一种压电陶瓷材料及高机电转换效率的换能器

文档序号:1899976 发布日期:2021-11-30 浏览:19次 >En<

阅读说明:本技术 一种压电陶瓷材料及高机电转换效率的换能器 (Piezoceramic material and transducer with high electromechanical conversion efficiency ) 是由 曹志强 于 2021-09-06 设计创作,主要内容包括:本发明涉及电子陶瓷材料领域,具体为一种压电陶瓷材料及高机电转换效率的换能器,由以下化学结构式表示:Pb-(x)Ba-(1-x)(Zr-(0.52)Ti-(0.48))-(y)(Zn-(0.5)Nb-(0.5))-(1-y)O-(3)-awt%Fe-(2)O-(3)-bwt%SnO-(2)-cwt%LiFx、y表示摩尔比;a、b、c分别表示Fe-(2)O-(3)、SnO-(2)、LiF占Pb-(x)Ba-(1-x)(Zr-(0.52)Ti-(0.48))-(y)(Zn-(0.5)Nb-(0.5))-(1-y)O-(3)的质量百分数;x为0.85-0.99,y为0.85-0.99;a为4-8,b为0.4-1,c为0.01-0.05,本发明所制备的压电陶瓷材料具有优越的压电性能,作为换能器的重要组件使用,具有良好的应用前景。(The invention relates to the field of electronic ceramic materials, in particular to a piezoelectric ceramic material and a transducer with high electromechanical conversion efficiency, which are represented by the following chemical structural formula: pb x Ba 1‑x (Zr 0.52 Ti 0.48 ) y (Zn 0.5 Nb 0.5 ) 1‑y O 3 ‑awt%Fe 2 O 3 ‑bwt%SnO 2 -cft% LiFx, y representing the molar ratio; a. b and c each represent Fe 2 O 3 、SnO 2 LiF in Pb x Ba 1‑x (Zr 0.52 Ti 0.48 ) y (Zn 0.5 Nb 0.5 ) 1‑y O 3 The mass percentage of (A); x is 0.85-0.99, y0.85-0.99; the a is 4-8, the b is 0.4-1, and the c is 0.01-0.05, the piezoelectric ceramic material prepared by the invention has excellent piezoelectric performance, can be used as an important component of a transducer, and has good application prospect.)

一种压电陶瓷材料及高机电转换效率的换能器

技术领域

本发明涉及电子陶瓷材料领域,具体涉及一种压电陶瓷材料及高机电转换效率的换能器。

背景技术

换能器的结构包括位于中央的压电陶瓷元件、前后金属盖板、预应力螺杆、电极片以及绝缘管。其在负荷变化时能产生稳定的超声波,是获得高功率超声波驱动源的最基本最主要的方法,在工业、农业、交通运输、生活、医疗及军事等领域有广泛应用前景,换能器结构中的压电陶瓷元件对其性能有着决定性的影响。

一般来说,机电耦合系数反映了压电陶瓷材料的机械能与电能之间的转换效率。这是一个非常重要的指标。它不仅与压电陶瓷材料的弹性,介电性能和压电性能密切相关,而且与不同的振动模式也有密切关系,为了提高超声波换能器的机电转换效率,减少信号处理期间的能量损,就需要提升压电陶瓷材料的压电性能尤其是要提高机电耦合系数。

发明内容

发明目的:针对上述技术发展需求,本发明提供了一种压电陶瓷材料及高机电转换效率的换能器。

所采用的技术方案如下:

一种压电陶瓷材料,由以下化学结构式表示:

PbxBa1-x(Zr0.52Ti0.48)y(Zn0.5Nb0.5)1-yO3-awt%Fe2O3-bwt%SnO2-cwt%LiF

x、y表示摩尔比;

a、b、c分别表示Fe2O3、SnO2、LiF占PbxBa1-x(Zr0.52Ti0.48)y(Zn0.5Nb0.5)1-yO3的质量百分数;

x为0.85-0.99,y为0.85-0.99;

a为4-8,b为0.4-1,c为0.01-0.05。

进一步地,x为0.90-0.98,y为0.90-0.98。

更进一步地,x为0.95,y为0.98。

进一步地,a为5-6,b为0.5-0.8,c为0.02-0.04。

更进一步地,a为5,b为0.8,c为0.04。

其制备方法如下:

按照化学结构式称取原料后,将Pb3O4、BaCO3、ZrO2、TiO2、ZnO、Nb2O5混合一次球磨10-20h,升温至750-800℃一次预烧2-4h,再与Fe2O3、SnO2、LiF混合二次球磨10-20h,再升温至850-900℃二次预烧2-4h,所得粉体与乙醇、三油酸甘油酯混合后三次球磨10-20h,再与聚乙烯醇溶液、增塑剂、消泡剂混合配制成浆料,浆料经真空除泡后流延成型得到膜片,将膜片切割后叠加,热压成坯,所得坯体一段升温至500-550℃保温1-2h,再二段升温至800-900℃保温1-2h,最后三段升温至1200-1300℃保温2-4h,炉冷至室温即可。

发明人经过测试,对于换能器而言,如果所使用的压电陶瓷元件为一整块则微量压缩时形变量大,不利于超声波的稳定产生,传统固相烧结的压电陶瓷不同批次甚至是同一批次的质地一致性差,不利于多块复合,而流延法制备出的压电陶瓷质地更均匀,具有更高的力学性能,而且压电陶瓷膜片叠加后再热压获得的坯体性能稳定性高,具有更高的可重复性。

进一步地,所述增塑剂为聚乙二醇、邻苯二甲酸二丁酯的组合物。

不含增塑剂的浆料所成型的膜片十分脆,不便于叠加后热压成坯,因此需引入增塑剂,聚乙二醇和邻苯二甲酸二丁酯组成的增塑剂加入后,分子中的羟基和高分子链中的氧原子之间形成氢键,起到了高分子间的桥梁作用,而且因为邻苯二甲酸二丁酯的分子链段比较柔软,可使坯片中的网络结构变得柔软,提升了坯片的柔韧性,也改善了热压成坯的成品率。

聚乙二醇、邻苯二甲酸二丁酯的质量比优选为1-5:1-5,进一步优选为1-2:1-2,更进一步优选为1:1。

进一步地,所述消泡剂为乙醚、甲醇、正丁醇、异丙醇、异戊醇中的任意一种与磷酸三丁酯的组合物。

在流延成型制膜时,如果产生泡沫会导致膜片内部产生空隙和气泡,既影响压电陶瓷的力学性能也降低了其力学性能,尤其是在换能器工作时,高频振动有可能会导致压电陶瓷元件的损坏,消泡剂加入能够降低表面张力,促使泡沫的破裂,本发明采用组合型的消泡剂,优选为异丙醇或异戊醇和磷酸三丁酯的组合物,两者质量比优选为1-5:1-5,进一步优选为1-2:1-2,更进一步优选为2:1。

进一步地,热压成坯时的温度为350-400℃,压力为40-50MPa。

本发明还提供了一种结构中含有上述压电陶瓷材料的高机电转换效率的换能器。

本发明的有益效果:

本发明提供了一种压电陶瓷材料,PZT压电陶瓷是换能器常用的压电陶瓷材料,为了提升换能器的性能,发明人对PZT压电陶瓷A位和B位元素进行掺杂改性,Ba的引入部分取代了A位的Pb,产生了A空位,Zn和Nb的引入部分取代了B位的Zr和Ti,产生了B空位,Ba、Zn、Nb的取代使PZT压电陶瓷中出现阳离子空位,电畴运动变得更容易,在电场或应力作用下,材料性质变“软”,沿着电场方向取向的畴的数目增加,从而增加了剩余极化强度,压电效应增强,Fe2O3掺杂后Fe3+能进入压电陶瓷的晶格,促使晶粒长大,而且能促进晶粒结合,提升晶界强度,这在文献:毛洁冰,周静,郑惠清,孙华君,陈文.氧化铁掺杂对PMnS-PZN-PZT压电陶瓷性能的影响[J].人工晶体学报,2010,(第1期)中有所记载,SnO2的加入可以抑制Fe3+离子变价(Fe3+→Fe2+),Li能进入晶格产生氧空位促进传质,与Pb形成Li2PbO液相促进烧结,同时Li作为硬掺杂元素,加入后使压电陶瓷材料同时具有“软”掺杂和“硬”掺杂的效果,可以提升机械品质系数和老化速率降低,机电耦合系数和温度稳定性也得到提高,高机电耦合系数能使换能器的机电转换效率也随之增高;

另外,发明人经过测试,对于换能器而言,如果所使用的压电陶瓷元件为一整块则微量压缩时形变量大,不利于超声波的稳定产生,传统固相烧结的压电陶瓷不同批次甚至是同一批次的质地一致性差,不利于多块复合,而流延法制备出的压电陶瓷质地更均匀,具有更高的力学性能,而且压电陶瓷膜片叠加后再热压获得的坯体性能稳定性高,具有更高的可重复性,经测试,本发明所制备的压电陶瓷材料具有优越的压电性能,经过测试,机电耦合系数kp≥0.86,介电损耗≤0.20×10-2,压电应变常数d33≥638,机械品质因数Qm≥749,作为换能器的重要组件使用,具有良好的应用前景。

具体实施方式

实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

实施例1:

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.8wt%SnO2-0.04wt%LiF

制备方法如下:

按照化学结构式称取原料,将Pb3O4、BaCO3、ZrO2、TiO2、ZnO、Nb2O5混合以乙醇为分散介质一次球磨20h,以5℃/min的速度升温至750℃一次预烧2h,再与Fe2O3、SnO2、LiF混合以乙醇为分散介质二次球磨20h,再以5℃/min的速度升温至900℃二次预烧2h,所得粉体与乙醇、三油酸甘油酯混合后三次球磨10h,再与5wt%聚乙烯醇溶液、聚乙二醇与邻苯二甲酸二丁酯按质量比1:1组成的增塑剂、异丙醇和磷酸三丁酯按质量比2:1组成的消泡剂混合配制成浆料,乙醇、三油酸甘油酯、聚乙烯醇溶液、增塑剂、消泡剂用量分别为粉体质量的350%、1%、0.5%和0.1%,浆料经真空除泡后流延成型得到膜片,刮刀高度为250μm,流延速度为0.3m/min,将膜片切割成Φ50mm×5mm再叠加4层,热压成坯,热压成坯时的温度为380℃,压力为45MPa,所得坯体以5℃/min的速度一段升温至550℃保温1-2h,再以5℃/min的速度二段升温至800℃保温1h,最后2℃/min的速度三段升温至1300℃保温2h,炉冷至室温即可。

实施例2:

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.8wt%SnO2-0.04wt%LiF

制备方法如下:

按照化学结构式称取原料,将Pb3O4、BaCO3、ZrO2、TiO2、ZnO、Nb2O5混合以乙醇为分散介质一次球磨15h,以5℃/min的速度升温至800℃一次预烧2h,再与Fe2O3、SnO2、LiF混合以乙醇为分散介质二次球磨15h,再以5℃/min的速度升温至850℃二次预烧2h,所得粉体与乙醇、三油酸甘油酯混合后三次球磨10h,再与5wt%聚乙烯醇溶液、聚乙二醇与邻苯二甲酸二丁酯按质量比1:1组成的增塑剂、异丙醇和磷酸三丁酯按质量比2:1组成的消泡剂混合配制成浆料,乙醇、三油酸甘油酯、聚乙烯醇溶液、增塑剂、消泡剂用量分别为粉体质量的350%、1%、0.5%和0.1%,浆料经真空除泡后流延成型得到膜片,刮刀高度为250μm,流延速度为0.3m/min,将膜片切割成Φ50mm×5mm再叠加4层,热压成坯,热压成坯时的温度为400℃,压力为45MPa,所得坯体以10℃/min的速度一段升温至550℃保温2h,再10℃/min的速度二段升温至850℃保温1h,最后2℃/min的速度三段升温至1280℃保温2h,炉冷至室温即可。

实施例3:

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.8wt%SnO2-0.04wt%LiF

制备方法如下:

按照化学结构式称取原料,将Pb3O4、BaCO3、ZrO2、TiO2、ZnO、Nb2O5混合以乙醇为分散介质一次球磨10h,以5℃/min的速度升温至750℃一次预烧2h,再与Fe2O3、SnO2、LiF混合以乙醇为分散介质二次球磨10h,再以5℃/min的速度升温至850℃二次预烧2h,所得粉体与乙醇、三油酸甘油酯混合后三次球磨10h,再与5wt%聚乙烯醇溶液、聚乙二醇与邻苯二甲酸二丁酯按质量比1:1组成的增塑剂、异丙醇和磷酸三丁酯按质量比2:1组成的消泡剂混合配制成浆料,乙醇、三油酸甘油酯、聚乙烯醇溶液、增塑剂、消泡剂用量分别为粉体质量的350%、1%、0.5%和0.1%,浆料经真空除泡后流延成型得到膜片,刮刀高度为250μm,流延速度为0.3m/min,将膜片切割成Φ50mm×5mm再叠加4层,热压成坯,热压成坯时的温度为350℃,压力为40MPa,所得坯体以5℃/min的速度一段升温至500℃保温1h,再5℃/min的速度二段升温至800℃保温1h,最后1℃/min的速度三段升温至1200℃保温2h,炉冷至室温即可。

实施例4:

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.8wt%SnO2-0.04wt%LiF

制备方法如下:

按照化学结构式称取原料,将Pb3O4、BaCO3、ZrO2、TiO2、ZnO、Nb2O5混合以乙醇为分散介质一次球磨20h,以10℃/min的速度升温至800℃一次预烧4h,再与Fe2O3、SnO2、LiF混合以乙醇为分散介质二次球磨20h,再以10℃/min的速度升温至900℃二次预烧4h,所得粉体与乙醇、三油酸甘油酯混合后三次球磨20h,再与5wt%聚乙烯醇溶液、聚乙二醇与邻苯二甲酸二丁酯按质量比1:1组成的增塑剂、异丙醇和磷酸三丁酯按质量比2:1组成的消泡剂混合配制成浆料,乙醇、三油酸甘油酯、聚乙烯醇溶液、增塑剂、消泡剂用量分别为粉体质量的350%、1%、0.5%和0.1%,浆料经真空除泡后流延成型得到膜片,刮刀高度为250μm,流延速度为0.3m/min,将膜片切割成Φ50mm×5mm再叠加4层,热压成坯,热压成坯时的温度为400℃,压力为50MPa,所得坯体以10℃/min的速度一段升温至550℃保温2h,再10℃/min的速度二段升温至900℃保温2h,最后2℃/min的速度三段升温至1300℃保温4h,炉冷至室温即可。

实施例5:

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.8wt%SnO2-0.04wt%LiF

制备方法如下:

按照化学结构式称取原料,将Pb3O4、BaCO3、ZrO2、TiO2、ZnO、Nb2O5混合以乙醇为分散介质一次球磨10h,以10℃/min的速度升温至750℃一次预烧4h,再与Fe2O3、SnO2、LiF混合以乙醇为分散介质二次球磨10h,再以10℃/min的速度升温至850℃二次预烧4h,所得粉体与乙醇、三油酸甘油酯混合后三次球磨10h,再与5wt%聚乙烯醇溶液、聚乙二醇与邻苯二甲酸二丁酯按质量比1:1组成的增塑剂、异丙醇和磷酸三丁酯按质量比2:1组成的消泡剂混合配制成浆料,乙醇、三油酸甘油酯、聚乙烯醇溶液、增塑剂、消泡剂用量分别为粉体质量的350%、1%、0.5%和0.1%,浆料经真空除泡后流延成型得到膜片,刮刀高度为250μm,流延速度为0.3m/min,将膜片切割成Φ50mm×5mm再叠加4层,热压成坯,热压成坯时的温度为400℃,压力为40MPa,所得坯体以10℃/min的速度一段升温至500℃保温2h,再5℃/min的速度二段升温至900℃保温1h,最后2℃/min的速度三段升温至1200℃保温4h,炉冷至室温即可。

实施例6:

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.8wt%SnO2-0.04wt%LiF

制备方法如下:

按照化学结构式称取原料,将Pb3O4、BaCO3、ZrO2、TiO2、ZnO、Nb2O5混合以乙醇为分散介质一次球磨20h,以5℃/min的速度升温至800℃一次预烧2h,再与Fe2O3、SnO2、LiF混合以乙醇为分散介质二次球磨20h,再以5℃/min的速度升温至900℃二次预烧2h,所得粉体与乙醇、三油酸甘油酯混合后三次球磨15h,再与5wt%聚乙烯醇溶液、聚乙二醇与邻苯二甲酸二丁酯按质量比1:1组成的增塑剂、异丙醇和磷酸三丁酯按质量比2:1组成的消泡剂混合配制成浆料,乙醇、三油酸甘油酯、聚乙烯醇溶液、增塑剂、消泡剂用量分别为粉体质量的350%、1%、0.5%和0.1%,浆料经真空除泡后流延成型得到膜片,刮刀高度为250μm,流延速度为0.3m/min,将膜片切割成Φ50mm×5mm再叠加4层,热压成坯,热压成坯时的温度为400℃,压力为40MPa,所得坯体以10℃/min的速度一段升温至500℃保温2h,再5℃/min的速度二段升温至900℃保温1h,最后2℃/min的速度三段升温至1200℃保温3h,炉冷至室温即可。

对比例1:

对比例1与实施例1基本相同,区别在于,不含Fe2O3

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-0.8wt%SnO2-0.04wt%LiF

对比例2:

对比例2与实施例1基本相同,区别在于,不含SnO2

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.04wt%LiF

对比例3:

对比例3与实施例1基本相同,区别在于,不含LiF。

一种压电陶瓷材料,由以下化学结构式表示:

Pb0.95Ba0.05(Zr0.52Ti0.48)0.98(Zn0.5Nb0.5)0.02O3-5wt%Fe2O3-0.8wt%SnO2

性能测试:

①将本发明实施例1-6及对比例1-3所制备的压电陶瓷材料打磨、被银后施加2kV/mm的电场,浸入100℃硅油中极化10min,取出放置24h后作为试样测量其压电性能。

采用ZJ-3AN型准静态d33测试仪测量试样的d33;采用TH2618B型电容测试仪测试试样的电容和介电损耗tanδ;采用精密阻抗分析仪(Agilent HP4294A)分析试样的机电耦合系数kp及机械品质因数Qm,其中,压电应变常数d33越大表示压电性能越高,机械品质因数Qm越大表示压电陶瓷在共振振动时的损失越小,机电耦合系数kp表示压电振子在振动过程中,将机械能转变为电能,或将电能转变为机械能的能效比例,测试结果如下表1所示:

表1:

由上表1可知,本发明所制备的压电陶瓷材料具有优越的压电性能,经过测试,机电耦合系数kp≥0.86,介电损耗≤0.20×10-2,压电应变常数d33≥638,机械品质因数Qm≥749,作为换能器的重要组件使用,具有良好的应用前景。

以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于热障涂层的球形粉体及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!