一种含(取代)吡唑环的氨基酚氧基锌络合物及其制备方法和应用

文档序号:182711 发布日期:2021-11-02 浏览:29次 >En<

阅读说明:本技术 一种含(取代)吡唑环的氨基酚氧基锌络合物及其制备方法和应用 (Amino-phenol-oxygen-group zinc complex containing (substituted) pyrazole ring and preparation method and application thereof ) 是由 马海燕 王芳 于 2021-08-26 设计创作,主要内容包括:本发明公开了一类含(取代)吡唑环的氨基酚氧基锌络合物及其制备方法,以及其在高活性、高选择性催化内酯开环聚合中的应用。其制备方法包括如下步骤:将中性配体直接与金属原料化合物在有机介质中反应,然后经过滤、浓缩、重结晶步骤获得目标化合物。本发明的含(取代)吡唑环的氨基酚氧基锌络合物是一种高效的内酯开环聚合催化剂,可用于催化丙交酯等内酯的聚合反应;特别对于外消旋丙交酯可得到高等规度的聚丙交酯。本发明的含(取代)吡唑环的氨基酚氧基锌络合物优点十分明显:原料易得,合成路线简单,产物收率高,具有高催化活性和立体选择性,能获得高规整度、高分子量聚酯材料,能够满足工业部门的需要。其结构式如下所示。。(The invention discloses an aminophenol oxygen-based zinc complex containing (substituted) pyrazole rings, a preparation method thereof and application thereof in catalyzing ring-opening polymerization of lactones with high activity and high selectivity. The preparation method comprises the following steps: the neutral ligand directly reacts with the metal raw material compound in an organic medium, and then the target compound is obtained through the steps of filtering, concentrating and recrystallizing. The (substituted) pyrazole ring-containing aminophenoxy zinc complex is a high-efficiency lactone ring-opening polymerization catalyst and can be used for catalyzing the polymerization reaction of lactones such as lactide and the like; specially for treating diabetesWith respect to racemic lactide, a polylactide having a high isotacticity can be obtained. The (substituted) pyrazole ring-containing aminophenoxy zinc complex has obvious advantages: the raw materials are easy to obtain, the synthesis route is simple, the product yield is high, the catalyst activity and the stereoselectivity are high, the high-regularity and high-molecular-weight polyester material can be obtained, and the requirements of industrial departments can be met. The structural formula is shown as follows.)

一种含(取代)吡唑环的氨基酚氧基锌络合物及其制备方法和 应用

技术领域

本发明涉及一类含(取代)吡唑环的氨基酚氧基锌络合物,以及这类络合物在内酯聚合中的应用。

背景技术

传统的聚烯烃塑料来源于石油催化裂解生成的小分子烯烃,其大量持续合成导致石油资源的开采面临枯竭,且由于一般环境条件对聚烯烃塑料没有降解作用,因而引发了全球范围内的白色污染。脂肪族聚酯材料具有可降解和生物相容性等优点,其中聚乳酸作为一种新型绿色材料不仅具有以上优点,同时它的原料乳酸可由玉米秸秆、厨房垃圾等废料通过微生物发酵而来,从源头摆脱对石油的依赖。另外聚丙交酯具有与聚烯烃相媲美的机械性能和热稳定性,可被应用到包括一次性吸管、儿童餐具在内的食品包装领域、纺织领域、汽车领域等等。正因为聚丙交酯具有以上种种优势,如何合成该性能优良的聚合物并扩大到工业生产规模成为相关领域科学家们不断尝试攻克的难题。其中,先通过乳酸二聚得到丙交酯,再由丙交酯在催化剂作用下开环聚合,可实现在温和条件下获得高分子量的聚丙交酯而吸引了广泛关注。

丙交酯有三种异构体即左旋丙交酯(L-LA)、右旋丙交酯(D-LA)和内消旋丙交酯(meso-LA),将其中的L-LA和D-LA等比例混合便得到外消旋丙交酯(rac-LA)。不同立体构型的丙交酯在不同的催化剂作用下开环聚合会得到不同链序列的聚丙交酯。单一左旋丙交酯开环聚合可得到等规聚左旋丙交酯(PLLA),相反,单一右旋丙交酯开环聚合可得到等规聚右旋丙交酯(PDLA),内消旋丙交酯与外消旋丙交酯开环聚合都会得到无规聚丙交酯和杂规聚丙交酯,而内消旋丙交酯会独特地得到间规聚丙交酯,外消旋丙交酯会独特地得到等规立体嵌段聚丙交酯。其中从rac-LA出发得到的等规立体嵌段聚合物的玻璃化温度和熔点都较高,而且rac-LA成本较低,更符合工业生产的要求。锌络合物催化rac-LA聚合普遍具有较高的活性,且锌是人体内必不可少的微量元素,其金属催化剂具有一定的生物相容性,在聚合物中即使有少量金属残余也不具危害性。另外在加工过程中,锌催化剂接近白色,避免了脱色这一工序。因此设计特定结构的金属锌催化剂实现对rac-LA高活性、高等规选择性的可控聚合以获得性能优良的等规立体嵌段PLA是当前的研究热点之一。

1999年,Coates小组首次利用β-二亚氨双核锌络合物(BDI)Zn(OiPr)作为催化剂催化外消旋丙交酯聚合获得高杂规聚丙交酯(Pr=0.90)(J.Am.Chem.Soc.,1999,121,11583-11584)。随后,Chisholm小组合成了β-二亚氨单核锌络合物(BDI)Zn(THF)(OSiPh3),催化外消旋丙交酯聚合表现出高杂规选择性(Pr>0.90)(J.Chem.Soc.,Dalton.Trans.,2001,3,222-224)。 2003年,Williams小组合成了单乙氧基桥联的氨基酚类配体的双核锌络合物,对外消旋丙交酯开环聚合具有很高的催化活性,但没有立体选择性(J.Am.Chem.Soc.,2003,125, 11350-11359)。同年Chisholm组报道了不对称的联苯二酚类配体的锌络合物,催化外消旋丙交酯活性较低,仅得到偏杂规聚合物(Dalton.Trans.,2003,3,406-412)。2005年,Lin小组合成了亚环己基骨架的亚氨基酚氧基双核锌络合物,对外消旋丙交酯聚合活性较低,仅表现出低杂规选择性(Pr=0.75)(Polymer,2005,46,9784-9792)。2009年,该小组报道了[NNO] 三齿酮亚氨配体的锌络合物,对外消旋丙交酯聚合显示了较高的催化活性,但仅表现出一定的杂规倾向(Pr=0.61)(J.Polym.Sci.,A:Polym.Chem.2009,47,2318-2329)。2010年,我们小组报道了多齿氨基酚氧基锌络合物,对外消旋丙交酯开环聚合具有较高的催化活性,但仅得到等规倾向的聚合物(DaltonTrans.,2010,39,7897-7910)。

为获得等规选择性,研究者尝试在络合物配体骨架上引入手性因素,如2009年,Mehrkhodavandi课题组合成了手性亚环己基桥联的三齿氨基酚氧基锌络合物,其对外消旋丙交酯具有催化活性,但没有立体选择性(Organometallics,2009,28,1309-1319)。2013年, Honrado小组报道了含环戊二烯基的手性杂异蝎型锌络合物,尽管催化外消旋丙交酯聚合活性较低,但得到中等等规度的聚合物(Pm=0.77)(Organometallics,2013,32,3437-3440)。同年本组在配体骨架上引入四氢吡咯结构合成了一系列手性氨基酚氧基锌络合物,催化外消旋丙交酯开环聚合,首次获得了较高活性和较高等规选择性(Pm=0.84)(Chem.Commun.,2013, 49,8686-8688)。Du小组于2014年报道了一系列手性噁唑啉取代的类β-二亚氨配体的锌络合物,这类锌络合物对外消旋丙交酯聚合催化活性低,在高温条件下才具有一定的催化活性,得到了等规度为Pm=0.77-0.91的多嵌段等规聚丙交酯(ACSMacro Lett.,2014,3,689-692)。 2016年Kol小组合成了非手性亚乙基桥联的锌络合物,催化外消旋丙交酯开环聚合,获得了较高活性和中等等规选择性(Pm=0.81)(Chem.Eur.J.,2016,22:11533-11536)。Honrado小组在2019年报道了手性的[NNN]三齿杂异蝎型锌络合物,相比之前报道的杂异蝎型锌络合物,催化外消旋丙交酯的活性仍较低,但等规选择性有所提高(Pm=0.88)(Chem.Commun.,2019, 55:8947-8950)。

自1999年至今的二十余年时间里,人们不断探索能实现对外消旋丙交酯高活性和高等规选择性聚合的金属催化剂结构。但通常情况下催化剂的高活性与高等规选择性难以兼得,迄今为止仅有为数不多的几例兼具较高活性和较高等规选择性的催化剂报道,其催化效果还有较大的提升空间。因此设计合成特定结构的金属锌催化剂以实现对外消旋丙交酯的高活性和高等规选择性的可控聚合,对提高这一领域的技术水平具有重要意义。

发明内容

本发明目的之一在于公开一类含(取代)吡唑环的氨基酚类配体及其锌络合物。

本发明目的之二在于公开一类含(取代)吡唑环的氨基酚类配体及其锌络合物的制备方法。

本发明目的之三在于公开一类含(取代)吡唑环的氨基酚类配体及其锌络合物作为催化剂在内酯聚合中的应用。

本发明的技术构思:

氨基酚类配体原料易得、合成简便、结构可调。将氨基酚类配体与锌金属原料化合物反应得到的锌络合物催化剂应用于外消旋丙交酯的开环聚合研究,可通过改变配体各处取代基方便地调节金属中心的电子效应和空间位阻效应,从而实现对络合物催化性能的调节。本发明在氨基酚氧基配体结构中通过亚乙基桥联引入平面结构的吡唑环,吡唑环与金属中心配位后将联合骨架氮原子形成空间结构更为拥挤的六元螯合环,希望以此构筑有利于实现外消旋丙交酯高等规立体选择性聚合的空间配位环境。同时由于吡唑环上N原子与金属中心配位后,该氮原子相邻碳原子上的取代基将对金属中心的配位环境有直接影响,因此本发明调节配体上悬垂吡唑环的3,5-位取代基,以便对金属周围的空间结构进行微调。此外,通过改变配体骨架上取代基的电子效应和空间位阻效应调节金属中心的空间位阻和Lewis酸性,从而获得兼具高活性和高等规选择性的金属锌催化剂。

本发明提供的含(取代)吡唑环的氨基酚类配体(I)及其金属锌络合物(II),其特征在于,具有以下通式:

式(I)、(II)中:

R1~R2分别代表氢,C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基,卤素;

R3代表C1~C20直链、支链或环状结构的烷基,C7~C30单或多芳基取代的烷基,C6~C18的芳基;

A为如结构式(III)或(IV)所示的基团:

X代表氨基NR4R5,其中R4~R5分别为C1~C6直链、支链或环状结构的烷基,三甲基硅基,三乙基硅基,二甲基氢硅基,R4和R5可以相同或不同。

更特征的,式(I)、(II)中,R1~R2优选为氢,C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基,卤素;

R3优选为C1~C8直链、支链或环状结构的烷基,C7~C20单或多芳基取代的烷基,C6~C12的芳基;

X优选为二(三甲基硅)氨基,二(三乙基硅)氨基,二(二甲基氢硅)氨基。

式(I)、(II)中,R1~R2优选为氢、甲基、异丙基、叔丁基、枯基、三苯甲基或卤素; R3优选为甲基、乙基、异丙基、正丁基、叔丁基、环戊基、正己基、环己基、正辛基、环辛基、苄基、苯乙基;X优选为二(三甲基硅)氨基。

优选的含(取代)吡唑环的氨基酚类配体,其结构式如下:

优选的含(取代)吡唑环的氨基酚氧基锌络合物结构为:

本发明的含(取代)吡唑环的氨基酚类配体(I)及其锌络合物(II)制备方法如下所示:

将1-(2-溴乙基)-3,5-二甲基吡唑或1-(2-溴乙基)吡唑与伯胺反应生成相应仲胺,加入2-溴甲基-4,6-二取代苯酚(V),反应温度为25~150℃,反应时间为2~72小时,然后从反应产物中收集配体化合物(I);

任选的,再将式(I)所示的含(取代)吡唑环的氨基酚类配体化合物与锌金属原料化合物在有机介质中反应,反应温度为0~100℃,反应时间为2~96小时,然后从反应产物中收集含(取代)吡唑环的氨基酚氧基锌目标化合物(II);

上述制备方法中取代基R1~R3和A与满足前述的含(取代)吡唑环的氨基酚类配体(I) 及其金属锌络合物(II)的各相应基团一致;

锌金属原料化合物具有通式ZnX2,X与满足前述的含(取代)吡唑环的氨基酚氧基锌络合物(II)的相应基团一致;

锌金属原料化合物优选为二{二(三甲基硅)氨基}锌。

含(取代)吡唑环的氨基酚类配体化合物(I)与锌金属原料化合物的摩尔比为1:1~1.5;所述的有机介质选自四氢呋喃、乙醚、甲苯、苯、石油醚和正己烷中的一种或两种。

本发明所述含(取代)吡唑环的氨基酚类配体(I)的制备方法中,1-(2-溴乙基)-3,5-二甲基吡唑和1-(2-溴乙基)吡唑的合成可参考文献方法按以下路线进行合成:

其中,将氢氧化钠固体溶于水后缓慢滴加入3,5-二甲基吡唑、1,2-二溴乙烷、四丁基溴化铵的混合溶液中,加热回流反应得到目标化合物1-(2-溴乙基)-3,5-二甲基吡唑(Org.Biomol. Chem.,2011,9,2992-2998)。

同上,将氢氧化钠固体溶于水后缓慢滴加入吡唑、1,2-二溴乙烷、四丁基溴化铵的混合溶液中,加热回流反应得到目标化合物1-(2-溴乙基)吡唑(Dalton Trans.,2003,21,4181-4191)。

本发明所述含(取代)吡唑环的氨基酚类配体(I)的制备方法中,式(V)所示2-溴甲基-4,6-二取代酚的合成可参考文献方法按以下路线由2,4-取代苯酚与多聚甲醛在33%溴化氢醋酸溶液反应获得(Inorg.Chem.,2002,41,3656;J.Org.Chem.,1994,59,1939):

本发明所述的含(取代)吡唑环的氨基酚类配体的锌络合物是一种高效的内酯聚合催化剂,可用于L-丙交酯、D-丙交酯、rac-丙交酯、meso-丙交酯、ε-己内酯、β-丁内酯、α-甲基三亚甲基环碳酸酯的聚合反应,聚合方式为溶液聚合和熔融聚合。

以本发明所述的含(取代)吡唑环的氨基酚氧基锌络合物为催化剂,使丙交酯在-40~140℃聚合,优选-40~110℃;聚合时催化剂与单体摩尔比为1:1~10000,优选为1:100~5000。

以本发明所述的含(取代)吡唑环的氨基酚氧基锌络合物为催化剂,在醇存在的条件下,使丙交酯在-40~140℃聚合,优选-40~110℃;聚合时催化剂与醇以及单体摩尔比为1:1~50: 1~10000,优选为1:1~50:100~5000;所述的醇为C1~C10直链、支链或环状结构的烷基醇, C7~C20的单或多芳基取代烷基醇。

以本发明所述的含(取代)吡唑环的氨基酚氧基锌络合物为催化剂,在加醇或不加醇的条件下,使ε-己内酯聚合,聚合时催化剂与醇以及单体摩尔比为1:0~50:1~10000,优选为1: 0~50:100~5000;所述的醇为C1~C10直链、支链或环状结构的烷基醇,C7~C20的单或多芳基取代烷基醇。

本发明提供的催化剂其配体原料易得,催化剂制备方便,同时具有较高的催化活性及高立体选择性,易获得高分子量的聚内酯,有着广泛的应用前景。下面通过实例进一步说明本发明,但本发明不限于此。

具体实施方式

实施例1

配体L1的合成:

(1)N-[2-(3,5-二甲基-吡唑-1-基)乙基]正己胺的合成

惰性气体保护下,于三口瓶中加入正己胺(22.4g,222mmol)和无水碳酸钾(3.37g,24.4mmol),加入1-(2-溴乙基)-3,5-二甲基吡唑(4.50g,22.2mmol)的15mL的N,N-二甲基甲酰胺溶液,室温反应过夜。加水淬灭反应,用乙酸乙酯萃取,合并有机相,洗涤,干燥,过滤,滤液浓缩至干得黄色粘稠液体(4.50g,产率90.8%,纯度约80%)。直接用于下一步配体的合成。

(2)配体L1的合成

于100mL单口瓶中加入N-[2-(3,5-二甲基-吡唑-1-基)乙基]正己胺(4.50g,纯度约80%,约16.2mmol),加入无水碳酸钾(2.46g,17.8mmol)和30mL DMF,充分搅拌1h。加入2-溴甲基-4-甲基-6-三苯甲基苯酚(7.54g,17.0mmol),室温反应过夜。加水淬灭反应,加入二氯甲烷萃取3次,合并有机相,洗涤,干燥,过滤,旋干滤液得粗品。经柱层析分离纯化,得白色泡状固体(3.32g,34.3%)。

1H NMR(CDCl3,400MHz,298K):δ10.15(br,s,1H,OH),7.25–7.15(m,12H,ArH),7.15– 7.07(m,3H,ArH),6.92(s,1H,ArH),6.74(s,1H,ArH),5.68(s,1H,Pyrazolyl-H),3.66(s,2H, ArCH2N),3.62(t,3J=6.9Hz,2H,Pyrazolyl-CH2CH2),2.73(t,3J=6.9Hz,2H,Pyrazolyl-CH2CH2),2.23(t,3J=7.6Hz,2H,NCH2 of n-hexyl),2.17(s,6H,ArCH3 andPyrazolyl-CH3),1.91(s,3H,Pyrazolyl-CH3),1.32–1.20(m,4H,CH2 of n-hexyl),1.20-1.11(m,2H, CH2 of n-hexyl),1.07-0.90(m,2H,CH2 of n-hexyl),0.86(t,3J=6.8Hz,3H,CH3 of n-hexyl).13C {1H}NMR(CDCl3,100MHz,298K):δ154.1,147.6,146.1,139.0,134.0,131.2,128.6,127.1, 126.9,125.4,122.4,105.1,105.0(all Ar-C and Pyrazolyl-C),63.3(CPh3),59.1(ArCH2N),54.5 (NCH2),52.6(NCH2CH2Py),46.2(NCH2CH2Py),31.8(CH2 ofn-hexyl),27.0(CH2 of n-hexyl), 26.2(CH2 of n-hexyl),22.7(CH2 of n-hexyl),21.2(ArCH3),14.2(CH3 of n-hexyl),13.6 (Pyrazolyl-CH3),11.0(Pyrazolyl-CH3).Anal.Calcd.for C40H47N3O:C,82.01;H,8.09;N,7.17. Found:C,82.08;H,8.01;N,7.11%.

实施例2

配体L2的合成

(1)N-[2-(3,5-二甲基-吡唑-1-基)乙基]环己胺的合成

除原料采用环己胺(10.5g,106mmol)、碳酸钾(3.22g,23.3mmol)和1-(2-溴乙基)-3,5- 二甲基吡唑(4.31g,21.2mmol)外,其他操作步骤同实施例1。得淡黄色粘稠液体(4.46g,粗产率95.0%,纯度约80%)。

(2)配体L2的合成

除原料采用N-[2-(3,5-二甲基-吡唑-1-基)乙基]环己胺(4.46g,纯度约80%,约16.1mmol)、无水碳酸钾(2.67g,19.3mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(7.14g,16.1mmol) 外,其他操作步骤同实施例1。柱层析分离提纯得白色固体(4.13g,43.9%)。

1H NMR(CDCl3,400MHz,298K):δ10.21(br s,1H,OH),7.22(d,3J=8.0Hz,6H,ArH),7.17(t,3J=8.0Hz,6H,ArH),7.10(t,3J=7.0Hz,3H,ArH),6.94(d,4J=1.7Hz,1H,ArH),6.75 (d,4J=1.5Hz,1H,ArH),5.65(s,1H,Pyrazolyl-H),3.74(s,2H,ArCH2N),3.40(t,3J=7.6Hz,2H, Pyrazolyl-CH2CH2),2.67(t,3J=7.6Hz,2H,Pyrazolyl-CH2CH2),2.29-2.18(m,1H,CH of cyclohexyl),2.17(s,3H,ArCH3),2.16(s,3H,Pyrazolyl-CH3),1.80(s,3H,Pyrazolyl-CH3),1.70 (br d,3J=10.6Hz,2H,CH2 of cyclohexyl),1.65-1.50(m,3H,CH2of cyclohexyl),1.20-0.92(m, 5H,CH2 of cyclohexyl).13C{1H}NMR(CDCl3,100MHz,298K):δ154.1,147.4,145.9,138.9, 133.9,131.1,128.5,127.0,126.9,125.3,122.7,104.81,104.75(all Ar-C and Pyrazolyl-C),63.2 (CPh3),60.2(ArCH2N),55.7(NCH),49.4(Pyrazolyl-CH2CH2N),47.5(Pyrazolyl-CH2CH2N),27.8 (CH2 of cyclohexyl),26.0(CH2 of cyclohexyl),25.8(CH2 of cyclohexyl),21.0(ArCH3),13.5 (Pyrazolyl-CH3),10.8(Pyrazolyl-CH3).Anal.Calcd.for C40H45N3O:C,82.29;H,7.77;N,7.20. Found:C,82.46;H,7.93;N,6.94%.

实施例3

配体L3的合成

(1)N-[2-(3,5-二甲基-吡唑-1-基)乙基]苄胺的合成

除原料采用苄胺(21.2g,198mmol)、碳酸钾(6.01g,43.5mmol)和1-(2-溴乙基)-3,5- 二甲基吡唑(8.02g,39.5mmol)外,其他操作步骤同实施例1。得淡黄色粘稠液体(8.59g,粗产率93.6%,纯度约80%)。

(2)配体L3的合成

除原料采用N-[2-(3,5-二甲基-吡唑-1-基)乙基]苄胺(8.59g,纯度约80%,约30.0mmol)、无水碳酸钾(4.98g,36.0mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(13.3g,30.0mmol) 外,其他操作步骤同实施例1。柱层析分离提纯得白色固体(8.37g,47.2%)。

1H NMR(CDCl3,400MHz,298K):δ10.00(s,1H,OH),7.25–7.11(m,18H,ArH),6.92(d,4J=1.6Hz,1H,ArH),6.86–6.72(m,3H,ArH),5.65(s,1H,Pyrazolyl-H),3.75(s,2H,ArCH2N), 3.73(t,3J=7.0Hz,2H,Pyrazolyl-CH2),3.31(s,2H,PhCH2N),2.70(t,3J=7.0Hz,2H, Pyrazolyl-CH2CH2),2.18(s,3H,ArCH3),2.11(s,3H,Pyrazolyl-CH3),1.79(s,3H,Pyrazolyl-CH3). 13C{1H}NMR(CDCl3,100MHz,298K):δ153.7,147.6,146.1,139.0,136.8,134.1,131.3,131.2, 129.8,129.1,128.5,127.5,127.2,127.1,125.5,122.2,105.2,105.1(all Ar-C and Pyrazolyl-C), 63.3(CPh3),59.1(ArCH2N),58.2(PhCH2N),52.3(Pyrazolyl-CH2CH2N),46.1 (Pyrazolyl-CH2CH2N),21.0(ArCH3),13.5(Pyrazolyl-CH3),10.8(Pyrazolyl-CH3).Anal.Calcd.for C41H41N3O:C,83.21;H,6.98;N,7.10.Found:C,83.24;H,7.05;N,7.04%.

实施例4

配体L4的合成

(1)N-[2-(3,5-二甲基-吡唑-1-基)乙基]苯乙胺的合成

除原料采用苯乙胺(31.9g,263mmol)、碳酸钾(8.00g,57.9mmol)和1-(2-溴乙基)-3,5- 二甲基吡唑(10.7g,52.6mmol)外,其他操作步骤同实施例1。得淡黄色粘稠液体(12.5g,粗产率95.1%,纯度约80%)。

(2)配体L4的合成

除原料采用N-[2-(3,5-二甲基-吡唑-1-基)乙基]苯乙胺(12.5g,纯度约80%,约40.0mmol)、无水碳酸钾(6.63g,48.0mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(17.7g,40.0mmol) 外,其他操作步骤同实施例1。柱层析分离提纯得白色固体(13.5g,55.7%)。

1H NMR(CDCl3,400MHz,298K):δ9.87(br s,1H,OH),7.26–7.15(m,15H,ArH),7.12(t, 3J=6.8Hz,3H,ArH),7.01-6.93(m,3H,ArH),6.76(s,1H,ArH),5.69(s,1H,Pyrazolyl-H),3.74 (s,2H,ArCH2N),3.62(t,3J=6.9Hz,2H,Pyrazolyl-CH2CH2),2.82(t,3J=6.9Hz,2H, NCH2CH2Ph),2.57–2.42(m,4H,NCH2CH2Ph and Pyrazolyl-CH2CH2N),2.18(s,3H,ArCH3), 2.17(s,3H,Pyrazolyl-CH3),1.89(s,3H,Pyrazolyl-CH3).13C{1H}NMR(CDCl3,100MHz,298 K):δ153.9,147.6,145.9,139.2,139.0,134.0,131.1,130.90,130.86,128.7,128.4,127.0,126.2, 125.4,122.2,105.1,105.0(all Ar-C and Pyrazolyl-C),63.2(CPh3),59.0(ArCH2N),56.1 (Ph-CH2CH2N),52.7(Pyrazolyl-CH2CH2N),46.2(Pyrazolyl-CH2CH2N),32.6(NCH2CH2Ph),21.0 (ArCH3),13.5(Pyrazolyl-CH3),11.0(Pyrazolyl-CH3).Anal.Calcd.for C42H43N3O:C,83.27;H, 7.15;N,6.94.Found:C,83.26;H,7.15;N,6.85%.

实施例5

配体L5的合成:

(1)N-[2-(吡唑-1-基)乙基]正己胺的合成

除原料采用正己胺(24.5g,242mmol),碳酸钾(7.37g,53.4mmol)和1-(2-溴乙基)吡唑(8.44g,48.5mmol)外,其他操作步骤同实施例1。得淡黄色粘稠液体(9.00g,粗产率94.9%,纯度约80%)。

(2)配体L5的合成

除原料采用N-[2-(吡唑-1-基)乙基]正己胺(9.00g,纯度约80%,约36.8mmol)、无水碳酸钾(6.11g,44.2mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(16.3g,36.8mmol)外,其他操作步骤同实施例1。柱层析分离提纯得白色固体(14.0g,68.1%)。

1H NMR(CDCl3,400MHz,298K):δ10.32(br s,1H,OH),7.45(d,3J=2.0Hz,1H,Pyrazolyl-H),7.25–7.18(m,12H,ArH),7.17–7.10(m,3H,ArH),6.96(d,3J=2.0Hz,1H,Pyrazoly-H),6.94(d,4J=1.4Hz,1H,ArH),6.74(d,4J=1.4Hz,1H,ArH),6.10(t,3J=2.0Hz,1H, Pyrazolyl-H),3.63(t,3J=6.4Hz,2H,Pyrazolyl-CH2CH2),3.61(s,2H,ArCH2N),2.75(t,3J=6.5 Hz,2H,Pyrazolyl-CH2CH2),2.18(s,3H,ArCH3),2.15-2.08(m,2H,NCH2 of n-hexyl),1.28–1.18 (m,4H,CH2 of n-hexyl),1.17-1.11(m,2H,CH2 of n-hexyl),1.07-0.95(m,2H,CH2 of n-hexyl), 0.85(t,3J=7.1Hz,3H,CH3 of n-hexyl).13C{1H}NMR(CDCl3,100MHz,298K):δ153.9, 146.0,139.63,139.60,134.0,131.1,130.7,130.3,128.7,127.0,126.9,125.4,122.2,105.1(all Ar-C and Pyrazolyl-C),63.2(CPh3),58.9(ArCH2N),54.9(NCH2),52.7(Pyrazolyl-CH2CH2N),50.4 (Pyrazolyl-CH2CH2N),31.6(CH2 of n-hexyl),26.8(CH2 of n-hexyl),25.9(CH2 of n-hexyl),22.5(CH2 of n-hexyl),21.0(ArCH3),20.9,14.0(CH3 of n-hexyl).Anal.Calcd.for C38H43N3O:C,81.83; H,7.77;N,7.53.Found:C,81.66;H,7.80;N,7.43%.

实施例6

配体L6的合成:

(1)N-[2-(吡唑-1-基)乙基]环己胺的合成

除原料采用环己胺(21.4g,216mmol),碳酸钾(6.55g,47.4mmol)和1-(2-溴乙基)吡唑(7.50g,43.1mmol)外,其他操作步骤同实施例1。得淡黄色粘稠液体(7.51g,粗产率90.0%,纯度约80%)。

(2)配体L6的合成

除原料采用N-[2-(吡唑-1-基)乙基]环己胺(7.51g,纯度约80%,约31.1mmol)、无水碳酸钾(5.16g,37.3mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(13.8g,31.1mmol)外,其他操作步骤同实施例1。柱层析分离提纯得白色固体(11.4g,65.9%)。

1H NMR(CDCl3,400MHz,298K):δ10.52(br s,1H,OH),7.44(d,3J=1.9Hz,1H,Pyrazolyl-H),7.24–7.17(m,12H,ArH),7.16-7.09(m,3H,ArH),6.94(s,1H,ArH),6.86(d,3J= 1.9Hz,1H,Pyrazolyl-H),6.74(s,1H,ArH),6.04(t,3J=1.9Hz,1H,Pyrazolyl-H),3.65(s,2H, ArCH2N),3.53(t,3J=6.1Hz,2H,Pyrazolyl-CH2CH2),2.77(t,3J=6.1Hz,2H,Pyrazolyl-CH2CH2),2.18(s,3H,ArCH3),1.91(br t,3J=10.5Hz,1H,CH of cyclohexyl),1.67(br d,3J=7.3Hz,2H,CH2 of cyclohexyl),1.59-1.44(m,3H,CH2 of cyclohexyl),1.17–0.86(m,5H, CH2 of cyclohexyl).13C{1H}NMR(CDCl3,100MHz,298K):154.1,146.0,139.70,139.66,133.9, 131.2,130.7,128.6,127.0,126.8,125.4,122.4,104.8(all Ar-Cand Pyrazolyl-C),63.2(CPh3),60.3 (ArCH2N),54.9(NCH),51.6(Pyrazolyl-CH2CH2N),49.9(Pyrazolyl-CH2CH2N),27.6(CH2 of cyclohexyl),25.7(CH2 of cyclohexyl),21.0(ArCH3),21.0(CH2 of cyclohexyl).Anal.Calcd.for C38H41N3O:C,82.12;H,7.44;N,7.56.Found:C,82.10;H,7.54;N,7.48%.

实施例7

配体L7的合成

(1)N-[2-(吡唑-1-基)乙基]苄胺的合成

除原料采用苄胺(14.0g,131mmol),碳酸钾(3.98g,28.8mmol)和1-(2-溴乙基)吡唑(4.56g,26.2mmol)外,其他操作步骤同实施例1。得淡黄色粘稠液体(4.68g,粗产率88.9%,纯度约80%)。

(2)配体L7的合成

除原料采用N-[2-(吡唑-1-基)乙基]苄胺(4.68g,纯度约80%,约18.6mmol)、无水碳酸钾(3.09g,22.4mmol)和2-溴甲基-4-甲基-6-三苯甲基苯酚(8.26g,18.6mmol)外,其他操作步骤同实施例1。柱层析分离提纯得白色固体(6.30g,60.1%)。

1H NMR(CDCl3,400MHz,298K)δ10.19(s,1H,OH),7.43(d,3J=2.0Hz,1H,Pyrazolyl-H),7.25–7.19(m,14H,ArH),7.18–7.11(m,3H,ArH),7.03(d,3J=2.0Hz,1H,Pyrazolyl-H),6.93(s,1H,ArH),6.90–6.82(m,2H,ArH),6.76(s,1H,ArH),6.11(t,3J=2.0Hz, 1H,Pyrazolyl-H),3.75(t,3J=6.3Hz,2H,Pyrazolyl-CH2CH2),3.59(s,2H,ArCH2N),3.27(s,2H, PhCH2),2.78(t,3J=6.3Hz,2H,Pyrazolyl-CH2CH2),2.17(s,3H,ArCH3).13C{1H}NMR(CDCl3, 100MHz,298K):δ.153.6,146.0,139.7,136.1,134.0,131.2,130.9,130.3,130.2,129.8,128.8, 128.5,127.5,127.1,127.0,125.5,121.9,105.3(allAr-C and Pyrazolyl-C),63.2(CPh3),58.9 (ArCH2N),58.4(PhCH2),52.0(Pyrazolyl-CH2CH2N),50.2(Pyrazolyl-CH2CH2N),21.0(ArCH3). Anal.Calcd.for C39H37N3O:C,83.09;H,6.62;N,7.45.Found:C,82.94;H,6.63;N,7.30%.

实施例8

锌络合物Zn1的合成

氩气保护下,将Zn[N(SiMe3)2]2(270mg,0.700mmol)加入50mLSchlenk瓶,用8mL 无水四氢呋喃溶解,然后逐滴加入配体L1(409mg,0.700mmol)的8mL无水四氢呋喃溶液,室温反应过夜,真空减压除去溶剂及所有挥发性物质。用四氢呋喃/正己烷重结晶,析出白色固体(223mg,39.4%)。

1H NMR(C6D6,400MHz,298K):δ7.49(d,3J=7.3Hz,6H,ArH),7.37(d,4J=2.0Hz 1H,ArH),6.98(t,3J=7.2Hz,6H,ArH),6.85(t,3J=6.9Hz,3H,ArH),6.73(d,4J=2.0Hz,1H,ArH), 5.25(s,1H,Pyrazolyl-H),4.34(d,2J=12.1Hz,1H,ArCH2N),3.57(m,6H,1.5×4H ofTHF), 3.20-3.08(m,2H,ArCH2N and Pyrazolyl-CH2),2.82-2.73(m,1H,Pyrazolyl-CH2CH2),2.60-2.50 (m,3H,Pyrazolyl-CH2 and Pyrazolyl-CH2CH2 and NCH2 of n-hexyl),2.28(s,3H,ArCH3),2.03(s, 3H,Pyrazolyl-CH3),2.00-1.93(m,1H,NCH2 of n-hexyl),1.65-1.55(m,1H,CH2 of n-hexyl), 1.45–1.37(m,6H,1.5×4H of THF),1.29(s,3H,Pyrazolyl-CH3),1.27–1.14(m,5H,CH2 of n-hexyl),1.13-1.01(m,2H,CH2 of n-hexyl),0.91(t,3J=6.8Hz,3H,CH3 of n-hexyl),0.32(br s, 9H,SiMe3),0.13(br s,9H,SiMe3).13C{1H}NMR(C6D6,100MHz,298K):δ164.5,150.4,140.1, 137.0,131.8,131.2,128.4,128.3,127.8,126.9,125.1,121.9,119.9(all Ar-C and Pyrazolyl-C), 67.8(THF),64.1(CPh3),60.8(ArCH2N),58.4(NCH2),54.9(Pyrazolyl-CH2CH2N),44.7(Pyrazolyl-CH2CH2N),32.1(CH2 of n-hexyl),27.6(CH2 of n-hexyl),25.8(CH2 of n-hexyl),25.8 (THF),23.1(hexane),21.1(CH2 of n-hexy),21.0(ArCH3),20.9(CH3 of n-hexyl),14.4 (Pyrazolyl-CH3),10.4(Pyrazolyl-CH3),6.6(SiMe3),6.3(SiMe3).Anal.Calcd.for C46H64N4OSi2Zn·1.5C4H8O:C,67.98;H,8.34;N,6.10.Found:C,68.00;H,8.54;N,6.36%.

实施例9

锌络合物Zn2的合成

氩气保护下,将Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mLSchlenk瓶,用8mL 无水甲苯溶解,然后逐滴加入配体L2(583mg,1.00mmol)的8mL无水甲苯溶液,室温反应过夜,反应体系中析出大量白色固体,过滤,正己烷洗涤滤渣,抽干得白色固体(664mg, 82.3%)。

1H NMR(C6D6,400MHz,298K):δ7.47(br s,6H,ArH),7.32(d,4J=2.0Hz,1H,ArH),7.13-7.11(m,1H,0.5×2H of toluene),7.07–6.92(m,7.5H,0.5×3H of toluene and 6Hof ArH), 6.88(br t,3J=6.0Hz,3H,ArH),6.76(d,4J=2.0Hz,1H,ArH),5.28(s,1H,Pyrazolyl-H),4.42(d, 2J=12.0Hz,1H,ArCH2N),3.20(br s,1H,Pyrazolyl-CH2),2.98(d,2J=12.0Hz,1H,ArCH2N), 2.97-2.68(m,4H,Pyrazolyl-CH2 and Pyrazolyl-CH2CH2 andNCH of cyclohexyl),2.29(s,3H, ArCH3),2.10(s,1.5H,0.5×3H of toluene),2.08-2.00(m,1H,CH2 of cyclohexyl),1.97(br s,3H, Pyrazolyl-CH3),1.74(br s,1H,CH2 ofcyclohexyl),1.60(br s,1H,CH2 of cyclohexyl),1.45(br s, 1H,CH2 of cyclohexyl),1.35(s,3H,Pyrazolyl-CH3),1.29-1.13(m,3H,CH2 of cyclohexyl), 1.12-0.97(m,1H,CH2of cyclohexyl),0.97-0.81(m,2H,CH2 of cyclohexyl),0.19(br s,18H, N(SiMe3)2).13C{1H}NMR(C6D6,100MHz,298K):164.0,150.5,140.1,137.9(toluene),136.4, 134.0,131.8,129.3(toluene),128.6(toluene),128.4,128.3,127.8,127.1,125.7(toluene),125.2,119.9(all Ar-C and Pyrazolyl-C),64.1(CPh3),54.6(Pyrazolyl-CH2CH2N),30.2(NCH),27.5(CH2 of cyclohexyl),26.3(CH2 of cyclohexyl),26.0(CH2 of cyclohexyl),21.4(ArCH3),21.1(toluene), 14.5(Pyrazolyl-CH3),10.5(Pyrazolyl-CH3),6.2(Pyrazolyl-CH3).Due to the poor solubility in C6D6,only partial 13C signals could beobserved.Anal.Calcd.for C46H62N4OSi2Zn·0.5C7H8:C, 69.57;H,7.78;N,6.56.Found:C,69.56;H,8.03;N,6.56%.

实施例10

锌络合物Zn3的合成

氩气保护下,将Zn[N(SiMe3)2]2(386mg,1.00mmol)加入50mLSchlenk瓶,用8mL 无水甲苯溶解,然后逐滴加入配体L3(592mg,1.00mmol)的8mL无水甲苯溶液,室温反应过夜,真空减压除去溶剂及所有挥发性物质。用甲苯/正己烷重结晶,析出晶体,抽干得白色固体(380mg,46.6%)。

1H NMR(C6D6,400MHz,298K):δ7.48(d,3J=6.4Hz,6H,ArH),7.29(d,4J=1.8Hz,1H,ArH),7.12–7.07(m,3H,ArH),6.99(t,3J=6.4Hz,6H,ArH),6.93–6.81(m,5H,ArH),6.39(d,4J =1.8Hz,1H,ArH),5.27(s,1H,Pyrazolyl-H),4.44(d,2J=14.2Hz,1H,PhCH2),4.39(d,2J=12.0 Hz,1H,ArCH2N),3.98(d,2J=14.2Hz,1H,PhCH2),3.12(d,2J=12.0Hz,1H,ArCH2N),2.93(dd, 2J=15.6Hz,3J=10.3Hz,1H,Pyrazolyl-CH2CH2),2.65(br d,2J=15.6Hz,1H, Pyrazolyl-CH2CH2),2.55-2.40(m,2H,Pyrazolyl-CH2CH2 and Pyrazolyl-CH2CH2),2.10(s,3H, ArCH3),2.08(s,3H,Pyrazolyl-CH3),1.29(s,3H,Pyrazolyl-CH3),1.27–1.16(m,4H,0.5×8H of n-hexane),0.88(t,3J=6.8Hz,3H,0.5×6H of n-hexane),0.38(br s,9H,SiMe3),0.12(br s,9H, SiMe3).13C{1H}NMR(C6D6,100MHz,298K):δ164.6,150.4,140.3,137.1,133.8,132.0,131.8, 131.1,129.3,128.8,128.7,128.6,126.9,125.2,122.2,120.1,106.3(all Ar-C and Pyrazolyl-C), 64.5(PhCH2N),64.1(CPh3),61.1(ArCH2N),55.7(PyCH2CH2N),45.3(Pyrazolyl-CH2CH2N), 32.0(hexane),23.1(hexane),20.9(ArCH3),14.7(Pyrazolyl-CH3),10.5(Pyrazolyl-CH3),6.7 (SiMe3),6.1(SiMe3).Anal.Calcd.for C47H58N4OSi2Zn·0.5C6H14:C,69.86;H,7.62;N,6.52. Found:C,69.93;H,7.68;N,6.29%.

实施例11

锌络合物Zn4的合成

除原料采用Zn[N(SiMe3)2]2(430mg,1.11mmol)、L4(674mg,1.11mmol)外,其余操作步骤同实施例9。得白色固体(669mg,80.8%)。

1H NMR(C6D6,400MHz,298K):δ7.50(d,3J=6.9Hz,6H,ArH),7.40(d,4J=2.1Hz,1H,ArH),7.15-7.12(m,2H,PhH),7.05(t,3J=7.3Hz,1H,PhH),7.02-6.90(m,8H,ArH andPhH), 6.84(t,3J=6.9Hz,3H,ArH),6.78(d,4J=2.1Hz,1H,ArH),5.23(s,1H,Pyrazolyl-H),4.42(d,2J =12.0Hz,1H,ArCH2N),3.56(m,1H,0.25×4H of THF),3.50-3.40(m,1H,Pyrazolyl-CH2),3.26 (d,2J=12.0Hz,1H,ArCH2N),2.90–2.71(m,3H,Pyrazolyl-CH2CH2,Pyrazolyl-CH2CH2 and PhCH2CH2),2.63-2.53(m,2H,Pyrazolyl-CH2CH2 and PhCH2CH2),2.40-2.27(m,1H, PhCH2CH2),2.31(s,3H,ArCH3),2.16-2.06(m,1H,PhCH2CH2),2.00(s,3H,Pyrazolyl-CH3), 1.40(m,0.25×4H of THF),1.29(s,3H,Pyrazolyl-CH3),1.18-1.26(m,2.4H,0.3×8H of hexane), 0.93–0.81(t,3J=6.7Hz,1.8H,0.3×6H of hexane),0.29(br s,9H,SiMe3),-0.06(br s,9H,SiMe3). 13C{1H}NMR(C6D6,100MHz,298K):δ164.5,150.4,140.2,138.9,137.9,137.2,133.9,131.8, 131.2,128.4,128.3,127.8,126.9,125.8,125.1,121.8,120.0,106.3(all Ar-C and Pyrazolyl-C), 64.1(CPh3),62.4(PhCH2CH2N),60.9(ArCH2N),55.3(Pyrazolyl-CH2CH2N),44.9 (Pyrazolyl-CH2CH2N),27.7(PhCH2CH2N),21.1(ArCH3),14.4(Pyrazolyl-CH3),10.4 (Pyrazolyl-CH3),6.4(N(SiMe3)2),6.2(N(SiMe3)2).Anal.Calcd.for C48H60N4OSi2Zn·0.3C6H14·0.25C4H8O:C,69.78;H,7.63;N,6.41.Found:C,69.47;H,7.61;N, 6.38%.

实施例12

锌络合物Zn5的合成

除原料采用Zn[N(SiMe3)2]2(386mg,1.00mmol)、L5(557mg,1.00mmol)外,其余操作步骤同实施例8。得白色固体(228mg,29.2%)。

1H NMR(C6D6,400MHz,298K):δ7.52(d,3J=7.5Hz,6H,ArH),7.38(s,1H,ArH),7.01(t, 3J=7.2Hz,6H,ArH),6.86(t,3J=7.0Hz,3H,ArH),6.81(s,1H,ArH),6.67(s,1H,Pyrazolyl-H), 5.98(s,1H,Pyrazolyl-H),5.51(s,1H,Pyrazolyl-H),4.36(d,2J=12.0Hz,1H,ArCH2),3.57(m, 0.5H,0.125×4H of THF),2.90-2.68(m,3H,ArCH2 andPyrazolyl-CH2 and Pyrazolyl-CH2CH2), 2.53–2.31(m,2H,ArCH2 and Pyrazolyl-CH2CH2),2.26(s,3H,ArCH3),2.19(t,2J=12.1Hz,1H, NCH2 of n-hexyl),1.93(br s,1H,CH2 of n-hexyl),1.71(t,3J=11.4Hz,1H,NCH2 of n-hexyl), 1.45-1.37(m,0.5H,0.125×4H of THF),1.37-1.13(m,6H,CH2 of n-hexyl),1.07(br s,1H,CH2 of n-hexyl),0.93(br s,3H,CH3 of n-hexyl),0.19(s,18H,N(SiMe3)2).13C{1H}NMR(C6D6,100 MHz,298K):δ164.5,150.4,140.1,137.0,133.7,131.8,131.5,128.4,128.3,127.8,126.9,125.2,119.9(all Ar-C and Pyrazolyl-C),67.8(THF),64.1(CPh3),61.6(ArCH2N),61.2(NCH2),56.2 (Pyrazolyl-CH2CH2N),48.4(Pyrazolyl-CH2CH2N),32.0(CH2 of n-hexyl),27.7(CH2of n-hexyl), 25.8(THF),23.1(CH2 of n-hexyl),21.2(CH2 of n-hexyl),21.1(ArCH3),14.3(CH3 of n-hexyl),), 6.4(N(SiMe3)2).Anal.Calcd.for C44H60N4OSi2Zn·0.125C4H8O:C,67.52;H,7.77;N,7.08.Found: C,67.05;H,7.68;N,6.99%.

实施例13

锌络合物Zn6的合成

除原料采用Zn[N(SiMe3)2]2(386mg,1.00mmol)、L6(555mg,1.00mmol)外,其余操作步骤同实施例9。得白色固体(713mg,91.6%)。

1H NMR(C6D6,400MHz,298K):δ7.53(d,3J=7.7Hz,6H,ArH),7.38(d,4J=2.1Hz,1H,ArH),7.15-7.12(m,1.8H,0.9×2H of toluene),7.07–6.90(m,8.7H,0.9×3H of tolueneand 6H of ArH),6.93(br s,1H,ArH),6.84(t,3J=7.3Hz,3H,ArH),6.68(d,3J=2.3Hz,1H,Pyrazolyl-H), 6.00(d,3J=2.3Hz,1H,Pyrazolyl-H),5.53(t,3J=2.3Hz,1H,Pyrazolyl-H),4.27(d,2J=11.8Hz, 1H,ArCH2N),3.57(m,0.52H,0.13×4H of THF),3.17(br d,1H,3J=5.8Hz,NCH),2.87(d,2J= 11.8Hz,1H,ArCH2N),2.73-2.61(m,1H,Pyrazolyl-CH2),2.51(t,3J=10.4Hz,1H, Pyrazolyl-CH2CH2),2.44-2.34(m,2H,Pyrazolyl-CH2CH2 and NCH),2.27(s,3H,ArCH3),2.10(s, 2.7H,0.9×3H of toluene),1.83-1.67(m,2H,CH2 ofcyclohexyl),1.63-1.55(m,1H,CH2 of cyclohexyl),1.50-1.43(m,1H,CH2 ofcyclohexyl),1.42-1.38(m,0.52H,0.13×4H of THF), 1.35-1.25(m,1H,CH2 ofcyclohexyl),1.22-1.08(m,2H,CH2 of cyclohexyl),1.02–0.86(m,3H, CH2 ofcyclohexyl),0.21(s,18H,N(SiMe3)2).13C{1H}NMR(C6D6,100MHz,298K):δ164.9, 147.7,136.7,133.6,132.0,131.5,131.0,127.8,127.0,125.3,121.9,120.3,105.4(all Ar-Cand Pyrazolyl-C),64.1(CPh3),62.9(ArCH2N),61.0(NCH),53.8(Pyrazolyl-CH2CH2N),48.3 (Pyrazolyl-CH2CH2N),20.9(ArCH3),6.5(N(SiMe3)2).The too much weak productsignal strength is beacaus of the poor solubility of thecomplex.Anal.Calcd.for C44H58N4OSi2Zn·0.9C7H8·0.13C4H8O:C,69.93;H,7.65;N,6.42.Found:C,69.62;H,7.55;N, 6.31%.

实施例14

锌络合物Zn7的合成

除原料采用Zn[N(SiMe3)2]2(611mg,1.58mmol)、L7(892mg,1.58mmol)外,其余操作步骤同实施例9。得白色固体(741mg,60.4%)。

1H NMR(C6D6,400MHz,298K):δ7.54(d,3J=7.5Hz,6H,ArH),7.32(d,4J=2.1Hz,1H,ArH),7.13–7.08(m,5.5H,1.5×2H of toluene and 3H of ArH),7.08–6.97(m,10.5H,1.5×3H of toluene and 6H of ArH),6.91(t,3J=7.2Hz,3H,ArH),6.86(d,3J=6.4Hz,2H,ArH),6.69(br s, 1H,ArH),6.29(d,3J=2.3Hz,1H,Pyrazolyl-H),6.03(d,3J=2.3Hz,1H,Pyrazolyl-H),5.53(t,3J =2.3Hz,1H,Pyrazolyl-H),4.34(pesudo d,2J=14.1Hz,2H,PhCH2N and ArCH2N),3.93(d,2J= 14.4Hz,1H,PhCH2N),2.98(d,2J=12.1Hz,1H,ArCH2N),2.85-2.70(m,1H, Pyrazolyl-CH2CH2),2.75-2.60(m,1H,Pyrazolyl-CH2CH2),2.41-2.27(m,2H,Pyrazolyl-CH2CH2 and Pyrazolyl-CH2CH2),2.10(s,4.5H,1.5×3H of toluene),2.07(s,3H,ArCH3),0.23(s,18H, N(SiMe3)2).13C{1H}NMR(C6D6,100MHz,298K):164.9,147.7,142.3,133.6,136.7,132.2, 132.0,131.6,131.0,128.6,127.1,127.0,125.2,121.9,120.3,105.4,105.3(all Ar-C and Pyrazolyl-C),64.1(CPh3),62.9(ArCH2N),61.0(PhCH2N),53.7(Pyrazolyl-CH2CH2N),48.2 (Pyrazolyl-CH2CH2N),21.02(toluene),20.96(ArCH3),6.5(N(SiMe3)2).Anal.Calcd.for C45H54N4OSi2Zn·1.5C7H8:C,71.93;H,7.18;N,6.05.Found:C,71.45;H,6.90;N,6.51%.

实施例15

氩气保护下,在聚合瓶中加入外消旋丙交酯(0.144g,1.00mmol),用0.5mL甲苯溶解。量取催化剂Zn3的甲苯溶液0.5mL加入到聚合瓶中。[rac-LA]0=1.0M,[Zn]0=0.005M,[Zn]0: [rac-LA]0=1:200。控制反应温度25±1℃,反应35小时,加入石油醚终止反应。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇使聚合物沉淀析出。真空干燥24h。转化率:82%,Mn= 7.9×104g/mol,分子量分布PDI=1.73,等规度Pm=0.70。

实施例16

除催化剂换成Zn3、溶剂换成四氢呋喃外,其余操作同实施例15,反应38小时,转化率:82%,Mn=6.4×104g/mol,分子量分布PDI=1.49,等规度Pm=0.69。

实施例17

除催化剂换成Zn5外,其余操作同实施例15,反应4.5小时,转化率:89%,Mn=19.4×104 g/mol,分子量分布PDI=1.91,等规度Pm=0.87。

实施例18

除催化剂换成Zn5、溶剂换成四氢呋喃外,其余操作同实施例15,反应56分钟,转化率:85%,Mn=6.0×104g/mol,分子量分布PDI=1.80,等规度Pm=0.86。

实施例19

除催化剂换成Zn6外,其余操作同实施例15,反应4.5小时,转化率:86%,Mn=19.9×104 g/mol,分子量分布PDI=1.95,等规度Pm=0.91。

实施例20

除催化剂换成Zn6、溶剂换成四氢呋喃外,其余操作同实施例15,反应75分钟,转化率:83%,Mn=6.7×104g/mol,分子量分布PDI=1.98,等规度Pm=0.89。

实施例21

除催化剂换成Zn7外,其余操作同实施例15,反应2小时,转化率:87%,Mn=8.8×104 g/mol,分子量分布PDI=2.00,等规度Pm=0.73。

实施例22

除催化剂换成Zn7、溶剂换成四氢呋喃外,其余操作同实施例15,反应50分钟,转化率:93%,Mn=6.0×104g/mol,分子量分布PDI=1.71,等规度Pm=0.71。

实施例23

氩气保护下,在聚合瓶中加入外消旋丙交酯(0.144g,1.00mmol),用0.5mL异丙醇的甲苯溶液溶解。量取催化剂Zn5的甲苯溶液0.5mL加入到聚合瓶中。[rac-LA]0=1.0M,[Zn]0=0.005M,[Zn]0:[iPrOH]0:[rac-LA]0=1:1:200。控制反应温度25±1℃,反应22分钟,加入石油醚终止反应。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇使聚合物沉淀析出。真空干燥24h。转化率:93%,Mn=3.1×104g/mol,分子量分布PDI=1.52,等规度Pm=0.87。

实施例24

除催化剂换成Zn5、反应溶剂换成四氢呋喃外,其余操作同实施例23,反应14分钟,转化率:91%,Mn=3.3×104g/mol,分子量分布PDI=1.42,等规度Pm=0.84。

实施例25

除催化剂换成Zn6外,其余操作同实施例23,反应29分钟,转化率:96%,Mn=4.0×104 g/mol,分子量分布PDI=1.56,等规度Pm=0.89。

实施例26

除催化剂换成Zn6、反应溶剂换成四氢呋喃外,其余操作同实施例23,反应20分钟,转化率:92%,Mn=4.8×104g/mol,分子量分布PDI=1.33,等规度Pm=0.86。

实施例27

除催化剂换成Zn7外,其余操作同实施例23,反应22分钟,转化率:92%,Mn=3.6×104 g/mol,分子量分布PDI=1.61,等规度Pm=0.72。

实施例28

除催化剂换成Zn7、反应溶剂换成四氢呋喃外,其余操作同实施例23,反应12分钟,转化率:86%,Mn=2.4×104g/mol,分子量分布PDI=1.41,等规度Pm=0.72。

实施例29

除催化剂换成Zn6,聚合温度为-40℃外,其余操作同实施例23,反应21小时,转化率: 85%,Mn=3.0×104g/mol,分子量分布PDI=1.36,等规度Pm=0.93。

实施例30

于10mL聚合瓶中加入外消旋丙交酯(144mg,1.00mmol),加入0.1mL的异丙醇/甲苯溶液,再加入0.1mL催化剂Zn5的甲苯溶液。保持[rac-LA]0/[Zn]0/[iPrOH]0=1000:1:1。置于 110±1℃油浴中搅拌,反应3min,加入石油醚终止聚合。抽除溶剂,残余物用二氯甲烷溶解,加入甲醇使聚合物沉淀析出。真空干燥24h。转化率:89%,Mn=25.0×104g/mol,分子量分布PDI=1.72,等规度Pm=0.79。

实施例31

除[rac-LA]0/[Zn]0/[iPrOH]0=1500:1:1外,其他操作同实施实例30,反应8min后,转化率:97%,Mn=24.2×104g/mol,分子量分布PDI=1.61,等规度Pm=0.72。

实施例32

除[rac-LA]0/[Zn]0/[iPrOH]0=5000:1:1外,其他操作同实施实例30,反应13min后,转化率:92%,Mn=48.3×104g/mol,分子量分布PDI=1.43。

实施例33

除催化剂换成Zn5、溶剂换成四氢呋喃,聚合单体换成D-LA外,其他操作同实施实例 15,反应22min后,转化率:90%,Mn=6.4×104g/mol,分子量分布PDI=1.49。

实施例34

除催化剂换成Zn5、溶剂换成四氢呋喃,聚合单体换成L-LA外,其他操作同实施实例 15,反应26min后,转化率:93%,Mn=6.6×104g/mol,分子量分布PDI=1.53。

实施例35

除聚合单体换成ε-己内酯外,其他操作同实施实例23,反应11min后,转化率:94%, Mn=2.4×104g/mol,分子量分布PDI=1.38。

23页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种2,5-二取代咪唑类化合物的合成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!