二维半导体材料中光生载流子的差分反射探测方法

文档序号:1859572 发布日期:2021-11-19 浏览:17次 >En<

阅读说明:本技术 二维半导体材料中光生载流子的差分反射探测方法 (Differential reflection detection method for photogenerated carriers in two-dimensional semiconductor material ) 是由 姚鹏 李昱江 杨林 王浩枫 于 2021-08-17 设计创作,主要内容包括:本发明涉及一种二维半导体材料中光生载流子的差分反射探测方法,属于超快激光泵浦探测领域。本发明利用二维半导体材料价带电子吸收光子并发生跃迁至导带的原理,在超快激光的激发下,通过测量二维半导体材料的反射光的方式,得到了微观电子的动力学过程。所述超快激光为脉冲持续时间在100飞秒左右、重复频率为80MHz、带宽为10纳米左右的相干光源,保证了光学测量的时间分辨率。本发明具有瞬时响应和飞秒—皮秒级别的时间分辨率。和宏观电学的电流探测手段相比,灵敏度更高,适用于微观探测领域,同时避免了电极材料对测量结果的影响。(The invention relates to a differential reflection detection method for photo-generated carriers in a two-dimensional semiconductor material, belonging to the field of ultrafast laser pumping detection. The invention utilizes the principle that two-dimensional semiconductor material valence band electrons absorb photons and jump to a conduction band, and obtains the dynamic process of microscopic electrons by measuring the reflected light of the two-dimensional semiconductor material under the excitation of ultrafast laser. The ultrafast laser is a coherent light source with the pulse duration of about 100 femtoseconds, the repetition frequency of 80MHz and the bandwidth of about 10 nanometers, and the time resolution of optical measurement is ensured. The invention has transient response and time resolution on the order of femtosecond-picosecond. Compared with a current detection means of macroscopic electricity, the sensitivity is higher, the method is suitable for the field of microscopic detection, and meanwhile, the influence of electrode materials on the measurement result is avoided.)

二维半导体材料中光生载流子的差分反射探测方法

技术领域

本发明属于超快激光泵浦探测领域,具体涉及一种二维半导体材料中光生载流子的差分反射探测方法。

背景技术

随着半导体器件尺寸达到纳米量级,摩尔定律的失效使得以晶圆代工为代表的半导体技术发展遇到了瓶颈。对二维半导体材料及其异质结中的电荷转移的微观研究将会对未来半导体技术的突破产生重要影响。但是,受制于电学电荷探测技术,人们往往无法及时捕捉到微观粒子运动的信息。

在半导体当中,位于导带的电子和位于价带的空穴被称之为载流子,因为载流子是可以移动的,所以被认为是电荷输运的基础。载流子可以被不同的物理机制去激发,比如,在掺杂的半导体材料当中,载流子是由掺杂原子所提供。单质或者纯净的半导体材料在非绝对零度的条件下,因为热激发同样具有载流子。而对于单质和掺杂的半导体材料而言,光激发的方式也可以被用来使其产生载流子(也就是所谓的光生载流子),这主要是因为,位于价带的电子可以吸收一个具有足够能量的光子,从而到达导带。

因为光生载流子的复合过程非常迅速,常常发生在几个皮秒内,所以,在光激发的条件下载流子的动力学过程的研究就要求实验方法具有非常高的时间分辨能力。一般被应用在基础物理研究中的电子探测技术(也就是通过测量电极之间的I-V特性曲线)具有有限的时间分辨率。相比之下,基于超快激光的光学技术,因为其具有很高的时间分辨率,所以被当作是光激发的条件下研究载流子动力学的标准工具。

本专利意在设计一种基于光反射的具有飞秒-纳秒时间分辨率的、瞬时响应的二维半导体材料中的光生载流子的全光学探测方法。

发明内容

(一)要解决的技术问题

本发明要解决的技术问题是如何提供一种二维半导体材料中光生载流子的差分反射探测方法,具有飞秒-纳秒时间分辨率的、瞬时响应的特点。

(二)技术方案

为了解决上述技术问题,本发明提出一种二维半导体材料中光生载流子的差分反射探测方法,该方法包括如下步骤:

步骤一,引入泵浦光激发二维半导体材料:用一束具有合适波长λ1的脉冲激光垂直入射至二维半导体材料表面,二维半导体材料被激发后,位于半导体价带的电子密度将会降低;该波长λ1的脉冲激光的光子能量是能够将半导体价带的电子激发到导带的能量;

步骤二,引入斩波器将泵浦光以一定时间间隔切断:将机械斩波器加入到泵浦光的光路当中,斩波器的扇叶将不断的将泵浦光切断,形成固定时间间隔的非连续脉冲激光;

步骤三:引入探测光,产生差分反射信号:用一束具有合适波长λ2的脉冲激光垂直入射至二维半导体材料表面,该波长λ2的脉冲激光的光子能量等于或者接近半导体价带和导带之间的能量差,并满足λ21≥30nm;探测光的反射光在没有泵浦光激发二维半导体材料时的反射信号R0,在有泵浦光激发二维半导体材料时的反射信号R,从而形成差分反射信号ΔR=R-R0

步骤四:改变泵浦光和探测光之间的光程差,得到差分反射信号ΔR/R0与泵浦光、探测光到达二维半导体材料表面时间差ΔT的关系。

进一步地,所述泵浦光和所述探测光为脉宽为10nm左右、持续时间为100飞秒的脉冲激光。

进一步地,所述脉冲激光的激发光源为重复频率80MHz的钛宝石激光器,激光脉冲的波长在室温下在690nm至1080nm的范围之内可调。

进一步地,所述步骤一中,所述泵浦光垂直在入射到二维半导体材料表面之前,需要经过显微物镜汇聚在二维半导体材料表面。

进一步地,所述二维半导体材料是砷化镓、过渡金属硫族化合物、半导体单质或二硒化钼,半导体材料的厚度在纳米量级。

进一步地,所述步骤二中,所述机械斩波器前后放置两个光学透镜,确保:斩波器位于两个透镜的焦点处;两个透镜不改变激光的平行度。

进一步地,所述步骤二中,所述机械斩波器的转动频率被维持在2KHz。

进一步地,所述步骤三中,探测光和泵浦光均为垂直入射至二维半导体材料表面,且入射点重合;为了测量探测光的反射光,需要在光探测器前加入滤波片,过滤泵浦光。

进一步地,所述步骤三中,反射信号R0和R均为对反射的探测光测量的信号,滤去了泵浦光的信号;通过先观察探测光的反射信号来间接地得到二维半导体材料对探测光的吸收变化,差分反射率ΔR/R0和载流子密度N之间的关系:

其中,二维半导体厚度为L,α0是指当材料未被激发时的吸收系数,N为载流子密度,Nsat为吸收系数降到50%时载流子的密度。

进一步地,所述步骤四具体包括:当ΔT=0的时候,泵浦光和探测光同时到达二维半导体材料表面;随着ΔT的增加,探测光比泵浦光“晚到”的时间逐渐增加;泵浦光和探测光到达二维半导体材料表面时间差ΔT通过连续改变泵浦光和探测光达到样品之前的光程差来实现;而差分反射信号ΔR/R0与泵浦光、探测光到达二维半导体材料表面时间差ΔT的关系,反映了价带载流子受到泵浦光激发以后,载流子浓度随着时间的变化。

(三)有益效果

本发明提出一种二维半导体材料中光生载流子的差分反射探测方法,本发明为经过多次实验验证,总结出的一种行之有效的探测方法。适用于二维尺度的半导体材料,利用超快激光飞秒级别的持续时间的特性,实现了半导体光生载流子的瞬态光学探测。该差分反射探测方法具有瞬时响应和飞秒—皮秒级别的时间分辨率。和宏观电学的电流探测手段相比,灵敏度更高,适用于微观探测领域,同时避免了电极材料对测量结果的影响。是微观电荷探测领域重要的研究工具。

附图说明

图1为单分子层厚的二硒化钼光镜图;

图2为只有泵浦光激发单层二硒化钼时,单层二硒化钼中电子的跃迁情况;

图3为泵浦光和探测光同时激发单层二硒化钼时,单层二硒化钼中电子的跃迁情况;

图4为在泵浦光波长为620纳米(10微瓦),探测光波长为790纳米(10微瓦)的条件下,单分子层厚的二硒化钼的差分反射信号(ΔR/R0)。

具体实施方式

为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。

基于上述问题,本发明意在设计一种基于光反射的具有飞秒-纳秒时间分辨率的、及时响应的二维半导体材料中的光生载流子的全光学探测方法:

步骤一,引入泵浦光激发二维半导体材料:用一束具有合适波长λ1(该波长的光子能量是能够将半导体价带的电子激发到导带的能量)的脉宽为10nm左右、持续时间为100飞秒的脉冲激光垂直入射至二维半导体材料表面,二维半导体材料被激发后,位于半导体价带的电子密度将会降低。

步骤二,引入斩波器将泵浦光以一定时间间隔切断:将机械斩波器加入到泵浦光的光路当中,斩波器的扇叶将不断的将泵浦光切断,形成固定时间间隔的非连续脉冲激光,其中,机械斩波器的转动频率被维持在2KHz,用以实现差分反射信号的采集。

步骤三:引入探测光,产生差分反射信号。用一束具有合适波长λ2(该波长的光子能量等于或者接近半导体价带和导带之间的能量差,并满足λ21≥30nm)的脉宽为10nm左右、持续时间为100飞秒的脉冲激光垂直入射至二维半导体材料表面。此时,经二维半导体材料表面反射的探测光,因为有时断时续的泵浦光的存在,探测光的反射光在没有泵浦光激发二维半导体材料时的反射信号R0,在有泵浦光激发二维半导体材料时的反射信号R,从而形成差分反射信号ΔR=R-R0。反射信号R0和R均为对反射的探测光测量的信号,滤去了泵浦光的信号。实际上,由于无法通过直接测量的方式,得到在泵浦光影响下二维半导体材料对探测光的吸收变化,所以可以尝试通过先观察探测光的反射信号来间接地得到二维半导体材料对探测光的吸收变化,差分反射率ΔR/R0和载流子密度N之间的关系:

其中,二维半导体厚度为L,α0是指当材料未被激发时的吸收系数,N为载流子密度,Nsat为吸收系数降到50%时载流子的密度。

步骤四:改变泵浦光和探测光之间的光程差,得到差分反射信号ΔR/R0与泵浦光、探测光到达二维半导体材料表面时间差ΔT的关系。当ΔT=0的时候,泵浦光和探测光达到二维半导体材料表面;随着ΔT的增加,探测光比泵浦光“晚到”的时间逐渐增加。泵浦光和探测光到达二维半导体材料表面时间差ΔT可以通过连续改变泵浦光和探测光达到样品之前的光程差来实现。而差分反射信号ΔR/R0与泵浦光、探测光到达二维半导体材料表面时间差ΔT的关系,反映了价带载流子受到泵浦光激发以后,载流子浓度随着时间的变化。

所述步骤一中,1)使用的激发光源为重复频率80MHz的钛宝石激光器。激光脉冲的波长在室温下可调,在690nm至1080nm的范围之内;2)泵浦光垂直入射到二维半导体材料表面;3)泵浦光垂直在入射到二维半导体材料表面之前,需要经过显微物镜汇聚在二维半导体材料表面。

所述步骤二中,机械斩波器被放置于泵浦光的光路当中,同时需要在斩波器前后放置两个光学透镜,确保:①斩波器位于两个透镜的焦点处。②两个透镜不改变激光的平行度。

所述步骤三中1)探测光和泵浦光的重复频率和脉冲持续时间一致;2)探测光和泵浦光均为垂直入射至二维半导体材料表面,且入射点重合;3)为了测量探测光的反射光,需要在光探测器前加入滤波片,过滤泵浦光。

所述步骤四中1)连续的改变泵浦光和探测光到达样品的时间差是差分反射探测方法的关键。这里可以通过增加或者减少探测光(泵浦光)到达样品前的光程,实现探测光和泵浦光到达样品的时间差ΔT的改变。

本发明为经过多次实验验证,总结出的一种行之有效的探测方法。适用于二维尺度的半导体材料,利用超快激光飞秒级别的持续时间的特性,实现了半导体光生载流子的瞬态光学探测。该差分反射探测方法具有瞬时响应和飞秒—皮秒级别的时间分辨率。和宏观电学的电流探测手段相比,灵敏度更高,适用于微观探测领域,同时避免了电极材料对测量结果的影响。是微观电荷探测领域重要的研究工具。

以下实例进一步说明本发明,但并不作为对本发明的限定。

实施实例一

步骤一,首先将单分子层厚的二硒化钼转移到二氧化硅基底之上(如图一所示),引入620纳米的泵浦光并通过显微物镜汇聚在单分子层厚的二硒化钼表面上,此时脉宽为10nm左右、持续时间为100飞秒的脉冲激光将激发二硒化钼价带的部分电子,使其跃迁至导带,从而降低二硒化钼价带的电子密度,如图二所示。

步骤二,将机械斩波器加入到620纳米波长的泵浦光的路径当中,斩波器的扇叶将不断的将泵浦光切断,形成固定时间间隔的非连续脉冲激光,其中,机械斩波器的转动频率被维持在2KHz,用以实现差分反射信号的采集。

步骤三:引入790纳米波长的探测光,其同样为脉宽为10nm左右、持续时间为100飞秒,并将探测光通过相同的显微物镜垂直入射至单分子层厚的二硒化钼表面。在探测光和泵浦光共同激发的条件下,二硒化钼价带的电子跃迁情况如图三所示。此时,单分子层厚的二硒化钼,在探测光和泵浦光同时激发下,将形成探测光的反射信号R,在只有探测光激发的条件下,将形成探测光的反射信号R0,从而形成差分反射信号ΔR=R-R0

步骤四:为了得到随着泵浦光和探测光到达二维半导体材料表面时间差ΔT的增加,差分反射信号ΔR/R0的变化情况,连续改变790纳米探测光的光程。对反射的探测光测量结果如图4所示,ΔT=0时,信号最强,说明探测光和泵浦光同时到达二维半导体材料表面,随着泵浦光的离开,原来被泵浦光激发跃迁至导带的电子复合以后回到价带,从而有了反射信号ΔR/R0逐渐降低的过程。如图4所示,时间差ΔT为皮秒级别。

本发明的关键点在于:

本发明属于超快激光泵浦探测领域,具体涉及一种二维半导体材料中光生载流子的差分反射探测方法,利用二维半导体材料价带电子吸收光子并发生跃迁至导带的原理,在超快激光的激发下,通过测量二维半导体材料的反射光的方式,得到了微观电子的动力学过程。所述超快激光为脉冲持续时间在100飞秒左右、重复频率为80MHz、带宽为10纳米左右的相干光源,保证了光学测量的时间分辨率。

进一步地,1)测量光源为高频的超快脉冲激光,具有很强的激发能力;2)测试的二维半导体材料,可以是常见的半导体材料如砷化镓,也可以是过渡金属硫族化合物以及半导体单质,如硅、锗等;3)半导体材料的厚度在纳米量级,从而可以形成明显的直接或者间接光学带隙;4)测量的光信号为:探测光经过的样品吸收后反射的光信号。

进一步地,将二维半导体材料价带电子吸收光子并发生跃迁至导带的现象,应用到了二维半导体材料的电子动力学过程探测。

进一步地,泵浦光的入射会使探测光原有的反射信号发生改变,并随着泵浦光的离开,探测光反射信号的改变量随着时间变小,且探测光反射信号的改变量与泵浦光的功率正相关。

进一步地,利用二维半导体材料与光的相互作用,保证了样品本身的物理特性不会因为与电极接触发生改变,具有极强的适用性。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:二维半导体材料中光生载流子的差分反射探测系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!