Naphthalene-doped biphenyl polyaryl ether nitrile sulfone toughened phthalonitrile resin-based fiber reinforced composite material and preparation method thereof

文档序号:1793514 发布日期:2021-11-05 浏览:25次 中文

阅读说明:本技术 杂萘联苯聚芳醚腈砜增韧邻苯二甲腈树脂基纤维增强复合材料及其制备方法 (Naphthalene-doped biphenyl polyaryl ether nitrile sulfone toughened phthalonitrile resin-based fiber reinforced composite material and preparation method thereof ) 是由 蹇锡高 刘程 张守海 王锦艳 翁志焕 宗立率 于 2021-09-03 设计创作,主要内容包括:本发明属于先进复合材料科学技术领域,公开了一种杂萘联苯聚芳醚腈砜增韧邻苯二甲腈树脂基纤维增强复合材料及其制备方法。本发明通过引入可参与交联反应氰基和强极性砜基基团的杂萘联苯结构聚芳醚腈砜耐高温热塑性树脂,可以改善其与邻苯二甲腈树脂基体的相容性,保持基体树脂优异的耐热性和力学强度,并可提高基体树脂及其纤维增强树脂基复合材料的抗冲击韧性。本发明对于推动耐高温先进复合材料的发展和开拓纤维增强高性能树脂基复合材料在航空航天、能源、海洋工程、石油化工等领域的应用具有实用价值。(The invention belongs to the technical field of advanced composite material science, and discloses a naphthalene miscellaneous biphenyl poly (arylene ether nitrile sulfone) toughened phthalonitrile resin-based fiber reinforced composite material and a preparation method thereof. According to the invention, the high-temperature resistant thermoplastic resin with the poly (arylene ether nitrile sulfone) structure, which can participate in the crosslinking reaction of the cyano group and the strongly polar sulfone group, is introduced, so that the compatibility of the high-temperature resistant thermoplastic resin with a phthalonitrile resin matrix can be improved, the excellent heat resistance and mechanical strength of the matrix resin can be maintained, and the impact toughness of the matrix resin and the fiber reinforced resin matrix composite material thereof can be improved. The invention has practical value for promoting the development of high-temperature-resistant advanced composite materials and developing the application of fiber-reinforced high-performance resin-based composite materials in the fields of aerospace, energy, ocean engineering, petrochemical industry and the like.)

1. the naphthalene-doped biphenyl polyaryl ether nitrile sulfone toughened phthalonitrile resin-based fiber reinforced composite material is characterized by comprising the following raw materials in percentage by mass: fiber: phthalonitrile compound: curing agent: the heteronaphthalene biphenyl poly (arylene ether nitrile sulfone) (40-75%): (20-50%): (0.5-10%): (1% to 30%).

2. The phthalazinone polyarylethernitrile sulfone toughened phthalonitrile resin-based fiber-reinforced composite material as set forth in claim 1, wherein the phthalonitrile compound has a structural formula:

wherein Ar is:

r and R' are Ph or CH3R and R' are the same or different;

n=1~20。

3. the heteronaphthalene biphenyl polyarylethernitrile sulfone toughened phthalonitrile resin-based fiber-reinforced composite material according to claim 1 or 2,

the heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone is as follows:

wherein-Ar1-is:

—Ar2-and-Ar3-is

Two Ar1Identical or different, Ar2And Ar3The same or different;

wherein R is1、R2、R3And R4Is hydrogen, halogen substituent, phenyl, phenoxy, alkyl or alkoxy, and R1、R2、R3And R4The alkyl or alkoxy group in (1) is a group containing at least 1 carbon atom; r is hydrogen, methoxy, phenyl, alkyl or alkoxy, and both the alkyl and alkoxy groups in R contain at least 1 carbon atom; r, R1、R2、R3And R4Are identical or different.

4. The phthalazinone polyarylethernitrile sulfone toughened phthalonitrile resin-based fiber-reinforced composite material as set forth in claim 1 or 2, wherein the curing agent is paraPhenylenediamine, m-phenylenediamine, 2' -biphenyldiamine, 4' -diaminodiphenyl ether, 3' -diaminodiphenyl ether, 4' -diaminodiphenyl sulfone, 3' -diaminodiphenyl sulfone, 4' -diaminodiphenylmethane, 3' -diaminodiphenylmethane, 2-bis (4-aminophenyl) propane, 2-bis (3-aminophenyl) propane, ZnCl2、Cu2Cl2、CuCl2、AlCl2、CoCl2、FeCl2、FeCl3、TiCl4、MgCl2、CaCl2、NiCl2And urea, or a mixture of two or more thereof.

5. The phthalazinone polyarylether nitrile sulfone-toughened phthalonitrile resin-based fiber-reinforced composite material as set forth in claim 3, wherein the curing agent is p-phenylenediamine, m-phenylenediamine, 2' -biphenyldiamine, 4' -diaminodiphenyl ether, 3' -diaminodiphenyl ether, 4' -diaminodiphenyl sulfone, 3' -diaminodiphenyl sulfone, 4' -diaminodiphenyl methane, 3' -diaminodiphenyl methane, 2-bis (4-aminophenyl) propane, 2-bis (3-aminophenyl) propane, ZnCl2、Cu2Cl2、CuCl2、AlCl2、CoCl2、FeCl2、FeCl3、TiCl4、MgCl2、CaCl2、NiCl2And urea, or a mixture of two or more thereof.

6. The phthalazinone polyarylether nitrile sulfone toughened phthalonitrile resin based fiber reinforced composite material as claimed in claim 1,2 or 5, wherein the fiber is one or a mixture of two or more of carbon fiber, glass fiber, quartz fiber, basalt fiber and boron nitride fiber.

7. The phthalazinone polyarylether nitrile sulfone toughened phthalonitrile resin based fiber reinforced composite material as claimed in claim 3, wherein the fiber is one or a mixture of two or more of carbon fiber, glass fiber, quartz fiber, basalt fiber and boron nitride fiber.

8. The phthalazinone polyarylether nitrile sulfone toughened phthalonitrile resin based fiber reinforced composite material as claimed in claim 4, wherein the fiber is one or a mixture of two or more of carbon fiber, glass fiber, quartz fiber, basalt fiber and boron nitride fiber.

9. The preparation method of the phthalazinone resin-based fiber-reinforced composite material toughened by the phthalazinone biphenyl polyarylethernitrile sulfone, as recited in claim 1 to 8, characterized by comprising the steps of:

(1) preparation of resin glue solution: heating and melting a phthalonitrile compound, adding the naphthalene biphenyl poly (arylene ether nitrile sulfone) and a curing agent, and uniformly mixing to prepare a resin glue solution; or adding phthalonitrile compound, naphthalene heterocycle biphenyl poly (arylene ether nitrile sulfone) and curing agent into organic solvent to prepare resin glue solution with mass percentage concentration of 5-40%;

(2) preparation of prepreg: uniformly soaking continuous fibers or fiber cloth in a resin glue solution, and performing heat treatment at 80-230 ℃ to prepare a prepreg;

(3) molding of the composite material: cutting or laying the prepreg to a required thickness, placing the prepreg in a mould, adopting a hot press molding process, completing curing reaction and molding according to molding process parameters, and demoulding to obtain the naphthalene biphenyl polyarylether nitrile sulfone toughened phthalonitrile resin-based fiber reinforced composite material.

10. The method for preparing the phthalazinone resin-based fiber reinforced composite material toughened by the phthalazinone arylethernitrile according to claim 9, wherein the organic solvent is one or a mixture of more than two of N, N-dimethylformamide, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone and chloroform; the molding process parameters are as follows: the heating temperature is 150-380 ℃, the heating time is 0.5-20 hours, and the forming pressure is 0.5-10 MPa.

Technical Field

The invention relates to a high-temperature-resistant thermosetting resin-based composite material, in particular to a naphthalene miscellaneous biphenyl poly (arylene ether nitrile sulfone) toughened phthalonitrile resin-based fiber reinforced composite material and a preparation method thereof.

Background

The matrix resin plays a role in binding and transferring load stress in the composite material, and the mechanical property, the heat resistance, the fatigue resistance and the like of the matrix resin are key factors for determining the performance of the composite material. The phthalonitrile resin is a high-performance thermosetting resin, and a condensate of the phthalonitrile resin has excellent thermal oxidation stability, chemical stability, low inflammability, low water absorption and good processability, so that the phthalonitrile resin can be used as a matrix resin of a fiber reinforced resin matrix composite material and has wide application prospects in the fields of aerospace, energy, microelectronics and the like. Although the high-temperature mechanical property of the phthalonitrile resin is obviously superior to that of the traditional thermosetting resin, the phthalonitrile resin has the defects of brittleness, poor impact resistance and the like, so that the phthalonitrile resin is limited to be used in certain high-tech fields.

In order to further improve the impact toughness of the phthalonitrile resin and the composite material thereof, the addition of a toughening agent (such as a rubber elastomer, a thermoplastic resin and the like) is an effective method. However, the heat resistance and mechanical strength of the toughened phthalonitrile resin and the composite material thereof are reduced due to poor heat resistance and low strength of the rubber; the traditional thermoplastic resin has low heat resistance, so that the heat resistance of the phthalonitrile resin after blending, toughening and modification is reduced. And because the compatibility of the thermoplastic resin and the phthalonitrile resin is poor, the mechanical properties of the blended resin matrix and the composite material are influenced. Therefore, at present, a new toughening agent is urgently needed to be developed to prepare the phthalonitrile resin-based composite material with excellent heat resistance and mechanical properties.

The hetero-naphthalene biphenyl poly (arylene ether nitrile sulfone) is a non-crystalline high-temperature resistant thermoplastic resin which contains a twisted and non-coplanar hetero-naphthalene biphenyl structure in a molecular main chain and has a cyano side group on a side chain, the glass transition temperature of the resin can be regulated and controlled between 230 and 370 ℃, the resin can be dissolved in some polar aprotic organic solvents, the resin can be processed and formed by injection molding and extrusion of the traditional thermoplastic resin and can also be processed and formed in a solution mode, the comprehensive performance is excellent, and particularly the high-temperature mechanical property is outstanding. Secondly, the cyano side group can be used as a crosslinking point to participate in cyano crosslinking reaction, so that the compatibility of the naphthalene-fused biphenyl polyarylether nitrile sulfone and the phthalonitrile resin is improved, and the content of the cyano in the naphthalene-fused biphenyl polyarylether nitrile sulfone resin can be regulated and controlled to regulate and control the participation degree of the naphthalene-fused biphenyl polyarylether nitrile sulfone resin in the solid-phone crosslinking reaction, so that the mechanical property and the heat resistance of the resin and the composite material of the resin are regulated and controlled; moreover, research shows that compared with the ketone carbonyl group and the cyano group, the introduction of the sulfonyl group with stronger polarity into the main chain of the hetero-naphthalene biphenyl poly (arylene ether nitrile) resin is beneficial to improving the heat resistance of the hetero-naphthalene biphenyl poly (arylene ether nitrile) sulfone toughening agent, further improving the heat resistance of the composite material, and also beneficial to improving the mechanical strength of the toughened resin matrix and the fiber reinforced composite material thereof.

The invention patent CN201010028097.9 discloses a poly (arylene ether nitrile) toughened bis-phthalonitrile resin glass fiber composite material and a preparation method thereof, wherein poly (arylene ether nitrile) (PEN) thermoplastic resin with the glass transition temperature of 150-170 ℃ is adopted as a toughening agent, the structure of the toughening agent is different from that of the invention, and the heat resistance of the toughening agent is obviously lower than that of the poly (arylene ether nitrile) sulfone resin (Tg is 270-375 ℃). The invention patent CN201710226765.0 discloses a fiber fabric reinforced phthalonitrile blend resin-based composite laminate containing a heteronaphthalene biphenyl structure and a preparation method thereof, wherein phthalonitrile-terminated polyaryl ether nitrile resin is adopted, and phthalonitrile groups at the end groups participate in a curing reaction to improve the impact toughness of phthalonitrile resin-based composite materials, and the composite laminate is different from the polymer structure related to the invention and has different participating mechanisms of the curing reaction and toughening.

Disclosure of Invention

Compared with the common phthalonitrile resin and fiber reinforced composite material, the provided phthalazinone biphenyl polyarylethernitrile sulfone toughened phthalonitrile resin-based fiber reinforced composite material has obviously improved impact toughness and maintains excellent heat resistance; the preparation method of the phthalazinone resin-based fiber reinforced composite material toughened by the phthalazinone biphenyl poly (arylene ether nitrile sulfone) has the characteristics of simple forming process, convenient operation and the like.

The technical scheme of the invention is as follows:

the raw materials of the composite material comprise fiber, a phthalonitrile compound, a curing agent and the heteronaphthalene biphenyl poly (arylene ether nitrile sulfone), and the corresponding mass percentage is (40-75%): (20-50%): (0.5-10%): (1% to 30%).

The structural formula of the phthalonitrile compound is as follows:

wherein Ar is:

(1, 2-, 1, 3-or 1, 4-position),(2, 2 '-position or 4, 4' -position),(1, 4-position, 1, 5-position, 1, 6-position, 2, 6-position or 2, 7-position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position), (3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3' or 4, 4' position, R, R ' ═ Ph or CH3)、(R, R' ═ Ph or CH3)(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(n=1~20)、(3, 3 '-position or 4, 4' -position),(n=1~20)、 (n=1~20)、(n=1~20)、 (3, 3 '-position or 4, 4' -position)(n is 1 to 20) or(n is 1 to 20). R and R' are the same or different.

The heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone is as follows:

wherein-Ar1-is:

(1, 2-, 1, 3-or 1, 4-position),(3, 3 '-position or 4, 4' -position),(1, 4-position, 1, 5-position, 1, 6-position, 2, 6-position or 2, 7-position),(2, 2 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position),(3, 3 '-position or 4, 4' -position), One or more than two of (3, 3 'position or 4, 4' position) are mixed;—Ar2-and-Ar3-is

Two Ar1Identical or different, Ar2And Ar3The same or different;

wherein R is1、R2、R3And R4Is hydrogen, halogen substituent, phenyl, phenoxy, alkyl or alkoxy, and R1、R2、R3And R4The alkyl or alkoxy group in (1) is a group containing at least 1 carbon atom; r is hydrogen, methoxy, phenyl, alkyl or alkoxy, and both the alkyl and alkoxy groups in R contain at least 1 carbon atom; r, R1、R2、R3And R4Are identical or different.

The fiber is one or a mixture of more than two of carbon fiber, glass fiber, quartz fiber, basalt fiber and boron nitride fiber.

The curing agent is p-phenylenediamine, m-phenylenediamine, 2 '-diphenyldiamine, 4' -diphenylenediamine, 4 '-diaminodiphenyl ether, 3' -diaminodiphenyl ether, 4 '-diaminodiphenyl sulfone, 3' -diaminodiphenyl sulfone, 4 '-diaminodiphenyl methane, 3' -diaminodiphenyl methane, 2-bis (4-aminophenyl) propane, 2-bis (3-aminophenyl) propane, ZnCl2、Cu2Cl2、CuCl2、AlCl2、CoCl2、FeCl2、FeCl3、TiCl4、 MgCl2、CaCl2、NiCl2And urea, or a mixture of two or more thereof.

The preparation method of the phthalazinone resin-based fiber reinforced composite material toughened by the heteronaphthalene biphenyl polyarylether nitrile sulfone comprises the following steps:

(1) preparation of resin glue solution: heating and melting the phthalonitrile compound, adding the naphthalene-doped biphenyl poly (arylene ether nitrile sulfone) and a curing agent, and uniformly mixing to prepare a resin glue solution; or adding phthalonitrile compound, naphthalene heterocycle biphenyl poly (arylene ether nitrile sulfone) and curing agent into organic solvent to prepare resin glue solution with mass percentage concentration of 5-40%;

(2) preparation of prepreg: uniformly soaking continuous fibers or fiber cloth in the resin glue solution, and performing heat treatment at 80-230 ℃ to prepare a prepreg;

(3) molding of the composite material: cutting or laying the prepreg to a required thickness, placing the prepreg in a mould, adopting a hot press molding process, completing curing reaction and molding according to molding process parameters, and demoulding to obtain the naphthalene biphenyl polyarylether nitrile sulfone toughened phthalonitrile resin-based fiber reinforced composite material.

The organic solvent is one or more of N, N-dimethylformamide, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone and chloroform.

The molding process parameters are as follows: the heating temperature is 150-380 ℃, the heating time is 0.5-20 hours, and the forming pressure is 0.5-10 MPa.

The invention has the advantages that:

the polynaphthalene biphenyl structure-containing high-temperature-resistant polyaryl ether nitrile sulfone thermoplastic resin is used as a toughening agent to toughen and modify a phthalonitrile resin-based fiber reinforced composite material, and the polynaphthalene biphenyl structure polyaryl ether nitrile sulfone thermoplastic resin has excellent heat resistance and mechanical property, so that the improvement of the impact toughness of phthalonitrile resin and the composite material thereof is facilitated, and the excellent heat resistance is maintained; secondly, cyano side groups of the heteronaphthalene biphenyl poly (arylene ether nitrile sulfone) can participate in co-curing reaction at high temperature, the compatibility of the high-temperature-resistant thermoplastic resin toughening agent and the phthalonitrile resin is improved, and the curing crosslinking degree can be regulated and controlled by regulating the content of the cyano side groups, so that the mechanical property of the resin-based composite material is regulated and controlled; moreover, research shows that compared with the ketone carbonyl group and the cyano group, the introduction of the sulfonyl group with stronger polarity into the main chain of the hetero-naphthalene biphenyl poly (arylene ether nitrile) resin is beneficial to improving the heat resistance of the hetero-naphthalene biphenyl poly (arylene ether nitrile) sulfone toughening agent, further improving the heat resistance of the composite material, and also beneficial to improving the mechanical strength of the toughened resin matrix and the fiber reinforced composite material thereof. The toughened and modified phthalonitrile resin-based fiber reinforced composite material can be widely applied to the high and new technical fields of aerospace, ocean engineering, energy and the like.

Detailed Description

The present invention is described in detail below by way of examples, it should be noted that the examples are only for the purpose of further illustration, but not for the purpose of limiting the scope of the invention, and that those skilled in the art may make insubstantial modifications and adaptations of the invention in light of the above teachings.

Example 1

Uniformly mixing 30 mass percent of heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone, 20 mass percent of phthalonitrile compound and 10 mass percent of 4, 4' -diaminodiphenyl sulfone to prepare a mixture, adding the mixture into an N-methylpyrrolidone (NMP) solvent to prepare a resin glue solution with the mass percent concentration of 5%, uniformly soaking 40 mass percent of continuous basalt fibers in the resin glue solution, performing heat treatment at 230 ℃, and cooling to prepare the prepreg.

Stacking 12 pieces of prepreg cut according to the size of a die in the die, placing the die in a hot press, laminating, keeping the hot pressing temperature at 250 ℃, pressurizing to 10MPa, preserving the heat for 20 hours, cooling to below 100 ℃, releasing the pressure and demolding to obtain the naphthalene biphenyl polyarylether nitrile sulfone toughened phthalonitrile resin based basalt fiber reinforced composite material. Tests prove that the 5 percent thermal weight loss temperature of the composite material obtained in the embodiment is 568 ℃, the bending strength is 780MPa, and the unnotched impact strength is 125KJ/m2

Wherein, the structure of the phthalonitrile compound in this embodiment is:

the structure of the heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone in this example is:

example 2

Heating to melt 20 wt% of phthalonitrile compound, and adding 1 wt% of heteronaphthalene biphenyl poly (arylene ether nitrile sulfone) and 0.5 wt% of ZnCl2Uniformly mixing to prepare a resin glue solution, uniformly soaking 75% of carbon fibers in the resin glue solution, gradually heating to 80-200 ℃ for heat treatment, and cooling to prepare the prepreg.

And (2) stacking 15 pieces of prepreg cut according to the size of the die in the die, placing the die in a hot press, laminating, pressurizing to 10MPa, heating to 380 ℃, maintaining the pressure for 30 minutes, cooling to below 100 ℃, releasing the pressure and demolding to obtain the naphthalene biphenyl polyarylether nitrile sulfone toughened phthalonitrile resin-based carbon fiber reinforced composite material. Tests prove that the 5 percent thermal weight loss temperature of the composite material obtained in the embodiment is 560 ℃, the bending strength is 1500MPa, and the unnotched impact strength is 105KJ/m2

Wherein the phthalonitrile compound is:

the heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone is as follows:

example 3

The weight percentage of the aromatic ether sulfone of the heteronaphthalene biphenyl is 10 percent, the phthalonitrile compound is 22.5 percent, the 4, 4' -diamino diphenyl sulfone is 1.25 percent, and the ZnCl is 1.25 percent2Uniformly mixing to prepare a mixture, adding the mixture into a trichloromethane solvent to prepare a resin glue solution with the mass percentage concentration of 20%, uniformly soaking 65% of carbon fibers in the resin glue solution, gradually heating and treating at 80-180 ℃, and cooling to prepare a pre-prepared mixtureAnd (5) soaking the materials.

Stacking 16 pieces of prepreg cut according to the size of a mould in the mould, placing the mould in a hot press, laminating, keeping the hot pressing temperature at 150 ℃, pressurizing to 0.5MPa, keeping the temperature for 120 minutes, pressurizing to 10MPa, heating to 370 ℃, maintaining the pressure for 30 minutes, cooling to below 100 ℃, releasing the pressure and demoulding to obtain the naphthalene biphenyl polyarylether nitrile sulfone toughened phthalonitrile resin-based carbon fiber reinforced composite material. Tests prove that the 5% thermal weight loss temperature of the composite material obtained in the embodiment is 575 ℃, the bending strength is 1550MPa, and the unnotched impact strength is 130KJ/m2

Wherein the phthalonitrile compound is:

the heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone is as follows:

example 4

5 percent of heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone, 50 percent of phthalonitrile compound, 2.5 percent of urea and 2.5 percent of CuCl2Uniformly mixing to prepare a mixture, adding the mixture into N, N-Dimethylformamide (DMF) solvent to prepare 40 mass percent resin glue solution, uniformly soaking 40 mass percent of glass fiber in the resin glue solution, performing heat treatment at 180 ℃, and cooling to prepare the prepreg.

Stacking 15 pieces of prepreg cut according to the size of a mould in the mould, putting the mould in a hot press, laminating, keeping the hot pressing temperature at 150 ℃, pressurizing to 0.5MPa, keeping the temperature for 120 minutes, pressurizing to 10MPa, heating to 360 ℃, maintaining the pressure for 30 minutes, cooling to below 100 ℃, releasing the pressure and demoulding to obtain the naphthalene biphenyl polyarylether nitrile sulfone toughened phthalonitrile resin-based glass fiber reinforced composite material. Tests show that the 5% thermal weight loss temperature of the composite material obtained in the embodiment is 563 ℃, and the bending strength of the composite material is580MPa, unnotched impact strength 105KJ/m2

Wherein the phthalonitrile compound is:

the heteronaphthalene biphenyl poly (arylene ether nitrile) sulfone is as follows:

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:聚酰亚胺基膜及包括该聚酰亚胺基膜的柔性显示面板

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!