=8:2(v/v,pH=7.4)缓冲溶液,向其中分别加入20μL(50mmol/L)阴离子(Br-,I-,NO2 -,CO3 2-,HCO3 -,CH3COO-,HPO4 2-,H2PO4 -,PO4 3-,CN-,SCN-,SO4 2-,SO3 2-,HSO3 -,HSO4 -,N3 -,S2O3 2-,HS-),Cys,Hcy,GSH,检测溶液的荧光发射光谱变化。从图3中可以看出,当加入阴离子时,Cys/Hcy可以引起荧光强度显著变化,即加入Cys/Hcy后592nm处的荧光强度原位增强,而其他阴离子的加入对荧光强度没有明显影响,由此可知,荧光探针L对Cys/Hcy有高度的选择性。

荧光探针L在450nm激发波长下对Cys/Hcy的滴定测试:

10μmol/L的荧光探针L的PBS:THF=8:2(v/v,pH=7.4)缓冲溶液,分别加入0~15倍的Cys和0~20倍的Hcy,检测溶液的荧光发射光谱变化,如图4所示。随着Cys不断加入,在592nm处的发射峰逐渐升高,当加入15倍的Cys时,在592nm处的发射峰不再升高,说明此时达到了饱和。如图5所示,当加入20倍的Hcy时,荧光强度不再变化。

荧光探针L在450nm激发波长下识别Cys/Hcy的抗干扰检测:

10μmol/L荧光探针L的PBS:THF=8:2(v/v,pH=7.4)缓冲溶液,向其中分别加入20μL(50mmol/L)各种阴离子和巯基氨基酸,检测溶液的荧光发射光谱,然后向以上各个含有各种阴离子(Br-,I-,NO2 -,CO3 2-,HCO3 -,CH3COO-,HPO4 2-,H2PO4 -,PO4 3-,CN-,SCN-,SO4 2-,SO3 2-,HSO3 -,HSO4 -,N3 -,S2O3 2-,HS-)和巯基氨基酸的溶液中再分别加入20μL(50mmol/L)的Cys/Hcy,检测溶液的荧光发射光谱,取最大发射波长所对应的值作图,如图6和图7所示。由图可知,其它阴离子存在时,Cys/Hcy均能导致探针L荧光增强,说明荧光探针L对Cys/Hcy能荧光增强识别,不受其它阴离子的干扰。

荧光探针L在450nm激发波长下对Cys/Hcy的响应时间测试:

在探针L的PBS:THF=8:2(v/v,pH=7.4)缓冲溶液中,加入15倍Cys后测试不同时间的荧光强度变化,从图8中可以看出,随着时间延长探针荧光强度逐渐增强,在10秒达到最高值并呈稳定趋势,说明探针L对Cys的识别具有超快响应的能力。加入20倍的Hcy后测试其荧光强度随时间的变化,由图9可知,在6分钟内达到饱和。通过对比可知,当探针L在30秒内测试各种阴离子和巯基氨基酸时,只有Cys能使592nm处的荧光强度明显增强,说明在30秒内测试可单独检测Cys,可以快速识别。

荧光探针L对Cys/Hcy的pH响应测试:

为了证实探针L的实用性,我们验证了pH对L加入Cys/Hcy前后在450nm激发波长下的荧光发射变化。如图10所示,探针L在pH 2-13时荧光强度无明显变化,随后,向探针L中加入Hcy,在pH 6-10时有明显的荧光增强,说明探针L能够在较宽的pH范围内检测Hcy。如图11所示,向探针溶液中加入Cys,在pH 6-9范围内有明显的荧光增强,在pH=10时荧光强度较弱,说明探针L在pH 6-9范围内检测Cys。通过对比可发现在pH=10时探针L只对Hcy响应明显,说明此条件下可明显区分Hcy和Cys。因此,我们在PBS:THF=8:2(v/v,pH=10.0)缓冲溶液中,测试了荧光探针L(10μmol/L)的选择性,当加入各种阴离子和巯基氨基酸时,探针L在592nm处只对Hcy有明显响应(见图12),荧光增强,说明此条件下荧光探针L对Hcy有较好的选择性。此外,抗干扰实验表明,其他离子的存在对Hcy没有明显干扰(见图13),说明在pH=10.0可单独识别Hcy。

本发明的荧光探针对Cys/Hcy的检测原理如下:

当加入Cys/Hcy时,氨基酸中的巯基可对NBD单元发生芳香取代反应,导致醚键断裂,释放出2-苯乙烯基吲哚盐类荧光团,以及NBD-SR(R为巯基氨基酸的残基),继续发生重排生成具有荧光的NBD-NR1,从而实现双发射识别Cys/Hcy。

荧光探针L在细胞中检测Cys/Hcy:

为了进一步检验探针L的实际适用性,进行了细胞成像实验。将MCF-7细胞与探针L在37℃培养30分钟,然后MCF-7细胞用PBS缓冲液洗三次,再加入HS-培养30分钟,观察红色荧光亮度随HS-浓度增加而增强(见图14),这些结果表明探针L具有良好的细胞渗透性,能够检测MCF-7细胞中的Cys/Hcy,也表明探针L具有在生物中检测Cys/Hcy作为非疾病诊断和非疾病治疗目的潜在应用。

以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

19页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:5,5`-双(3,5-二硝基吡唑基)-2,2`-双(1,3,4恶二唑)及合成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!