一种多功能隐身材料及其制备方法

文档序号:1901213 发布日期:2021-11-30 浏览:19次 >En<

阅读说明:本技术 一种多功能隐身材料及其制备方法 (Multifunctional stealth material and preparation method thereof ) 是由 叶伟 张杏 孙启龙 龙啸云 高强 季涛 于 2021-08-26 设计创作,主要内容包括:本发明提供一种多功能隐身材料的制备方法,步骤包括:S1.以DMF为溶剂,配备PVDF溶液并等分为A、B、C三份,其中溶液C额外加入TPU;S2.将纳米四氧化三铁改性后加入至溶液A中;S3.将纳米级氧化石墨烯分散后与溶液B混合;S4.将纳米掺锡氧化铟改性后加入至溶液C中;S5.将溶液C通过静电纺丝工艺进行纺丝,即远红外隐身层;S6.将溶液A通过静电纺丝工艺进行纺丝,即第一电磁波隐身层;S7.将溶液B通过静电纺丝工艺进行纺丝,即第二电磁波隐身层;S8.将颜料喷涂在第二电磁波隐身层上,即可见光隐身层。本发明还公开了上述制备方法制备得到的产品。本发明提供的隐身材料对电磁波、远红外和可见光均具有隐身功能,表现出了良好的隐身效果。(The invention provides a preparation method of a multifunctional stealth material, which comprises the following steps: s1, taking DMF as a solvent, preparing a PVDF solution, equally dividing into A, B, C parts, wherein the solution C is additionally added with TPU; s2, adding modified nano ferroferric oxide into the solution A; s3, dispersing the nano-scale graphene oxide and mixing with the solution B; s4, adding the modified nano tin-doped indium oxide into the solution C; s5, spinning the solution C through an electrostatic spinning process to obtain a far infrared stealth layer; s6, spinning the solution A through an electrostatic spinning process to obtain a first electromagnetic wave stealth layer; s7, spinning the solution B through an electrostatic spinning process to obtain a second electromagnetic wave stealth layer; s8, spraying the pigment on the second electromagnetic wave stealth layer to obtain the visible light stealth layer. The invention also discloses a product prepared by the preparation method. The stealth material provided by the invention has stealth functions on electromagnetic waves, far infrared rays and visible light, and shows a good stealth effect.)

一种多功能隐身材料及其制备方法

技术领域

本发明属于隐身材料技术领域,具体涉及一种多功能隐身材料及其制备方法。

背景技术

隐身材料作为隐身技术的重要组成部分,在装备外形不能改变的前提下,它是实现隐身技术的物质基础。目前探测往往是结合可见光、红外和雷达等综合技术,而目前具有可见光、红外、雷达隐身的多功能隐身材料有所欠缺,因此开发多功能隐身材料具有广阔的市场前景。

多功能的隐身需要综合可见光波段的颜色迷彩、远红外的低发射率还有针对雷达的高吸收,实质上是材料的选择性反射、吸收、辐射等,纳米纤维材料、纳米四氧化三铁等粉体材料以及多层功能结构等是实现多功能隐身的重要手段。

现有技术大多具有可见光、远红外、雷达中的一种或两种隐身,缺少能够在三种条件下均具有隐身效果的材料。此外,现有多功能隐身材料具有厚重、硬质的缺点,适用不便。

目前已有研究人员通过纳米膜系结构实现可见光隐身和红外隐身的兼容(CN110703369B),但雷达隐身并没有被涵盖,同时制备方式也有很大的区别,本专利是利用静电纺丝技术制备出柔性的纤维膜。多层结构方面,有研究人员提出了多功能隐身材料(CN110356054A和CN203876323U),但是产品缺少可见光隐身,此外通过涂覆的方式进行功能粉体的负载,导致面料笨重,同时粉体易于团聚。此外专利一种红外-可见光兼容隐身复合纤维膜及其制备方法“CN104018295B”公开了SiO2@Bi2O3复合纤维膜的制备,虽然兼具了红外和雷达隐身,但是缺乏可见光隐身的功能,同时因为是高温烧结处理得到的纤维膜,造成了柔韧性和强力不足的缺点。CN101871136A公开了一种红外隐身纤维及其制备方法,该发明将低红外发射率粉体与高分子基体材料熔融共混纺丝后制得纤维。通过共混熔融纺丝,把低红外发射率的粉体引入到高分子基体材料中,这种方法能解决涂层厚、密度大、与织物结合牢度不好等缺点,但是缺乏雷达和可见光隐身,另外本专利的纳米纤维可以发挥更大的功效。

发明内容

为解决现有技术中缺少能够同时在可见光、远红外和雷达隐身的材料问题,本发明提供一种多功能隐身材料及其制备方法。

本发明采用如下技术方案:

一种多功能隐身材料的制备方法,包括以下步骤:

S1.以DMF为溶剂,配备浓度为15-20wt%的PVDF溶液,并将所得溶液等分为A、B、C三份,其中溶液C额外加入30wt%的TPU;

S2.将纳米四氧化三铁、球、乙醇、羟基纤维素按照质量3-4:1:1:0.05的比例球磨,球磨结束后取出干燥,得到改性四氧化三铁粉体,并加入至溶液A中,超声波分散30-60min,其中改性四氧化三铁的添加量是5-10%;

S3.将纳米级氧化石墨烯分散到DMF中,制得2-5wt%的石墨烯分散液,将所述石墨烯分散液按照体积比为1:1与溶液B混合后,超声波分散30-60min;

S4.将纳米掺锡氧化铟、球、乙醇、羟基纤维素按照质量3-4:1:1:0.05的比例球磨,球磨结束后取出干燥,得到改性纳米掺锡氧化铟粉体,并加入至溶液C中,超声波分散30-60min,其中改性纳米掺锡氧化铟粉体的添加量是5-10%;

S5.将溶液C通过静电纺丝工艺进行纺丝,烘干后得到面密度为40-60g/㎡的纤维层,即远红外隐身层;

S6.以步骤S5得到的纤维层为基层,将溶液A通过静电纺丝工艺进行纺丝,烘干后得到面密度为20-50g/m2纤维层,即第一电磁波隐身层;

S7.以步骤S6得到的纤维层为基层,将溶液B通过静电纺丝工艺进行纺丝,烘干后得到面密度为20-50g/m2纤维层,即第二电磁波隐身层;

S8.将颜料添加至水性聚氨酯中搅拌,分散均匀后,喷涂在第二电磁波隐身层上,干燥后即为可见光隐身层。

进一步地,步骤S2或步骤S4所述球磨时间为12小时。

进一步地,步骤S2或步骤S4通过高压喷洒的方式将改性四氧化三铁粉体或改性纳米掺锡氧化铟粉体加入至溶液A或溶液C中,其中高压喷洒时的压力为0.4MPa。

进一步地,所述静电纺丝工艺使用多喷头静电纺丝工艺。

进一步地,重复步骤S5-S7,制备具有多层数的多功能隐身材料。

一种所述制备方法制备的多功能隐身材料,该材料由下至上包括远红外隐身层、电磁波第一隐身层、电磁波第二隐身层和可见光隐身层。

与现有技术相比,本发明具有以下有益效果:

(1)现有技术中少见同时对电磁波、远红外和可见光均具有隐身功能的隐身材料,本发明提供的隐身材料同时具有三种场景的隐身功能,通过使用不同的颜料,使具有深绿色或土黄色的迷彩伪装效果,并且在红外发射率测试中最低达到0.41,在电磁波反射损耗测试中<-10dB波段为6-9GHz,在三种场景中均表现出了良好的隐身效果;

(2)传统的兼具电磁波、红外、可见光等综合性伪装性能的材料往往重量很重,并且都是硬质的复合板材,而本发明通过粉体的分散技术及结合静电纺丝的方式制备出的材料兼具柔性和轻质的特点;

(3)四氧化三铁和掺锡氧化铟粉体的分散性能,本发明利用球磨技术进行再次加工细化,同时加入羟基纤维素进行表面改性,在球磨过程中可以负载在颗粒物的表面,因为羟基纤维素是一种有效的分散剂,提高在粉体在溶液中的分散性能。

附图说明

图1是隐身材料的结构示意图;

图2是制得隐身材料的截面SEM图。

具体实施方式

以下结合实施例对本发明作进一步的描述,实施例仅用于对本发明进行说明,并不构成对权利要求范围的限制,本领域技术人员可以想到的其他替代手段,均在本发明权利要求范围内。

本发明提供的一种多功能隐身材料,如图1所示,该材料由下至上包括远红外隐身层、电磁波第一隐身层、电磁波第二隐身层和可见光隐身层;所述远红外隐身层的主要成分是掺锡氧化铟,所述电磁波第一隐身层的主要成分是四氧化三铁,所述电磁波第二隐身层的主要成分是氧化石墨烯。

实施例1

一种多功能隐身材料的制备方法,包括以下步骤:

S1.以DMF为溶剂,配备浓度为20wt%的PVDF溶液,并将所得溶液等分为A、B、C三份,其中溶液C额外加入30wt%的TPU;

S2.将纳米四氧化三铁、球、乙醇、羟基纤维素按照质量3:1:1:0.05的比例球磨12小时,球磨结束后取出干燥,得到改性四氧化三铁粉体,通过高压喷洒的方式将改性四氧化三铁粉体加入至溶液A中,超声波分散60min,其中改性四氧化三铁的添加量是10%,高压喷洒压力为0.4MPa;

S3.将纳米级氧化石墨烯分散到DMF中,制得5wt%的石墨烯分散液,将所述石墨烯分散液按照体积比为1:1与溶液B混合后,超声波分散60min;

S4.将纳米掺锡氧化铟、球、乙醇、羟基纤维素按照质量3:1:1:0.05的比例球磨12小时,球磨结束后取出干燥,得到改性纳米掺锡氧化铟粉体,通过高压喷洒的方式将改性纳米掺锡氧化铟粉体加入至溶液C中,超声波分散60min,其中改性纳米掺锡氧化铟粉体的添加量是10%,高压喷洒压力为0.4MPa;

S5.将溶液C通过静电纺丝工艺进行纺丝,烘干后得到面密度为60g/㎡的纤维层,即远红外隐身层;

S6.以步骤S5得到的纤维层为基层,将溶液A通过静电纺丝工艺进行纺丝,烘干后得到面密度为50g/m2纤维层,即第一电磁波隐身层;

S7.以步骤S6得到的纤维层为基层,将溶液B通过静电纺丝工艺进行纺丝,烘干后得到面密度为50g/m2纤维层,即第二电磁波隐身层;

S8.将深绿颜料添加至水性聚氨酯中搅拌,分散均匀后,喷涂在第二电磁波隐身层上,干燥后即为可见光隐身层。

上述制备方法所制备的纳米纤维多层结构膜隐身材料,最外层通过与环境匹配的深绿色调整达到可见光隐身,中间层的电磁波吸收材料达到雷达隐身,最里层的低发射率材料添加达到红外隐身,并且这几种筛选的材料相互间的光谱互不干扰,能达到最佳的隐身效果。采用红外发射率测试标准:GB30127-2013;电磁波反射损耗测试标准:GJB 2038A-2011进行测试,性能如表1所示,材料表面具有丛林的迷彩伪装性能;红外发射率达到0.45,低红外发射率可以降低被红外探测到的可能性;在8-18GHz时,材料的电磁波损耗<-10dB波段为8GHz,材料的电磁波隐身性能优异。

表1材料的各项性能

实施例2

一种多功能隐身材料的制备方法,包括以下步骤:

S1.以DMF为溶剂,配备浓度为20wt%的PVDF溶液,并将所得溶液等分为A、B、C三份,其中溶液C额外加入30wt%的TPU;

S2.将纳米四氧化三铁、球、乙醇、羟基纤维素按照质量4:1:1:0.05的比例球磨12小时,球磨结束后取出干燥,得到改性四氧化三铁粉体,通过高压喷洒的方式将改性四氧化三铁粉体加入至溶液A中,超声波分散30min,其中改性四氧化三铁的添加量是5%,高压喷洒压力为0.4MPa;

S3.将纳米级氧化石墨烯分散到DMF中,制得2wt%的石墨烯分散液,将所述石墨烯分散液按照体积比为1:1与溶液B混合后,超声波分散30min;

S4.将纳米掺锡氧化铟、球、乙醇、羟基纤维素按照质量4:1:1:0.05的比例球磨12小时,球磨结束后取出干燥,得到改性纳米掺锡氧化铟粉体,通过高压喷洒的方式将改性纳米掺锡氧化铟粉体加入至溶液C中,超声波分散30min,其中改性纳米掺锡氧化铟粉体的添加量是5%,高压喷洒压力为0.4MPa;

S5.将溶液C通过静电纺丝工艺进行纺丝,烘干后得到面密度为40g/㎡的纤维层,即远红外隐身层;

S6.以步骤S5得到的纤维层为基层,将溶液A通过静电纺丝工艺进行纺丝,烘干后得到面密度为30g/m2纤维层,即第一电磁波隐身层;

S7.以步骤S6得到的纤维层为基层,将溶液B通过静电纺丝工艺进行纺丝,烘干后得到面密度为30g/m2纤维层,即第二电磁波隐身层;

S8.将深绿颜料添加至水性聚氨酯中搅拌,分散均匀后,喷涂在第二电磁波隐身层上,干燥后即为可见光隐身层。

上述制备方法所制备的纳米纤维多层结构膜隐身材料,最外层通过与环境匹配的深绿色调整达到可见光隐身,中间层的电磁波吸收材料达到雷达隐身,最里层的低发射率材料添加达到红外隐身,并且这几种筛选的材料相互间的光谱互不干扰,能达到最佳的隐身效果。采用红外发射率测试标准:GB30127-2013;电磁波反射损耗测试标准:GJB 2038A-2011进行测试,性能如表2所示,材料表面具有丛林的迷彩伪装性能;红外发射率达到0.47,低红外发射率可以降低被红外探测到的可能性;在8-18GHz时,材料的电磁波损耗<-10dB波段为6GHz,材料的电磁波具有良好的隐身性能。

表2 材料的各项性能

实施例3

一种多功能隐身材料的制备方法,包括以下步骤:

S1.以DMF为溶剂,配备浓度为20wt%的PVDF溶液,并将所得溶液等分为A、B、C三份,其中溶液C额外加入30wt%的TPU;

S2.将纳米四氧化三铁、球、乙醇、羟基纤维素按照质量3:1:1:0.05的比例球磨12小时,球磨结束后取出干燥,得到改性四氧化三铁粉体,通过高压喷洒的方式将改性四氧化三铁粉体加入至溶液A中,超声波分散60min,其中改性四氧化三铁的添加量是10%,高压喷洒压力为0.4MPa;

S3.将纳米级氧化石墨烯分散到DMF中,制得4wt%的石墨烯分散液,将所述石墨烯分散液按照体积比为1:1与溶液B混合后,超声波分散60min;

S4.将纳米掺锡氧化铟、球、乙醇、羟基纤维素按照质量3:1:1:0.05的比例球磨12小时,球磨结束后取出干燥,得到改性纳米掺锡氧化铟粉体,通过高压喷洒的方式将改性纳米掺锡氧化铟粉体加入至溶液C中,超声波分散30min,其中改性纳米掺锡氧化铟粉体的添加量是10%,高压喷洒压力为0.4MPa;

S5.将溶液C通过静电纺丝工艺进行纺丝,烘干后得到面密度为60g/㎡的纤维层,即远红外隐身层;

S6.以步骤S5得到的纤维层为基层,将溶液A通过静电纺丝工艺进行纺丝,烘干后得到面密度为50g/m2纤维层,即第一电磁波隐身层;

S7.以步骤S6得到的纤维层为基层,将溶液B通过静电纺丝工艺进行纺丝,烘干后得到面密度为40g/m2纤维层,即第二电磁波隐身层;

S8.将土黄色颜料添加至水性聚氨酯中搅拌,分散均匀后,喷涂在第二电磁波隐身层上,干燥后即为可见光隐身层。

上述制备方法所制备的纳米纤维多层结构膜隐身材料,最外层通过与环境匹配的土黄色调整达到可见光隐身,中间层的电磁波吸收材料达到雷达隐身,最里层的低发射率材料添加达到红外隐身,并且这几种筛选的材料相互间的光谱互不干扰,能达到最佳的隐身效果。采用红外发射率测试标准:GB30127-2013;电磁波反射损耗测试标准:GJB 2038A-2011进行测试,性能如表3所示,材料表面具有丛林的迷彩伪装性能;红外发射率达到0.41,低红外发射率可以降低被红外探测到的可能性;在8-18GHz时,材料的电磁波损耗<-10dB波段为9GHz,材料具有优异的电磁波隐身性能。

表3 材料的各项性能

测试项目 测试结果
可见光视觉效果 土黄色
红外发射率(8-14µm) 0.41
<-10dB的电磁波反射损耗有效频段(8-18GHz) 9GHz

此外通过重复步骤S5-S7,制备具有多层数的多功能隐身材料,可以根据对远红外或电磁波隐身效果的需求来调节红外隐身层或电磁波隐身层的层数。

上述实验结果表明本发明提供一种能够同时具有可见光、红外和电磁波隐身功能的材料,相较于传统的双功能性材料具有极大的改进,并且传统材料将四氧化三铁和掺锡氧化铟粉体同时使用时分散效果较差,本发明利用球磨技术进行再次加工细化,同时加入羟基纤维素进行表面改性,因为羟基纤维素是一种有效的分散剂,在球磨过程中可以负载在颗粒物的表面,提高在粉体在溶液中的分散性能。

在市面上兼具电磁波、红外、可见光等综合性伪装性能的材料往往重量很重,并且都是硬质的复合板材,而本发明通过粉体的分散技术及结合静电纺丝的方式制备出的材料兼具柔性和轻质的特点,如图2所示为制得的隐身材料界面图,可以明显观察到静电纺丝得到的纤维结构,极大减轻了隐身材料的重量,并且呈层状结构,将电磁波、红外、可见光隐身性能综合利用,起到协同作用。

应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种帽片机

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!