石榴石-钛酸锂复合电解质

文档序号:1810182 发布日期:2021-11-09 浏览:27次 >En<

阅读说明:本技术 石榴石-钛酸锂复合电解质 (Garnet-lithium titanate composite electrolyte ) 是由 M·E·巴丁 靳俊 宋真 苏建猛 温兆银 修同平 郑楚均 于 2020-05-08 设计创作,主要内容包括:提供了石榴石-钛酸锂复合电解质。一种经烧结的复合陶瓷,其包括:锂-石榴石主相;和富锂次相,使得富锂次相具有Li-(x)TiO-((x+4)/2),其中0.66≤x≤4。所述经烧结的复合陶瓷可以展现出相对密度是陶瓷的理论最大密度的至少90%,离子电导率为至少0.35mS·cm~(-1),或者临界电流密度(CCD)为至少1.0mA·cm~(-2)。(A garnet-lithium titanate composite electrolyte is provided. A sintered composite ceramic, comprising: a lithium-garnet main phase; and a lithium-rich secondary phase such that the lithium-rich secondary phase has Li x TiO (x&#43;4)/2 Wherein x is more than or equal to 0.66 and less than or equal to 4. The sintered composite ceramic may exhibit a relative density of at least 90% of the theoretical maximum density of the ceramic, and an ionic conductivity of at least 0.35 mS-cm ‑1 Or a Critical Current Density (CCD) of at least 1.0 mA-cm ‑2 。)

石榴石-钛酸锂复合电解质

背景

1.

技术领域

本公开涉及具有改进的临界电流密度(CCD)的锂-石榴石复合陶瓷电解质。

2.

背景技术

常规的锂(Li)离子电池已经得到了广泛的研究,但是仍具有有限的电容密度、能量密度和安全性问题,从而对在电力设备中大规模应用带来挑战。例如,虽然基于Li-石榴石电解质(LLZO)的固态锂电池解决了安全性问题,但是由于石榴石的刚性陶瓷性质和差的锂润湿性导致的Li阳极与石榴石电解质之间的接触不充分,以及表面杂质常导致大的极化和大的界面阻力,从而造成锂的不均匀沉积和锂枝晶的形成。

因此,由于锂阳极与石榴石电解质之间的不良接触,电池可能经历低临界电流密度(CCD)并最终短路。

本申请公开了用于在固态锂金属电池应用中增强Li-石榴石电解质的晶界结合的改进的锂-石榴石复合陶瓷电解质。

发明内容

在一些实施方式中,一种经烧结的复合陶瓷,其包括:锂-石榴石主相;和富锂次相,其中,富锂次相包含LixTiO(x+4)/2,并且0.66≤x≤4。

在可与任何其他方面或实施方式组合的一个方面中,所述锂-石榴石主相包括以下至少一种:(i)Li7-3aLa3Zr2LaO12,其中L=Al、Ga或Fe并且0<a<0.33;(ii)Li7La3-bZr2MbO12,其中M=Bi或Y并且0<b<1;(iii)Li7-cLa3(Zr2-c,Nc)O12,其中N=In、Si、Ge、Sn、V、W、Te、Nb或Ta并且0<c<1,或其组合。

在可与任何其他方面或实施方式组合的一个方面中,锂-石榴石主相与富锂次相的质量比在100:2至100:8的范围内。

在可与任何其他方面或实施方式组合的一个方面中,陶瓷的相对密度为陶瓷的理论最大密度的至少90%。

在可与任何其他方面或实施方式组合的一个方面中,所述陶瓷的离子电导率为至少0.35mS·cm-1

在可与任何其他方面或实施方式组合的一个方面中,所述陶瓷的临界电流密度(CCD)为至少1.0mA·cm-2

在可与任何其他方面或实施方式组合的一个方面中,所述陶瓷的临界电流密度(CCD)为至少1.5mA·cm-2

在一些实施方式中,一种经烧结的复合陶瓷,其包括:锂-石榴石主相;和富锂次相,其中,富锂次相包含以下中的至少一种:Li2TiO3、Li4Ti5O12、Li2Ti3O7、Li4TiO4或其组合。

在可与任何其他方面或实施方式组合的一个方面中,所述锂-石榴石主相包括以下至少一种:(i)Li7-3aLa3Zr2LaO12,其中L=Al、Ga或Fe且0<a<0.33;(ii)Li7La3-bZr2MbO12,其中M=Bi或Y且0<b<1;(iii)Li7-cLa3(Zr2-c,Nc)O12,其中N=In、Si、Ge、Sn、V、W、Te、Nb或Ta且0<c<1,或其组合。

在可与任何其他方面或实施方式组合的一个方面中,锂-石榴石主相与富锂次相的质量比在100:2至100:8的范围内。

在一些实施方式中,一种电池,其包括:至少一个锂电极;以及与所述至少一个锂电极接触的电解质,其中,所述电解质是包含本文公开的任何经烧结的复合陶瓷的锂-石榴石复合电解质。

在一些实施方式中,一种制造复合陶瓷的方法,所述方法包括:将无机源材料进行第一混合以形成混合物,所述混合物包括锂源化合物和至少一种过渡金属化合物;对混合物进行第一研磨以减小前体的粒度;在800℃至1200℃下焙烧经研磨的混合物以形成石榴石氧化物;将经研磨和焙烧的石榴石氧化物与至少一种次相添加剂进行第二混合以形成第二混合物;对第二混合物进行第二研磨以减小第二混合物的成分的粒度;将第二经研磨的第二混合物压实成生坯粒料;以及在1000℃至1300℃的温度下烧结生坯粒料,其中,次相添加剂包含LixTiO(x+4)/2,其中0.66≤x≤4。

在可与任何其他方面或实施方式组合的一个方面中,锂源化合物或次相添加剂中的至少一者以化学计量过量存在。

在可与任何其他方面或实施方式组合的一个方面中,经研磨和焙烧的石榴石氧化物与所述至少一种次相添加剂的质量比在100:2至100:8的范围内。

在可与任何其他方面或实施方式组合的一个方面中,在烧结步骤中不对生坯粒料施加母粉。

在可与任何其他方面或实施方式组合的一个方面中,在烧结步骤中对生坯粒料施加母粉。

在一些实施方式中,一种经烧结的复合陶瓷,其包括:锂-石榴石主相;和富锂次相,其中,锂-石榴石主相与富锂次相的质量比在100:2至100:8的范围内,并且其中,所述陶瓷包含以下中的至少一项:(i)具有陶瓷的理论最大密度的至少90%的相对密度,(ii)至少0.35mS·cm-1的离子电导率,和(iii)至少1.0mA·cm-2的临界电流密度(CCD)。

在可与任何其他方面或实施方式组合的一个方面中,所述陶瓷的临界电流密度(CCD)为至少1.5mA·cm-2

附图说明

结合附图,通过以下

具体实施方式

能够更完整地理解本公开,其中:

图1根据一些实施方式例示了样品1、2和4的Li-石榴石复合陶瓷电解质的x射线衍射(XRD)谱图。

图2根据一些实施方式例示了比较样品1的截面扫描电子显微技术(SEM)图像。

图3A-3D根据一些实施方式分别例示了样品1-4的截面SEM图像。

图4A-4D根据一些实施方式分别例示了包含样品1-4的固态锂对称电池的临界电流密度(CCD)数据。

图5A-5D根据一些实施方式例示了样品2的截面分析,包括:二次电子(SE)SEM图像(图5A),背散射电子(BSE)SEM图像(图5B)和能量色散谱仪(EDS)点分析(图5C、5D)。

具体实施方式

现将对附图所示的示例性实施方式进行详细说明。只要可能,在附图中使用相同的附图标记表示相同或相似的部分。附图中的各部件不一定按比例绘制,而是着重于说明示例性实施方式的原理。应理解的是,本申请不限于说明书中阐述的或附图中例示的细节或方法学。还应理解的是,用辞仅是为了描述目的,而不应被认为是限制性的。

此外,在本说明书中列出的任何实例都是说明性的而不是限制性的,并且仅列出了要求保护的本发明的诸多可能的实施方式中的一些实施方式。对各种条件和参数进行其他适当的修改和调整在本领域中是常见的,并且对于本领域的技术人员来说是显而易见的,其属于本公开的精神和范围内。

定义

“主相”、“第一相”或者类似术语或短语是指在组合物中,以重量、体积、摩尔或类似量度计,锂石榴石的物理存在大于50%。

“次相”、“第二相”或者类似术语或短语是指在组合物中,以重量、体积、摩尔或类似量度计,锂枝晶生长抑制剂(即,晶界结合增强剂)的物理存在小于50%。

“SA”、“第二添加剂”、“第二相添加剂”、“第二相添加剂氧化物”、“相添加剂氧化物”、“添加剂氧化物”、“添加剂”或类似术语是指当被包含在所公开的组合物中时,在主相中产生次相或第二次相的添加剂氧化物。

“LLZO”或类似术语是指包含锂、镧、锆和氧元素的化合物。例如,锂-石榴石电解质包含以下中的至少一种:(i)Li7-3aLa3Zr2LaO12,其中L=Al、Ga或Fe且0<a<0.33;(ii)Li7La3- bZr2MbO12,其中M=Bi或Y且0<b<1;(iii)Li7-cLa3(Zr2-c,Nc)O12,其中N=In、Si、Ge、Sn、V、W、Te、Nb或Ta且0<c<1,或其组合。

“包括”、“包含”或类似术语意为包括但不限于,即,内含而非排他。

如本文所使用的,术语“大约”、“约”、“基本上”和类似术语旨在具有与本公开主题所涉及的领域中的普通技术人员通常及可接受的用法相一致的广泛含义。审阅本公开的本领域技术人员应当理解,这些术语旨在允许对所述及要求保护的某些特征进行描述而不是将这些特征的范围限制于所提供的精确数值范围。因此,这些术语应被解释为表示所述及要求保护的主题的非实质性或微小的修改或变更被认为是在所附权利要求书中所述的本发明的范围内。

例如,在对描述本公开实施方式中所用的组合物中成分的量、浓度、体积、工艺温度、工艺时间、产量、流动速率、压力、粘度等数值及其范围,或者部件的尺寸等数值及其范围进行修饰时,“约”或类似术语是指数量的变化,其可发生在例如:用于制备材料、组合物、复合物、浓缩物、部件零件、制造制品或应用制剂的典型测定和处理步骤中;这些程序中的无意误差;用来实施所述方法的起始材料或成分的制造、来源、或纯度方面的差异中;以及类似的考虑因素中。术语“约”(或类似术语)还包括由于组合物或制剂的老化而与特定的初始浓度或混合物不同的量,以及由于混合或加工组合物或制剂而与特定的初始浓度或混合物不同的量。

如本文中所使用的,“任选的”或“任选地”等旨在表示随后描述的事件或情况可能发生或者可能不发生,并且该描述包括所述事件或情况发生的实例及不发生的实例。除非另外说明,否则,本文所用的不定冠词“一个”或“一种”及其对应的定冠词“该(所述)”表示至少一(个/种),或者一(个/种)或多(个/种)。

本文提及的元件位置(例如,“顶部”、“底部”、“上方”、“下方”等)仅用于描述附图中各个元件的取向。应注意的是,各个元件的取向可以根据其他示例性实施方式而有所不同,并且这种改变旨在涵盖在本公开的范围内。

可采用本领域普通技术人员熟知的缩写(例如,表示小时的“h”或“hrs”;表示克的“g”或“gm”;表示毫升的“mL”;表示室温的“rt”;表示纳米的“nm”以及类似缩写)。

在组分、成分、添加剂、尺寸、条件、时间和类似方面公开的具体和优选的数值及其范围仅用于说明;它们不排除其他限定数值或限定范围内的其他数值。本公开的组合物、制品和方法可包括本文所述的任何数值或者各数值、具体数值、更具体的数值和优选数值的任何组合,包括显义或隐义的中间数值和中间范围。

对于本文中使用的基本上任何的复数和/或单数术语,本领域技术人员可以适当地从复数转换为单数形式和/或从单数转换为复数形式,只要其适用于上下文和/或应用。为了清楚起见,可以在本文中明确说明各种单数/复数排列。

如上所述,基于Li-石榴石电解质(LLZO)的固态锂电池常具有Li阳极与石榴石电解质之间接触不充分的问题,这常导致电池经历低的临界电流密度(CCD)并最终短路。解决这些问题的常规方法包括了:(A)H3PO4酸处理以移除杂质同时形成Li3PO4保护居间层,从而将电解质的CCD增加到0.8mA·cm-2,以及(B)用SnO2和MoS2改性电解质-阳极界面,以形成Sn、Mo和相关合金居间层。然而,发现对于这些建议,随着电池循环,居间层被逐渐消耗并最终导致电池失效。另外,这些居间层不增加电解质自身对锂枝晶生长的阻力。

复合陶瓷电解质通过最大程度地减少锂枝晶生长,有效地改进了主相晶界处的结合,从而提高了CCD。临界电流密度(CCD)是指在电解质中发生锂枝晶穿透之前,LLZO电解质可承受的最大电流密度,其影响电解质的枝晶抑制能力。通过在LLZO烧结过程期间加入添加剂,所述添加剂或其分解产物在晶界处聚集以增加晶界结合并阻断锂枝晶生长。目前研究添加剂的努力工作包括(i)LLZO中的LiOH·H2O,以形成Li2CO3和LiOH次相,或者(ii)将Li3PO4加入到LLZO前体中并且通过控制烧结条件,使Li3PO4作为次相保留在晶界处,或者(iii)加入经LiAlO2涂覆的LLZO颗粒以获得Li-石榴石复合陶瓷电解质。然而,(i)至(iii)均不可实现满足实际应用要求的期望的CCD。

根据一些实施方式,本文公开了一种Li-石榴石复合陶瓷电解质,其通过在LLZO陶瓷烧结期间将富锂添加剂(例如,LixTiO(x+4)/2(0.66≤x≤4),“LTO”)加入到具有任选的元素掺杂(例如,In、Si、Ge、Sn、V、W、Te、Nb、Ta、Al、Ga、Fe、Bi、Y等中的至少一种)的LLZO中来制备。在一些实施方式中,虽然LTO的变化形式包括Li2TiO3、Li4Ti5O12、Li2Ti3O7和Li4TiO4,但是烧结气氛主要是Li2TiO3和Li4TiO4。作为第二相的Li2Ti3O7和Li4Ti5O12可以在LLZO晶界处聚集。元素掺杂剂可以用于将LLZO稳定成具有In、Si、Ge、Sn、V、W、Te、Nb、Ta、Al、Ga、Fe、Bi、Y等中的至少一种的立方相。

复合陶瓷包括LLZO主相和次LTO第二相。在烧结期间加入富锂添加剂降低了LLZO的烧结温度并对LLZO烧结建立了锂气氛,这简化了烧结过程并降低了其成本。富锂添加剂及其分解产物在LLZO晶界处分布,这增加了LLZO晶界处的结合并阻断了锂枝晶生长形成。本文所述的Li-石榴石复合物的CCD为至少1.5mA·cm-2

用于制备Li-石榴石复合陶瓷电解质的方法

第一混合步骤

在第一混合步骤中,将化学计量量的石榴石氧化物式中的无机材料混合在一起,并且例如研磨成细粉末。无机材料例如可以是锂化合物和至少一种过渡金属化合物(例如,基于La的、基于Zr的等)。在一些实施方式中,无机材料配混物还可以包括在化学式中的Al、Ga、Fe、Bi、Y、In、Si、Ge、Sn、V、W、Te、Nb、Ta、Mg中的至少一种或其组合。

在一些实施方式中,可期望在起始无机批料中包括过量的锂源材料,以补偿在1000℃至1300℃(例如1100℃至1200℃)的高温烧结步骤期间的锂的损失。第一混合步骤可以是干磨过程,或者具有适当液体并且所述液体不溶解无机材料的湿磨过程。可以调整混合时间,例如,从几分钟到几小时,例如,根据观察到的混合性能的规模或程度来调整[例如,1分钟到48小时,或者30分钟到36小时,或者1小时到24小时(例如12小时),或者在其中公开的任何数值或范围]。研磨可通过例如行星式研磨机、磨碎机或类似的混合或研磨设备来实现。

焙烧步骤

在焙烧步骤中,在第一混合步骤之后,在预定温度下,例如,在800℃至1200℃下(例如,在950℃下)(包括中间的数值和范围),焙烧无机材料的混合物,以反应并形成目标Li-石榴石。预定温度取决于Li-石榴石的类型。焙烧时间例如从1小时到48小时不等[例如,2小时至36小时、或3小时至24小时、或4小时至12小时(例如6小时),或者在其中公开的任何数值或范围],并且还可以取决于选择的无机起始或源批料的相对反应速率。在一些实施方式中,需要时,在第一步中,可研磨无机批料的预混合物,然后煅烧或焙烧。

第二混合步骤

将经焙烧的Li-石榴石混合物和次相或第二相添加剂混合在一起并研磨以形成具有均匀组成(例如,通过LTO在生坯陶瓷粒料或棒中的分布来确定)的混合物。LTO次相以在第一混合(研磨30分钟至36小时,例如24小时)和焙烧(持续12小时至24小时)步骤中所述的相似方式制备。第二混合步骤例如可包括以下中的一种或多种:湿磨、干磨或其组合。在混合物的研磨期间,可任选地在例如60℃至100℃(例如70℃)的低温下加热混合物,以移除吸收的水分或溶剂。

压实步骤

在第二混合步骤期间,均匀的第二混合物成分同时被粉碎。在60℃至100℃(例如70℃)的温度下干燥6小时至24小时(例如12小时)的时间后,通过将第二混合物成分通过200粒度筛进行压实,以形成生坯粒料。生坯粒料可以通过任何合适的方法形成为任意形状,所述方法例如冷各向同性压制、热各向同性压制、热压制、单轴压制或类似的手段和工具。生坯粒料的至少一个尺寸可以在1mm至30mm的范围内(例如,~20mm)。然后在比培烧步骤的温度更高的温度下烧结生坯粒料,如下所述。

烧结步骤

在烧结步骤期间,将生坯粒料放置在带盖的坩埚(例如Pt、ZrO2、Al2O3和MgO坩埚)中。烧结温度例如为1000℃至1300℃,包括中间的数值和范围,并且升温速率(烧结前)和冷却速率(烧结后)为0.5℃/分钟至10℃/分钟(例如5℃/分钟)。

实施例

实施例1——Li-石榴石(LLZO)电解质制备

根据Li6.5La3Zr1.5Ta0.5O12的化学计量比值,称量前体粉末LiOH·H2O(AR,2%过量),La2O3(99.99%,在900℃下培烧12小时),ZrO2(AR)和Ta2O5(99.99%)并混合。通过钇稳定的氧化锆(YSZ)球作为研磨介质,使用异丙醇作为溶剂,以250rpm的速度进行12小时的湿球磨。在950℃下,在氧化铝坩埚中培烧经干燥的混合物粉末6小时,以获得纯的立方Li-石榴石电解质粉末。

在一些实施方式中,固体电解质是Li-石榴石陶瓷电解质LLZO,其具有Li7- 3aLa3Zr2LaO12(L=Al;Ga或Fe;0<a<0.33),Li7La3-bZr2MbO12(M=Bi或Y;0<b<1)和Li7-cLa3(Zr2-c,Nc)O12(N=In,Si,Ge,Sn,V,W,Te,Nb,Ta;0<c<1)中的一种或多种化学式。

实施例2——Li-石榴石复合陶瓷电解质(LLZO-LTO)的制备

以预定的比值称量实施例1的LLZO粉末和LTO粉末[Li2TiO3,阿尔法公司(Alfa)],并且使用上述相同技术以250rpm湿磨12小时。将获得的混合物在70℃下干燥12小时,然后使其通过200粒度的筛。通过在140MPa的压力下单轴压制形成直径为18mm的生坯粒料(1.25克)。随后,将生坯体放置在Al2O3、MgO或Pt坩埚中并在1190℃下烧结30分钟以获得LLZO-LTO。烧结前的升温速率和烧结后的冷却速率分别在5℃/分钟下进行。在该实验中,在烧结过程中不使用母粉。LixTiO(x+4)/2包括但不限于:Li2TiO3、Li4Ti5O12、Li2Ti3O7、Li4TiO4

任选地,也可以使用母粉(Li6.5La3Zr1.5Nb0.5O12)以补偿在烧结期间Li-石榴石(LLZO)电解质样品的锂损失。母粉的合成过程类似于本文所述的制备LLZO的合成过程(例如,实施例1),但是在前体粉末中具有过量的锂含量(例如,15%)。在进行烧结以制备LLZO时,生坯粒料可以任选地被母粉覆盖,以防止挥发性组分(Li2O)损失并避免锂缺乏相(La2Zr2O7)的存在。同时,Li2O气氛的存在促进了LLZO的致密化。

实施例3——钮扣电池的制备

首先用400粒度的SiC砂纸,接着用1200粒度的SiC砂纸抛光实施例2中制备的LLZO-LTO电解质粒料,随后在其上进行Au溅射5分钟。在转移到填充有氩气的手套箱中后,通过将锂金属箔定位在LLZO-LTO样品的第一表面的中心部分处,并且在热板上将其加热到250-300℃来组装电池。由于加热,熔融的锂在粒料的第一表面上铺展。随后,旋转样品,接着对LLZO-LTO样品的第二表面进行相同的锂金属定位和加热步骤。最后将Li/LLZO-LTO/Li对称电池密封在CR2032纽扣电池中。

实施例4——表征技术

形态学和相分析

通过扫描电子显微镜(日立公司(Hitachi),S–3400N)获得扫描电子显微技术(SEM)图像。通过日立公司的SEM附带的能量色散谱仪(EDS)表征元素映射图像。X射线粉末衍射(XRD)谱通过在室温下,在10–80°的2θ范围中进行x射线粉末衍射[理学公司(Rigaku),Ultima IV,镍过滤的Cu-Kα辐射,]来获得。陶瓷样品的密度通过阿基米德(Archimedes)法并且以乙醇为浸没介质来测得。

电化学阻抗谱(EIS)

EIS通过AC阻抗分析(AUTOLAB,型号PGSTAT302N)来测得,其中,频率范围为0.1Hz至1MHz。

电化学性能

在LAND CT2001A电池测试系统(中国武汉)上测试所有的Li对称电池和全电池。在初始电流为0.1mA·cm-2,随后以0.1mA·cm-2的增量来使实施例3中制备的Li/LLZO-LTO/Li对称电池经受速率循环测试,以确定LLZO-LTO的临界电流密度(CCD)。将充电和放电持续时间设置在30分钟。所有的电池测试在25℃下进行。

实施例5——样品制备和表征

样品1

以一定的质量比称量Li-石榴石电解质(LLZO)和锂-钛复合氧化物(Li2TiO3,LTO),所述质量比为100:2(40g的LLZO,0.8g的LTO在120g异丙醇中)。使用钇稳定的氧化锆(YSZ)珠作为研磨介质,以250rpm的速度进行12小时的湿球磨。粒度分布(D90)在1.2μm至1.7μm之间。将获得的混合物在70℃下干燥12小时,然后使其通过200粒度的筛。通过在140MPa的压力下单轴压制形成直径为18mm的生坯粒料(1.25克)。随后,将生坯体放置在Pt坩埚中并在1190℃下烧结30分钟,升温速率(烧结前)和冷却速率(烧结后)均为5℃/分钟。

样品2

制备与样品1相同,但是在100:4的质量比下对Li-石榴石电解质LLZO和锂-钛复合氧化物LTO进行球磨。

样品3

制备与样品1相同,但是在100:6的质量比下对Li-石榴石电解质LLZO和锂-钛复合氧化物LTO进行球磨。

样品4

制备与样品1相同,但是在100:8的质量比下对Li-石榴石电解质LLZO和锂-钛复合氧化物LTO进行球磨。

比较样品1

使用钇稳定的氧化锆(YSZ)珠作为研磨介质,以250rpm的速度对锂-石榴石电解质(LLZO)粉末进行12小时的湿球磨。粒度分布(D90)在1.2μm至1.7μm之间。将获得的混合物在70℃下干燥12小时,然后使其通过200粒度的筛。通过在140MPa的压力下单轴压制形成直径为18mm的生坯粒料(1.25克)。随后,将生坯体放置在MgO坩埚中并在1190℃下烧结30分钟,并且在LLZO烧结期间每个粒料有0.4g母粉(Li6.5La3Zr1.5Nb0.5O12;Li过量15%)。

比较样品2

制备与比较样品1相同,但是不添加母粉。

表1示出了样品1-4以及比较样品1和2的所选的制备条件和性能属性。共同相LTO包括Li2TiO3、Li4Ti5O12、Li2Ti3O7、Li4TiO4等,它们中的每一者可提供烧结气氛。具有高锂含量的LTO相对较容易分解产生Li2O。烧结气氛主要由Li2TiO3和Li4TiO4提供。作为第二相的Li2Ti3O7和Li4Ti5O12可以在LLZO晶界处聚集。举例Li2TiO3作为LTO的选择来说明LTO的作用。

表1

图1根据一些实施方式例示了样品1、2和4的Li-石榴石复合陶瓷电解质的x射线衍射(XRD)谱图。样品1(LLZO:LTO=100:2)、2(LLZO:LTO=100:4)和4(LLZO:LTO=100:8)中的每一者的XRD峰表明与对照的立方Li-石榴石电解质PDF#45-0109样品的XRD指纹图紧密匹配,这证明了加入LTO不影响LLZO的相组成。

在一些实施方式中,锂-石榴石主相与富锂次相的质量比在100:2至100:8的范围内。由于Li2O影响LLZO的晶粒生长和致密化过程,因此过低的LLZO:LTO比值可具有不足的锂气氛,导致低的致密化。过高的LLZO:LTO比值(例如LLZO:LTO质量比为1:1)导致形成不期望量的多相(例如,LaTiO3、LaTaO4、ZrTiO4等)。另外,在过高的LLZO:LTO比值下,复合物的主相也可能受到不利影响。此处,c-LLZO可以确定为在100:2至100:8范围内的LLZO-LZO的绝对主相。

原始LLZO(例如Li7La3Zr2O12)在不同温度下具有立方(c-LLZO)和四方(t-LLZO)相。c-LLZO比t-LLZO具有更高的离子电导率(c-LLZO为10-3~10-4S·cm-1对比t-LLZO为10-5~10-6S·cm-1)。四方相是室温稳定相,而通常需要引入掺杂离子(例如In、Si、Ge、Sn、V、W、Te、Nb、Ta、Al、Ga、Fe、Bi、Y等中的至少一种)来稳定室温下的立方相。根据图1的XRD结果,没检测到t-LLZO相。因此,此处所用的LLZO(例如Li6.5La3Zr1.5Ta0.5O12)可被视为单相材料。至少出于该原因,LTO不影响LLZO的相组成是重要的。

上表1示出了样品1-4以及比较样品1和2的所选的制备条件和性能属性。在比较样品2中,不使用母粉并且不向Li-石榴石粉末中添加LTO,该比较样品未得到很好的烧结,这通过相比于其他样品,其具有低的相对密度(相对于陶瓷的理论最大密度)(76.99%)所指示,而其他样品的相对密度超过90%。在比较样品1中,使用母粉但不向Li-石榴石粉末中添加LTO,该比较样品能够实现与样品1-4的平均值相当的相对密度值(比较1:93.6%对比样品1-4的平均值:94.56%),但是不能实现与样品1-4的平均值相当的CCD值(比较1:0.4mA·cm-2对比样品1-4的平均值:1.125mA·cm-2),或者甚至接近样品2的CCD值(1.5mA·cm-2)。LLZO的烧结机理是气体-液体-固体过程。Li2O在LLZO颗粒的表面上凝结成液相。溶解-沉淀促进了材料运输,使得晶粒生长并增强了致密化。母粉和LTO均可为LLZO烧结提供Li2O气氛,由此LLZO分别从外侧和内侧获得Li2O气氛。

当在1190℃下烧制时,包含LTO的样品1-4的相对密度增加,提示LTO可以有助于使石榴石致密化并降低烧结温度。如上所述,通过LTO的Li2O释放促进了LLZO致密化。如描述样品1-4的Li-石榴石复合陶瓷电解质的制备的实施例2所述,对于样品1-4,在烧结过程中不使用母粉。样品1-4的LLZO-LTO复合物的相对密度还表明,母粉的包括不是烧结过程的关键组分,因为LTO的分解也可提供Li2O烧结气氛。因此,由于这种Li2O烧结气氛和降低的烧结温度,烧结过程得到了简化并更加便宜。

高于10-3至10-4S·cm-1的LLZO离子电导率是可接受的。事实上,由于LTO的存在以及其位于晶界处的分解或反应产物,因此所有的样品1-4均符合这一标准(超过0.35mS·cm-1)。然而,更重要的是,使用LLZO的固态电池是否可承受得住大的电流充电和放电以及长期循环。CCD是重要的评价指标,因此,在某种程度上,牺牲离子电导率来提高CCD被认为是可接受的。不使用母粉的LLZO-LTO烧结是LTO作为添加剂的一个优点。比较样品2具有极低的电导率(0.0123mS·cm-1),因为其未得到很好的烧结。

加入LTO也使得Li-石榴石的CCD增加。当LLZO与LTO的质量比为100:4且在Pt坩埚中烧制复合物时,CCD达到1.5mA·cm-2。如上所述,LLZO的烧结取决于Li2O气氛。虽然MgO和Pt坩埚对Li2O相对较稳定,但是Al2O3和ZrO2坩埚在高温下易与Li2O反应以分别形成LixAlOy和LixZrOy,这使得LLZO难以得到烧结和致密化。因此,Al2O3和ZrO2坩埚常需要反复烧结并且只有在形成钝化层后才可用于LLZO烧结。

图2例示了比较样品1的截面SEM图像,而图3A-3D根据一些实施方式分别例示了样品1-4的截面SEM图像。如在图2中观察到的,在比较样品1的晶界中未看到明显杂质。当添加LTO时,如样品1-4(图3A-3D),可看到LLZO主要结构化为穿晶断裂,这表明,由于LTO的极强的助熔性质可结合晶界,因此晶粒得到紧密结合。换言之,当穿晶断裂发生时,裂纹扩展通过晶粒的内部,这是强的晶界结合的证明(参见图3A-3D的截面图)。相较之下,比较样品1显示的穿晶断裂是当裂纹沿着晶界扩展时发生的断裂类型。材料的助熔性质是指材料降低目标物质的软化、熔化或液化温度的能力。在晶界处,LTO和LLZO在烧结期间反应或共熔,并且LLZO晶界得到了结合。晶界是锂枝晶生长的主要路径。因此,具有强结合能力的结合晶界有效地抑制了锂枝晶的生长。

图4A-4D根据一些实施方式分别例示了包含样品1-4的固态锂对称电池的临界电流密度(CCD)数据。随着LTO的加入,Li-石榴石的CCD增加,并且对于样品2(LLZO与LTO的质量比为100:4),实现了在1.5mA·cm-2的最高值。换言之,图4A-4D例示了以0.1mA·cm-2的初始电流密度,接着以0.1mA·cm-2的增量经受速率循环测度的Li/LLZO-LTO/Li对称电池的CCD数据。将充电和放电持续时间设置在30分钟。在施加电流后,由于电池的阻抗,因此出现响应电压(根据欧姆(Ohm)定律)。短路之前的最大电流密度是CCD,此后,在电解质中观察到锂枝晶生长,从而导致电压突然下降。因此,CCD用于评价电解质抵抗锂枝晶生长的能力。

图5A-5D根据一些实施方式例示了样品2的截面分析,包括:二次电子(SE)SEM图像(图5A),对应的背散射电子(BSE)SEM图像(图5B)和能量色散谱仪(EDS)点分析(图5C、5D)。BSE成像的对比度由原子序数的差异造成:具有较大原子序数的元素将比具有较小原子序数的元素具有更亮的对比度。BSE成像可以有助于更清晰地区分不同的相。在较高的放大倍数下(图5A和5B是图3B的放大视图),观察到具有不同对比度的区域,其中LLZO晶界通过LTO结合,并且使得LLZO晶界不可辨别(图5A)。结合图5B的BSE成像,确定,在对比度较暗的区域中的元素的相具有更低的原子序数(例如钛),并且对比度最暗的区域是孔。通过EDS的检查(图5C和5D)揭示了样品2的不同区域可以包括变化的元素组成,这取决于取样是在主相(LLZO)还是次相(LTO)上。例如,图5C的区域1缺少镧(La),其指示了LTO及其分解或反应产物(即,Li4Ti5O12、LaTiO3、LaTaO4和ZrTiO4中的至少一种),而图5D的区域2主要包含镧(La)、锆(Zr)、钽(Ta)和氧(O),其指示了LLZO。暗色区域对应于具有低原子序数的元素(Ti)和含Ti化合物(例如LTO)作为次相填充LLZO晶界,从而阻断了枝晶生长路径。换言之,对于样品1-4中的每一者,LTO作为次相或第二相存在于复合石榴石的晶界中,并且有助于结合晶界以阻断Li枝晶生长的路径,从而增大CCD。

目前的研究显示,锂枝晶优先生长通过LLZO晶界,并且在循环期间诱导电池短路。在分解过程期间,LZO和LTO均可产生Li2O,为LLZO烧结提供锂气氛并促进陶瓷电解质的致密化。LZO和LTO之间的差异如下。LLZO晶界清晰,LLZO-LZO晶界处的物质主要为Li2ZrO3,并且具有少量的LZO,晶相和非晶相共存。LTO将与LLZO部分反应或共熔以结合LLZO晶界,并且LTO及其分解或反应产物位于晶界处。LZO和LTO对LLZO也具有不同的相对稳定性:LZO主要填充晶界,而LTO在晶界处结合。

因此,如本文所述,本公开涉及用于在固态锂金属电池应用中增强Li-石榴石电解质的晶界结合的改进的锂-石榴石复合陶瓷电解质。所形成的Li-石榴石复合陶瓷电解质的优点包括:(1)更高的临界电流密度(CCD),这是因为LTO(LixTiO(x+4)/2(0.66≤x≤4))具有优异的助熔性质并且分布在LLZO晶界处,这增加了LLZO晶界处的结合并阻断锂枝晶生长;和(2)得到简化且更便宜的烧结过程,这是因为(a)由于加入了LTO粉末,Li-石榴石在更低的烧结温度下致密化;和(b)在陶瓷烧结期间不加入母粉,因为LTO能够提供Li2O烧结气氛。

对本领域的技术人员显而易见的是,可以在不偏离所要求保护的主题的精神或范围的情况下进行各种修改和变动。因此,所要求保护的主题不受所附权利要求书及其等同形式以外的任何内容所限。

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高介电常数微波介质陶瓷材料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!