一种基于3d打印的铁氧体器件制作工艺

文档序号:1931744 发布日期:2021-12-07 浏览:1次 >En<

阅读说明:本技术 一种基于3d打印的铁氧体器件制作工艺 (Ferrite device manufacturing process based on 3D printing ) 是由 段戈扬 张硕 鲁小刚 徐向阳 刘江博闻 陈彬 李�杰 于 2021-09-22 设计创作,主要内容包括:本发明公开了一种基于3D打印的铁氧体器件制作工艺,属于3D打印技术领域,解决了现有技术中制造铁氧体器件精度低的问题,本发明包括如下步骤:S1、制备改性铁氧体粉体;S2、制备铁氧体打印浆料;S3、打印铁氧体器件坯料;S4、坯料脱脂烧结;S6、尺寸检测:对样品进行尺寸检测,检测件要求公差≤±0.2mm;S7、性能测试:对样品进行性能测试,要求满足铁氧体器件的性能标准。本发明用于使用铁氧体材料结合3D打印技术制造铁氧体器件,产品成型好、精度高。(The invention discloses a ferrite device manufacturing process based on 3D printing, belongs to the technical field of 3D printing, and solves the problem of low precision of ferrite device manufacturing in the prior art, and the ferrite device manufacturing process comprises the following steps: s1, preparing modified ferrite powder; s2, preparing ferrite printing slurry; s3, printing a ferrite device blank; s4, degreasing and sintering the blank; s6, size detection: detecting the size of the sample, wherein the tolerance of a detection piece is required to be less than or equal to &#43;/-0.2 mm; s7, performance test: and (4) carrying out performance test on the sample, wherein the performance standard of the ferrite device is required to be met. The invention is used for manufacturing ferrite devices by combining ferrite materials with a 3D printing technology, and has good product forming and high precision.)

一种基于3D打印的铁氧体器件制作工艺

技术领域

本发明属于3D打印技术领域,具体涉及一种基于3D打印的铁氧体器件制作工艺。

背景技术

铁氧体是指铁族元素和其它一种或者多种适当的金属元素的复合氧化物,按照其磁特性,可以分为软磁铁氧体和硬磁铁氧体。软磁铁氧体是指在较弱的磁场下易磁化也易退磁的一种铁氧体。软磁铁氧体的典型代表是锰锌铁氧体。软磁铁氧体是目前用途广、品种多、数量大和产值高的一种铁氧体材料。它主要用作各种电感元件,如滤波器磁芯、变压器磁芯、无线电磁芯、磁带录音和录像磁头等,也是磁记录元件的关键材料。硬磁铁氧体是指磁化后不易退磁的一种铁氧体,因此硬磁铁氧体也称为永磁铁氧体。硬磁铁氧体的典型代表是锶铁氧体和钡铁氧体,主要用于电信器件中的录音器、扬声器和各种仪表的磁芯等。铁氧体(软磁铁氧体和硬磁铁氧体)的制备过程包括制粉、压制和烧结三个环节,其中制粉和烧结是两个最关键的环节,直接影响材料的质量和性能。

铁氧体磁性制件通常采用模具压制成形、注射成形、挤压成形等传统粉末冶金成形制备方法。对于这些传统的成形,需要昂贵的模具,并且复杂的模具设计困难,对于体积小形状复杂的磁性制件,传统工艺经常出现坯体裂纹、尺寸误差大等问题,对于烧结后的制件,机加工十分困难。

3D打印技术,又被称为“增材制造”技术,是一种需要材料科学技术,机电控制技术,信息技术等多种技术密切配合的前沿技术,涉及CAD建模、机械、激光和材料等多个学科,借助于三维模型数据,通过自下而上层层堆积的方式打印而成。

由于铁氧体的金属氧化物属性,受3D打印的条件所限,使用常规的铁氧体材料进行铁氧体器件的打印,其打印和烧结时难以成型,尺寸也达不到精度要求,因此该工艺成为一直以来的技术难题。

发明内容

本发明的目的在于:

为解决现有技术中制造铁氧体器件精度低的问题,提供一种基于3D打印的铁氧体器件制作工艺。

本发明采用的技术方案如下:

一种基于3D打印的铁氧体器件制作工艺,包括如下步骤:

S1、制备改性铁氧体粉体:将铁氧体经过有机硅树脂表面覆膜处理,配制出树脂含量为22%-28%的改性铁氧体粉体;

S2、制备铁氧体打印浆料:取活性稀释剂与预聚物,在黄光环境、30-50℃水浴环境下磁力搅拌0.5-1h,加入光引发剂遮光搅拌1.5-2H至溶液澄清,得到光敏聚合物组元预混液;将覆膜改性铁氧体与增塑剂、消泡剂、分散剂加入到光敏聚合物组元预混液中,置于真空搅拌脱泡机中混合10-15min,所述增塑剂为膨润土流变剂;浆料经过真空抽滤后得到质量均匀的铁氧体浆料;所述增塑剂为膨润土流变剂;

S3、打印铁氧体器件坯料;

S4、坯料脱脂烧结;

S6、尺寸检测:对样品进行尺寸检测,检测件要求公差≤±0.2mm;

S7、性能测试:对样品进行性能测试,要求满足铁氧体器件的性能标准。

进一步地,所述步骤S2中的活性稀释剂包括1、6-己二醇二丙烯酸酯、2丙氧化新戊二醇二丙烯酸酯和丙烯酰基吗啉材料,所述预聚物为双三羟甲基丙烷丙烯酸酯材料,所述增塑剂为邻苯二甲酸二(2-乙基己)酯。

进一步地,所述步骤S3中打印铁氧体器件坯料的方法如下:

激光设定功率为700mw,打印层厚25μm-50μm,轮廓扫描间距为0.08-0.1mm,轮廓扫描轨迹选择contour模式,填充扫描轨迹选择cross模式,填充扫描间距为0.02-0.04mm,扫描次数2-4次,扫描速度2900-3300mm/s,若打印出的坯料物理性能不符合要求,则返回步骤S1调整材料配比。

进一步地,所述步骤S4中坯料脱脂烧结的方法如下:

将脱脂试样放置于坩埚中,放入气氛炉中,使用真空泵对炉内抽真空,再对炉中充入氮气,使内部达到常压,开启气氛炉的升温、降温,待温度升至800℃后,依次减小氮气流量,在30分钟内,每隔15分钟,分2次,将流量减小至0ml/min,待降至室温后取出样品,若样品尺寸不达标、不成型,则返回步骤S3调整打印参数。

进一步地,所述步骤S4中坯料脱脂烧结的温度与时间控制如下:

温度20-250℃,升温速率0.3℃/min,时长767min;

温度250-400℃,升温速率0.15℃/min,时长1000min;

温度400℃,保温时长60min;

温度400-550℃,升温速率0.6℃/min,时长250min;

温度550-900℃,升温速率1℃/min,时长400min;

温度900℃,保温时长60min;

温度900-20℃,随炉降温,时长480min。

综上所述,由于采用了上述技术方案,本发明的有益效果是:

1、本发明通过控制浆料中树脂的含量,以及对铁氧体粉体材料进行表面改性,使得混合出的打印浆料既能满足固化过程的粘接和流动性,又能保证浆料中铁氧体粉体的含量,同时通过有机硅表面覆膜,降低了铁氧体的吸波性,避免了在打印过程中样品吸收激光能量发热导致打印质量下降,显著改善了打印铁氧体器件的成型状况和尺寸精度,克服了铁氧体打印存在的各种技术难题。

2、本发明通过在脱脂烧结过程中精确控制升温速率和时间,在不破坏坯体的前提下将其中的固态有机物去除,并使有机物分解、气化和扩散的速率一致,避免了分解的气体在坯体内产生孔、裂纹等缺陷,保证了烧结后的产品可以达到尺寸成型的精度要求,避免了出现粘接失效的情况。

附图说明

图1为本发明工艺的流程图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

如图1所示,本发明可实施如下:

经过对用于3D陶瓷浆料制备的铁氧体粉体紫外吸光性检测可得,铁氧体在355nm处的吸收强度很高,单纯的使用树脂+铁氧体来制备3D打印陶瓷浆料不可行,必须对铁氧体进行表面改性来降低铁氧体在355nm波段的紫外线吸光性。

本发明使用的铁氧体粉体材料平均粒径可以为3.59μm。粉体粒径分布较为宽泛,可有效的调高陶瓷的烧结密度。其理化分析试验结果如下:

体积平均粒径:3.59μm

粒径分布:(体积)

1.98μm以下的样品占总体积的10%;

3.43μm以下的样品占总体积的50%;

5.42μm以下的样品占总体积的90%。

本发明将铁氧体经过有机硅树脂表面覆膜处理,经过处理的铁氧体粉体流动性得到有效的改善,同时材料颜色变浅,制备打印铁氧体浆料时的原材料如下:

预聚物:Di-TMPTA(双三羟甲基丙烷丙烯酸酯);

预聚物稀释剂:HDDA(1,6-己二醇二丙烯酸酯)、NPG2PODA(2丙氧化新戊二醇二丙烯酸酯)、ACMO(丙烯酰吗啉);

光引发剂:PI651(1,1-二甲氧基-1-1苯基苯乙酮);

分散剂:型号为BYK111的润湿分散剂;

陶瓷粉体:表面覆膜铁氧体粉体;

增塑剂:

海明斯流变助剂BENTONE SD-2(海名斯流变助剂SD-2):海明斯流变助剂SD-2是农业生产体系膨润土流变剂,设计用于中至高较性溶剂涂料体系。

制备打印浆料的工艺步骤如下:

(1)光敏聚合物组元的制备

取活性稀释剂(HDDA 100g、NPG2PODA 150g、ACMO 100g)与预聚物Di-TMPTA 87.5g混合,在40-50℃水浴环境下磁力搅拌0.5-1h,再加入光引发剂PI651 22g遮光搅拌1.5-2H至溶液澄清。

(2)分别取增塑剂邻苯二甲酸二(2-乙基己)酯9g,有机硅消泡剂2.3g,分散剂BYK1112.5g;将覆膜改性铁氧体1400g,与增塑剂、消泡剂、分散剂加入到光敏聚合物组元预混液中搅拌、球磨4-6小时;球磨后将膏料过滤分离,并将膏料置于负压环境消泡,便得到铁氧体浆料(铁氧体含量75wt%)。

采用旋转粘度计法检测浆料粘度,测试固含量75%的浆料粘度为2.5万mPa.s。

优选地,本发明可采用的打印机为3DCERAM C900,激光设定功率为700mw(激光设定值78%),打印层厚25μm-50μm,轮廓扫描轨迹选择contour,填充扫描轨迹选择cross,轮廓扫描间距为0.08-0.1mm,填充扫描间距为0.02-0.04mm,扫描次数2-4次,扫描速度2900-3300mm/s。

在脱脂烧结前,对坯体进行差示扫描量热(DSC)和热重分析(TGA),以确定各组元的分解温度区间,从测试曲线可以看出测试取样为49.9mg,温度区间100-300℃之间,失重2.5mg,主要是物理吸附水的损失。300-530℃之间失重27.5mg,主要是有机组元的热解损失。530-700℃之间,失重趋于平稳。从DTA曲线来看一共出现三个峰分别在420℃、440℃和500℃,前两个为热裂解的吸热峰,500℃的放热峰为铁粉氧化的放热峰。

根据上述分析设计脱脂烧结过程如下:

温度20-250℃,升温速率0.3℃/min,时长767min;

温度250-400℃,升温速率0.15℃/min,时长1000min;

温度400℃,保温时长60min;

温度400-550℃,升温速率0.6℃/min,时长250min;

温度550-900℃,升温速率1℃/min,时长400min;

温度900℃,保温时长60min;

温度900-20℃,随炉降温,时长480min。

脱脂烧结工艺具体操作如下:

0.输入升温/降温程序;

1.将脱脂试样放置于坩埚中,放入气氛炉中,关闭炉门;

2.将氮气气瓶固定于气瓶架;

3.打开氮气瓶开关,使得减压阀出口处示数为0.3MPa-0.5MPa;

4.打开真空泵,对炉内抽真空,当表压降至-0.06MPa时,关闭真空泵;

5.打开氮气进气阀开关;

6.调节流量计流量,开始充气,直至真空表显示为常压,调节氮气进气流量(1l/min左右);

7.开启排气阀;

8.开启升温/降温程序;

9.待温度升至800℃后,逐渐减小流量,在30分钟内,每隔15分钟,分2次,将流量减小至0ml/min;

10.关闭气瓶开关,待降至室温后取出样品。

取出样品后对样品进行尺寸检测和性能检测,经试验确定可以满足铁氧体器件要求。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种多孔高熵铁酸稀土陶瓷材料及其制备方法与应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!