一种顺式格子Cis-Grid的有机纳米材料及其制备方法和应用

文档序号:1780017 发布日期:2019-12-06 浏览:31次 >En<

阅读说明:本技术 一种顺式格子Cis-Grid的有机纳米材料及其制备方法和应用 (Cis-lattice Cis-Grid organic nano material and preparation method and application thereof ) 是由 张广维 仲涛涛 解令海 袁帅 于 2019-09-23 设计创作,主要内容包括:本发明公开了一种顺式格子Cis-Grid的有机纳米材料及其制备方法和应用,属于有机发光器件,有机激光,太阳能电池和半导体电存储领域。本发明通过相应的发射(PL)表征手段,对此分子的薄膜状态(不同纳米形貌)下的光学性质进行了研究。采用重沉淀的方法,将顺式格子(Cis-Grid)溶于良溶剂中,并将其迅速加入到不良溶剂中快速搅拌,使其迅速成核,促进有机纳米晶体的生成。本发明通过采用经典的重沉淀法,操作简易,成本低廉。制备出具有不同规则形貌的纳米结构,尺寸均一,实现了一维到二维有机纳米结构的可控制备。展现了此类有机纳米材料在未来光电子器件中的应用潜力。(the invention discloses a Cis-form lattice Cis-Grid organic nano material, and a preparation method and application thereof, and belongs to the field of organic light-emitting devices, organic lasers, solar cells and semiconductor electric storage. The invention researches the optical properties of the molecules in the film state (different nano-morphologies) by a corresponding emission (PL) characterization means. By adopting a re-precipitation method, Cis-form lattices (Cis-Grid) are dissolved in a good solvent, and the Cis-form lattices (Cis-Grid) are quickly added into a poor solvent and quickly stirred to quickly nucleate the Cis-form lattices and promote the generation of organic nanocrystals. The invention adopts a classic reprecipitation method, and has simple operation and low cost. The prepared nano-structure has different regular shapes, has uniform size, and realizes the controllable preparation of one-dimensional to two-dimensional organic nano-structures. The application potential of the organic nano material in future optoelectronic devices is shown.)

一种顺式格子Cis-Grid的有机纳米材料及其制备方法和应用

技术领域

本发明属于纳米材料技术领域,特别涉及一种顺式格子Cis-Grid的有机纳米材料及其制备方法和应用。

背景技术

在过去20年,有机半导体在有机发光二极管(OLED)、有机场效应晶体管(OFET)、有机光伏器件(OPV)等器件中得到了广泛的应用。薄膜形貌作为器件性能的决定性因素,如何调控至关重要。有机微纳晶作为其中一种关键手段,通过在凝聚态层面调制薄膜中的纳米结构包括分子排列方式与分布特点。对于荧光发射而言,分子偶极子的面对面堆叠(H-聚集)通常会导致由分子聚集引起的荧光猝灭现象,而在交错堆叠(J-聚集)或交叉堆叠(X聚集)的情况下,由于偶极-偶极相互作用减弱,可以有效抑制发光猝灭。因此,操纵有机分子的自组装行为以实现特定的分子聚集是非常重要的。对于有机场效应晶体管(OFET)应用来说,为了在其特定方向上获得更高的电荷载流子迁移率,精确控制分子包装模式如1Dπ-堆叠,2D人字形/砖砌式堆积以及堆积晶格是极其重要的。

虽然到目前为止,有报道通过调整有机分子结构,例如添加不同的侧链基团、异构变化、引入杂原子等来控制分子自组装行为。除此之外,通过不同溶剂调控同一分子得到不同纳米形貌的实验研究同样有待进一步研究。

因此,本发明设计了一种基于顺式格子(Cis-Grid)的分子,提供相应的有机纳米材料的制备方法,通过不同的实验条件获得不同的纳米晶体形貌,探究不同溶剂下分子的聚集方式,进一步研究纳米晶形貌对发光性质的影响。

发明内容

本发明提供一种顺式格子Cis-Grid的有机纳米材料及其制备方法和应用,通过相应的发射(PL)光谱表征手段,对此分子薄膜状态下的光学性质进行了研究。该制备方法采用经典的操作简易,成本低廉的重沉淀方法,实现了一维到二维有机纳米结构的可控制备。证明了这种机纳米材料堆积方式对溶剂的依赖以及分子聚集方式对其光学性质的影响。

为实现上述目的,本发明采用的技术方案为:

一种顺式格子Cis-Grid的有机纳米材料,有机纳米材料中两个辛氧基苯基在分子平面的同一侧,其结构式如下:

进一步的,所述有机纳米材料为一维纳米棒或二维菱形纳米片结构。

进一步的,所述纳米棒的直径为60纳米-120纳米,长度为300纳米-1微米,所述菱形纳米片的厚度为30 0纳米-400纳米,边长为8微米-10微米。

一种顺式格子Cis-Grid的有机纳米材料的制备方法,

顺式格子Cis-Grid纳米棒的制备方法,包括以下步骤:

S101、将目标化合物顺式格子Cis-Grid完全溶于四氢呋喃THF中,然后迅速的将其注入到去离子水中,搅拌得到混合溶液;

S102、将步骤S101中制得的混合溶液在室温下静置将近24h,待纳米晶体生长完全,离心,并采用超纯水离心洗涤来清洗四氢呋喃THF溶液,即制得相应的有机纳米晶材料;

顺式格子Cis-Grid菱形纳米片的制备方法,包括以下步骤:

S201、将目标化合物顺式格子Cis-Grid完全溶于三氯甲烷CHCl3中,然后迅速的将其注入到异丙醇中,搅拌得到混合溶液;

S202、将步骤S101中制得的混合溶液在室温下静置24h,待纳米晶体生长完全,离心,即制得相应的有机纳米晶材料。

进一步的,所述步骤S101中,目标化合物顺式格子Cis-Grid、四氢呋喃THF和去离子水的用量比为0.1mg:1mL:5mL。

进一步的,所述步骤S201中,目标化合物顺式格子Cis-Grid、三氯甲烷CHCl3和异丙醇的用量比为0.1mg:1mL:5mL。

进一步的,所述步骤S101和S201中,搅拌时间都是4-8分钟。

进一步的,所述步骤S102和S202中,离心的转速为15000r/min转速。

进一步的,所述步骤S102中,离心洗涤4~5次。

上述方法制得的有机纳米材料应用于光电子器件。

与现有技术相比,本发明具有以下有益效果:

1、本发明提供了基于顺式格子(Cis-Grid)的有机纳米材料。

2、本发明证明了分子堆积对这种有机纳米材料的光学性质具有影响,展现了此类有机半导体材料在未来光电子器件中的应用潜力。

3、本发明采用经典的重沉淀法,操作简易,成本低廉。

4、本发明做出的纳米结构形貌规则,尺寸均一,实现了一维到二维有机纳米结构的可控制备。

附图说明

图1为实施例1中顺式格子Cis-Grid的有机纳米材料的棒状结构示意图;

图2为实施例2中顺式格子Cis-Grid的有机纳米材料的菱形片结构示意图;

图3为本发明中基于顺式格子Cis-Grid分子薄膜的光致发光(PL)图。

具体实施方式

下面结合实施例对本发明作更进一步的说明。

本发明中顺式格子(Cis-Grid)分子的合成方法已由本申请人公开号为公开号CN108517030A的在先申请《芴基纳米格子聚合物及其制备方法和应用》中公开。

该有机纳米材料的形貌分别为菱形纳米片和纳米棒。其中菱形纳米片厚度为300到400纳米,边长为8到10微米。纳米棒的直径和长度有随浓度变化而改变的趋势:最短时直径为60纳米左右,长度在300纳米左右,最长时直径达到120纳米左右,长度达到1微米左右。

以顺式格子(Cis-Grid)目标化合物,采用经典的重沉淀法,分别用四氢呋喃(THF)作为良溶剂,水作为不良溶剂以及三氯甲烷(CHCl3)作为良溶剂,异丙醇作为不良溶剂制备出两种不同形貌的有机纳米晶材料。

这两种有机纳米材料在不同的实验条件下获得:

将目标化合物顺式格子(Cis-Grid)(0.1mg)完全溶于1mL四氢呋喃(THF)中,然后迅速的将其注入到5mL去离子水中,快速搅拌5分钟;将所制得的混合溶液在室温下静置将近24h,待纳米晶体生长完全,用15000r/min转速离心,超纯水离心洗涤4~5次来清洗THF溶液,即制得相应的纳米棒晶体材料。

将目标化合物顺式格子(Cis-Grid)(0.1mg)完全溶于1mL三氯甲烷(CHCl3)中,然后迅速的将其注入到5mL异丙醇中,快速搅拌5分钟;将所制得的混合溶液在室温下静置将近24h,待纳米晶体生长完全,用15000r/min转速离心,即制得相应的菱形纳米片晶体材料。

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但是本发明的技术内容并不限于下述实施例的限制。

实施例1

Cis-Grid分子的纳米棒自组装实验方法:准备10mL的样品瓶,投入磁子,加入5mL的去离子水,待用。将0.1mg的顺式格子(Cis-Grid)分子完全溶于1mL THF(四氢呋喃)中,在磁子匀速转动的条件下,用移液枪将溶有目标分子顺式格子(Cis-Grid)的四氢呋喃混合物全部一次性注入含有去离子水样品瓶中,搅拌4-8分钟。在此过程中,肉眼可见白色絮状物出现,待搅拌完成,成乳白色液体。取出磁子,将混合溶液在室温下静置大约24h,用15000r/min转速离心,同时用超纯水离心洗涤4~5次,直至将THF去除完全。取一滴大约10μL的纳米晶体水溶液沉积在硅衬底上,放在40-45℃的加热板上进行溶剂蒸发,待3-4h后溶剂完全蒸发,确保水份烘干。然后用场发射SEM(日立S-4800)在5kV的加速电压下测试,观察其纳米形貌。

实施例2

Cis-Grid分子的菱形纳米片自组装实验方法:准备10mL的样品瓶,投入磁子,加入5mL的异丙醇溶液,待用。将0.1mg的顺式格子(Cis-Grid)分子完全溶于1.5mL CHCl3(三氯甲烷)中,在磁子匀速转动的条件下,用移液枪将溶有目标分子顺式格子(Cis-Grid)的三氯甲烷混合物全部一次性注入含有不良溶剂异丙醇的样品瓶中,搅拌4-8分钟。在此过程中,肉眼可见白色絮状物出现,待搅拌完成,成乳白色液体。取出磁子,将混合溶液在室温下静置大约24h。取一滴大约10μL的纳米晶体异丙醇溶液沉积在硅衬底上,放在40-45℃的加热板上进行溶剂蒸发,待几分钟后溶剂完全蒸发,确保溶剂烘干。然后用场发射SEM(日立S-4800)在5kV的加速电压下测试,观察其纳米形貌。

对比顺式格子(Cis-Grid)分子的稀溶液和实施例1和实施例2中得到的有机纳米材料悬浮液的光致发光(PL)特性,表明这三种分子具有类似的电子结构和带隙。改变分子堆积模式和弱相互作用,聚集状态下的发光发生了不同程度的变化。

实施例1和2中制得的有机纳米材料应用于光电子器件。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:苦豆酮的制备及在个人护理产品中的应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!