一种NFC用低损耗NiCuZn软磁铁氧体材料及其制备方法和应用

文档序号:1915771 发布日期:2021-12-03 浏览:7次 >En<

阅读说明:本技术 一种NFC用低损耗NiCuZn软磁铁氧体材料及其制备方法和应用 (Low-loss NiCuZn soft magnetic ferrite material for NFC and preparation method and application thereof ) 是由 刘明 马春蕊 胡天翼 于 2021-08-27 设计创作,主要内容包括:本发明公开了一种NFC用低损耗NiCuZn软磁铁氧体材料及其制备方法和应用,本发明NFC用低损耗NiCuZn软磁铁氧体材料,包括主成分和辅助成分,其中,以重量百分比计,主成分包括:Fe-(2)O-(3):64.14wt%~65wt%,ZnO:14.22wt%~24.5wt%,NiO:7.64%~17.34wt%,余量为CuO;辅助成分包括V-(2)O-(5)和Co-(2)O-(3),以重量百分比计,V-(2)O-(5)的含量为主成分的0.4wt%,Co-(2)O-(3)的含量为主成分的0.4wt%~0.8wt%。本发明的材料能在工作频率下稳定工作,其磁导率实部(μ′)为60~150同时虚部(μ″)小于3,满足NFC的使用要求。(The invention discloses a low-loss NiCuZn soft magnetic ferrite material for NFC, and a preparation method and application thereof, and the low-loss NiCuZn soft magnetic ferrite material for NFC comprises main components and auxiliary components, wherein the main components comprise, by weight: fe 2 O 3 64.14 to 65 weight percent of ZnO, 14.22 to 24.5 weight percent of ZnO, 7.64 to 17.34 weight percent of NiO and the balance of CuO; the auxiliary component comprises V 2 O 5 And Co 2 O 3 In weight percent, V 2 O 5 Is 0.4 wt% of the main component, Co 2 O 3 The content of (A) is 0.4 wt% -0.8 wt% of the main component. The material can stably work under the working frequency, the real part (mu &#39;) of the magnetic conductivity of the material is 60-150, and the imaginary part (mu&#39;) is less than 3, so that the use requirement of NFC is met。)

一种NFC用低损耗NiCuZn软磁铁氧体材料及其制备方法和 应用

技术领域

本发明涉及软磁铁氧体材料技术领域,具体涉及一种NFC用低损耗NiCuZn软磁铁氧体材料及其制备方法和应用。

背景技术

NFC(Near field Communication)作为近年兴起的新型无线通讯技术而广泛的应用到各个手机支付、门禁以及公交卡等方面,其主要应用于13.56MHz下,工作距离10cm。而内置的NFC天线在手机内部的金属环境下会产生一个由电涡流产生的磁场导致信号减弱读卡失败,目前解决这一问题方法是在电路板上加上一层高磁导率低损耗的铁氧体的磁片其可以保证天线的正常工作。对于NFC用的NiCuZn铁氧体要求有尽可能大的磁导率实部和尽可能小的磁导率虚部(损耗)。通常而言磁导率实部增加也会导致磁导率虚部(损耗)的增加,除此之外受晶体生长的影响,低烧结温度下细小的晶粒容易产生大的损耗而高的烧结温度又容易使铁氧体磁片弯曲变形且高的烧结温度耗能较大。因此具有低烧结温度和低损耗特点的NiCuZn软磁铁氧体材料才能更有利于应用于NFC天线模块,与此同时还要考虑到实用性,原材料是否有害也仍然是重中之重。

CN 104496451 A公开了一种有高磁导率、低磁损耗的NiCuZn系铁氧体材料及其制备方法,原料由主成分和副成分组成,所述主成分由Fe2O3、ZnO、CuO和NiO组成,其中Fe2O3、ZnO、CuO占所述主成分的摩尔百分比分别为48.5-50.0mol%、20-25mol%、10-12mol%,余量为NiO;所述添加剂包括所述主成分0.6-1.0wt%的Co2O3以及所述主成分0.1-0.5wt%的LiF。该发明磁导率实部均大于200,然而其虚部均大于3且不能得到进一步的优化。

2012年电子科技大学电子薄膜与集成器件国家重点实验室吴小虎等人在“磁性材料及器件”发表的《Bi取代NiCuZn铁氧体的显微结构和电磁性能》一文中提出,按主配方Ni0.24Cu0.21Zn0.55Fe2O4,掺入3wt%Bi2O3,于900℃烧结3h后得到样品在13.56MHz频率下μ′(磁导率实部)为170左右时,磁导率虚部很高,为40左右。

上述公开的专利以及文献中,虽然其磁导率较高且烧结温度低,但是由于以上研究中样品的损耗太大均不能完全满足NFC对软磁材料的要求。

发明内容

为解决现有技术中存在的问题,本发明的目的在于提供一种NFC用低损耗NiCuZn软磁铁氧体材料及其制备方法和应用,本发明的材料能在工作频率下稳定工作,其磁导率实部(μ′)为60~150同时虚部(μ″)小于3,满足NFC的使用要求。

本发明采用的技术方案如下:

一种NFC用低损耗NiCuZn软磁铁氧体材料,包括主成分和辅助成分,其中,以重量百分比计,主成分包括:Fe2O3:63wt%~65wt%,ZnO:13wt%~25wt%,NiO:7%~18wt%,余量为CuO;

所述辅助成分包括V2O5和Co2O3,以重量百分比计,V2O5的含量为主成分的0.2wt%~0.4wt%,Co2O3的含量为主成分的0.4wt%~0.8wt%。

优选的,在NFC的应用频率下,所述NFC用低损耗NiCuZn软磁铁氧体材料磁导率的实部为60~150、虚部小于3。

优选的,所述NFC用低损耗NiCuZn软磁铁氧体材料的应用频率为13.56MHz。

本发明还提供了一种NFC用低损耗NiCuZn软磁铁氧体材料的制备方法,包括如下过程:

将NFC用低损耗NiCuZn软磁铁氧体材料的主成分原料进行球磨混料,得到混合料A;

对混合料A进行高温预烧;

将高温预烧后的混合料A与NFC用低损耗NiCuZn软磁铁氧体材料的辅助成分混合,得到混合物B;

对混合物B进行球磨、造粒成型,得到样坯;

将样坯进行高温梯度烧结,自然冷却降至室温,得到所述NFC用低损耗NiCuZn软磁铁氧体材料,其中烧结温度为940-980℃,在烧结温度下保温时间为3.8-4.2h;

以重量百分比计,NFC用低损耗NiCuZn软磁铁氧体材料的主成分包括:Fe2O3:63wt%~65wt%,ZnO:13wt%~25wt%,NiO:7%~18wt%,余量为CuO;

NFC用低损耗NiCuZn软磁铁氧体材料的辅助成分包括V2O5和Co2O3,以重量百分比计,V2O5的含量为主成分的0.2wt%~0.4wt%,Co2O3的含量为主成分的0.4wt%~0.8wt%。

优选的,将NFC用低损耗NiCuZn软磁铁氧体材料的主成分原料进行球磨混料,得到混合料A时,向主成分原料中加入蒸馏水,采用锆球进行球磨,球磨转速为400±5转/min,球磨时间为6±0.1h。

优选的,对混合料A进行高温预烧时,将混合料A先进行烘干,之后将干燥的混合料A以2±0.5℃/min的升温速率升至700℃~800℃,保温2±0.1h,随炉冷却至室温后出炉,高温预烧完成。

优选的,将高温预烧后的混合料A与NFC用低损耗NiCuZn软磁铁氧体材料的辅助成分混合,得到混合物B时,将高温预烧后的混合料A先进行破碎处理,之后加入辅助成分得到混合物B。

优选的,对混合物B进行球磨时,按磨球∶混合物B∶蒸馏水=(2±0.1)∶1∶(1±0.1)的质量比混合,以400±5转/min的转速球磨8h;

对混合物B进行造粒成型时,将球磨好的浆料进行干燥,再加入重量百分数为6wt%~8wt%的聚乙烯醇溶液造粒,将造好的球形颗粒筛选,取60-120目的球形颗粒,再将所取的60-120目的球形颗粒于4MPa~6MPa冷压成型为样坯。

优选的,将样坯进行高温梯度烧结时,将样坯以1.5±0.5℃/min的速率升温至450±20℃,之后保温2h;之后以2.5±0.5℃/min的速率升温升至900±20℃,最终以1.5±0.5℃/min的速率升至烧结温度,保温4±0.1h。

本发明如上所述NFC用低损耗NiCuZn软磁铁氧体材料在NFC中进行应用。

本发明具有如下有益效果:

本发明NFC用低损耗NiCuZn软磁铁氧体材料,包括主成分和辅助成分,其中,以重量百分比计,主成分包括:Fe2O3:63wt%~65wt%,ZnO:13wt%~25wt%,NiO:7%~18wt%,余量为CuO;在这一范围内可以通过调整主配方Ni/Zn比例使NiCuZn软磁铁氧体材料在13.56MHz下具有相对较低的涡流损耗的同时调控出不同的磁导率。除此之外,本发明使用CuO替代了部分NiO,同时添加了一些微量元素,例如:V2O5、Co2O3,使得产品烧结温度明显降低,烧结密度显著增大。损耗特性明显改善,得到极小的虚部数值(小于3)能够满足NFC的低损耗需求。

附图说明

图1(a)-图1(e)分别为实施例1-实施例4制备NFC用低损耗NiCuZn软磁铁氧体样品在1MHz~40MHz的磁导率实部和虚部谱图。

具体实施方式

下面结合附图和是实施例来对本发明做进一步的说明。

本发明NFC用低损耗NiCuZn软磁铁氧体材料的原料包括主成分和辅助成分,以重量百分数计,主成分以氧化物含量计算,包括:Fe2O3:63wt%~65wt%,ZnO:13wt%~25wt%,NiO:7%~18wt%,余量为CuO;辅助成分包括V2O5和Co2O3,以重量百分比计,V2O5的含量为主成分的0.3wt%~0.5wt%,Co2O3的含量为主成分的0.4wt%~0.8wt%。

本发明NFC用低损耗NiCuZn软磁铁氧体材料的制备方法包括以下步骤:

步骤一:原材料混合:将主成分各原料混合;

步骤二:对主成分原料进行一次行星球磨:将主成分原料装入行星式球磨机球磨罐中,并按质量比装入一定量的锆球和蒸馏水且锆球:蒸馏水:原料=(2±0.1):1:(1±0.1),以400±5转/min的转速球磨6h±0.1得到主成分的浆料。

步骤三:高温预烧:将上述步骤二中所得主成分浆料在干燥箱中烘干,得到的粉料进行预烧,从室温起以2±0.5℃/min的升温速率升至700℃~800℃,保温2±0.1h,随炉冷却至室温后出炉;

步骤四:微量元素掺杂:将上述步骤三高温预烧后的粉料进行轮碾破碎处理,之后加入辅助成分;

步骤五:二次行星球磨:将上述步骤四所得配料装入行星式球磨机球磨罐中,按磨球:料:蒸馏水=(2±0.1):1:(1±0.1)的质量比混合,以400±5转/min的转速球磨8±0.1h,将磨好的浆料放入干燥箱干燥;

步骤六:造粒并成型:将上述步骤五制得的粉料按料重的6wt%~8wt%加入聚乙烯醇(PVA)溶液造粒,将造好的球形颗粒使用60目及120目的筛网筛选,取60目、120目筛网之间的粉料,将上述粉料用30T全自动粉末成型机冷压成型为样环坯体,成型压力为4MPa~6MPa;

步骤七:高温梯度烧结:对步骤六成型好的样环坯体放入箱式电炉中高温烧结,升温梯度如下:室温至450±20℃以1.5±0.5℃/min的速率升温,并在450±20℃保温2±0.1h,后以2.5±0.5℃/min的速率从450±20℃升至900±20℃,最终以1.5±0.5℃/min的速率升至烧结温度,保温4.0±0.1h,自然冷却降至室温出炉;全部工序完成,得到本发明所述NFC用低损耗NiCuZn软磁铁氧体材料测试样环。

实施例1:

本实施例NFC用低损耗NiCuZn软磁铁氧体材料的制备过程包括如下步骤:

步骤一:原材料混合,按照质量百分比分别取Fe2O3:65.00wt%,ZnO:13.00wt%,NiO:18.00wt%,余量为CuO进行配料,Fe2O3、ZnO、NiO和CuO含量总和为100wt%;;

步骤二:一次行星球磨,将上述步骤一所得配料装入行星式球磨机球磨罐,并装入锆球和蒸馏水,且锆球:蒸馏水:原料=2:1:1,以400±5转/min的转速球磨6h得到主成分的浆料。

步骤三:高温预烧,将上述步骤二中所得主成分浆料在干燥箱中烘干后得到的粉料进行预烧,从室温起以2℃/min的升温速率升至750℃,保温2h,随炉冷却至室温后出炉;

步骤四:微量元素掺杂,将上述步骤三预烧后的粉料进行轮碾破碎处理,再加入V2O5和Co2O3,V2O5的含量为主成分的0.2wt%,Co2O3的含量为主成分的0.4wt%;

步骤五:二次行星球磨,将上述步骤四所得配料装入行星式球磨机,按照锆球:蒸馏水:原料=2:1:1的质量比混合,以400±5转/min的转速球磨8h,将磨好的浆料放入干燥箱干燥;

步骤六:造粒并成型,将上述步骤五制得的粉料按料重的7wt%加入聚乙烯醇(PVA)溶液造粒,将造好的球形颗粒使用60目及120目的筛网筛选,取60目、120目筛网之间的粉料,将上述粉料用30T全自动粉末成型机冷压成型为样环坯体,成型压力为6MPa;

步骤七:高温梯度烧结,对步骤六成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至450℃以1.5℃/min的速率升温,并在450℃保温2h,后以2.5℃/min的速率从450℃升至900℃,最终以1.5℃/min的速率升至烧结温度940℃,保温4.0h,自然冷却降至室温出炉;全部工序完成。

实施例2:

本实施例NFC用低损耗NiCuZn软磁铁氧体材料的制备过程包括如下步骤:

步骤一:原材料混合,按照质量百分比分别取Fe2O3:65.00wt%,ZnO:13.00wt%,NiO:18.00wt%,余量为CuO进行配料,Fe2O3、ZnO、NiO和CuO含量总和为100wt%;

步骤二:一次行星球磨,将上述步骤一所得配料装入行星式球磨机,并按照磨球∶料∶蒸馏水=2∶1∶1的质量比混合装入锆球和蒸馏水以400±5转/min的转速球磨6.1h得到主成分的浆料。

步骤三:高温预烧,将上述步骤二中所得主成分浆料在干燥箱中烘干后得到的粉料进行预烧,从室温起以2.1℃/min的升温速率升至800℃,保温2.1h,随炉冷却至室温后出炉;

步骤四:微量元素掺杂,将上述步骤三预烧后的粉料进行轮碾破碎处理,再加入V2O5和Co2O3,V2O5的含量为主成分的0.4wt%,Co2O3的含量为主成分的0.4wt%;

步骤五:二次行星球磨,将上述步骤四所得配料装入行星式球磨机,按磨球∶料∶蒸馏水=2.1∶1∶0.9的质量比混合,以400±5转/min的转速球磨7.9h,将磨好的浆料放入干燥箱干燥;

步骤六:造粒并成型,将上述步骤五制得的粉料按料重的7wt%加入聚乙烯醇(PVA)溶液造粒,将造好的球形颗粒使用60目及120目的筛网筛选,取60目、120目筛网之间的粉料,将上述粉料用30T全自动粉末成型机冷压成型为样环坯体,成型压力为6MPa;

步骤七:高温梯度烧结,对步骤六成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至470℃以1.0℃/min的速率升温,并在470℃保温2h,后以2.5℃/min的速率从450℃升至预烧温度,最终以2℃/min的速率升至烧结温度980℃,保温4.1h,自然冷却降至室温出炉;全部工序完成。

实施例3:

本实施例NFC用低损耗NiCuZn软磁铁氧体材料的制备过程包括如下步骤:

步骤一:原材料混合,按照质量百分比分别取Fe2O3:64.00wt%,ZnO:21.00wt%,

NiO:10.00wt%,余量为CuO进行配料,Fe2O3、ZnO、NiO和CuO含量总和为100wt%;

步骤二:一次行星球磨,将上述步骤一所得配料装入行星式球磨机,并装入锆球和蒸馏水按磨球∶料∶蒸馏水=1.9∶1∶0.9的质量比混合,以400±5转/min的转速球磨5.9h得到主成分的浆料。

步骤三:高温预烧,将上述步骤二中所得主成分浆料在干燥箱中烘干后得到的粉料进行预烧,从室温起以1.9℃/min的升温速率升至700℃,保温1.9h,随炉冷却至室温后出炉;

步骤四:微量元素掺杂,将上述步骤三预烧后的粉料进行轮碾破碎处理,再加入V2O5和Co2O3,V2O5的含量为主成分的0.3wt%,Co2O3的含量为主成分的0.8wt%;

步骤五:二次行星球磨,将上述步骤四所得配料装入行星式球磨机,按磨球∶料∶蒸馏水=1.9∶1∶1.1的质量比混合,以400±5转/min的转速球磨8.1h,将磨好的浆料放入干燥箱干燥;

步骤六:造粒并成型,将上述步骤五制得的粉料按料重的7wt%加入聚乙烯醇(PVA)溶液造粒,将造好的球形颗粒使用60目及120目的筛网筛选,取60目、120目筛网之间的粉料,将上述粉料用30T全自动粉末成型机冷压成型为样环坯体,成型压力为6MPa;

步骤七:高温梯度烧结,对步骤六成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至430℃以2℃/min的速率升温,并在430℃保温2.1h,后以3℃/min的速率从430℃升至预烧温度,最终以25℃/min的速率升至烧结温度960℃,保温4.1h,自然冷却降至室温出炉;全部工序完成。

实施例4:

本实施例NFC用低损耗NiCuZn软磁铁氧体材料的制备过程包括如下步骤:

步骤一:原材料混合,按照质量百分比分别取Fe2O3:64.00wt%,ZnO:20.00wt%,NiO:11.00wt%,余量为CuO进行配料,Fe2O3、ZnO、NiO和CuO含量总和为100wt%;

步骤二:一次行星球磨,将上述步骤一所得配料装入行星式球磨机,并装入锆球和蒸馏水按磨球∶料∶蒸馏水=2∶1∶1.1的质量比混合,以400±5转/min的转速球磨6h得到主成分的浆料。

步骤三:高温预烧,将上述步骤二中所得主成分浆料在干燥箱中烘干后得到的粉料进行预烧,从室温起以2℃/min的升温速率升至750℃,保温2.1h,随炉冷却至室温后出炉;

步骤四:微量元素掺杂,将上述步骤三预烧后的粉料进行轮碾破碎处理,再加入V2O5和Co2O3,V2O5的含量为主成分的0.3wt%,Co2O3的含量为主成分的0.7wt%;

步骤五:二次行星球磨,将上述步骤四所得配料装入行星式球磨机,按磨球∶料∶蒸馏水=2∶1∶1的质量比混合,以400±5转/min的转速球磨8h,将磨好的浆料放入干燥箱干燥;

步骤六:造粒并成型,将上述步骤五制得的粉料按料重的7wt%加入聚乙烯醇(PVA)溶液造粒,将造好的球形颗粒使用60目及120目的筛网筛选,取60目、120目筛网之间的粉料,将上述粉料用30T全自动粉末成型机冷压成型为样环坯体,成型压力为6MPa;

步骤七:高温梯度烧结,对步骤六成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至450℃以1.5℃/min的速率升温,并在450℃保温1.9h,后以2℃/min的速率从450℃升至900℃,最终以1.0℃/min的速率升至烧结温度960℃,保温4h,自然冷却降至室温出炉;全部工序完成。

实施例5

本实施例NFC用低损耗NiCuZn软磁铁氧体材料的制备过程包括如下步骤:

步骤一:原材料混合,按照质量百分比分别取Fe2O3:63wt%,ZnO:25wt%,NiO:7wt%,余量为CuO进行配料,Fe2O3、ZnO、NiO和CuO含量总和为100wt%;

步骤二:一次行星球磨,将上述步骤一所得配料装入行星式球磨机,并装入锆球和蒸馏水以400±5转/min的转速球磨6h得到主成分的浆料。

步骤三:高温预烧,将上述步骤二中所得主成分浆料在干燥箱中烘干后得到的粉料进行预烧,从室温起以2℃/min的升温速率升至750℃,保温2h,随炉冷却至室温后出炉;

步骤四:微量元素掺杂,将上述步骤三预烧后的粉料进行轮碾破碎处理,再加入V2O5和Co2O3,V2O5的含量为主成分的0.4wt%,Co2O3的含量为主成分的0.6wt%;

步骤五:二次行星球磨,将上述步骤四所得配料装入行星式球磨机,按磨球∶料∶蒸馏水=2.1∶1∶1.1的质量比混合,以400±5转/min的转速球磨8h,将磨好的浆料放入干燥箱干燥;

步骤六:造粒并成型,将上述步骤五制得的粉料按料重的7wt%加入聚乙烯醇(PVA)溶液造粒,将造好的球形颗粒使用60目及120目的筛网筛选,取60目、120目筛网之间的粉料,将上述粉料用30T全自动粉末成型机冷压成型为样环坯体,成型压力为6MPa;

步骤七:高温梯度烧结,对步骤六成型好的样坯放入箱式电炉中高温烧结,升温梯度如下:室温至470℃以1.5℃/min的速率升温,并在470℃保温2h,后以2.5℃/min的速率从470℃升至900℃,最终以1.5℃/min的速率升至烧结温度940℃,保温3.9h,自然冷却降至室温出炉;全部工序完成。

将实施例1-5得到样品通过惠普HP 4291B阻抗分析仪测试得到磁环在不同频率下的实部虚部(图1(a)-图1(e)),不同磁环在13.56MHz下的测试数据汇总在表1中。

表1

综上可以看出,本发明的NFC用低损耗NiCuZn软磁铁氧体材料可在小于1000℃下烧结得到,同时NFC用低损耗NiCuZn软磁铁氧体材料在13.56MHz下具有较高的磁导率(μ′=60~150)同时有极小的虚部(μ″小于3)以及小的比损耗因子而能够满足NFC天线的使用。本发明所使用的化工原料价格较为低廉,不含有毒有害成分,工艺过程简单且节能高效,便于产业化推广。本发明通过共掺杂辅助成分V2O5和Co2O3等,显著降低了产品的烧结温度(低于1000℃),而且极大改善了软磁铁氧体材料的电磁性能,满足了NFC、无线充电器等对软磁铁氧体性能指标的要求;同时通过调控NiO和ZnO的占比在低烧结温度下实现了在不同的磁导率实部时均可保证很小的虚部;除此之外,该制备方法较低的烧结温度有效的降低了能耗并且可以进一步集成LTCC磁电感器件。

应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式的变通或改变均在本发明保护范围。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种超高B-(s)低损耗锰锌铁氧体材料及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!