可避免细胞内GSH干扰的Cys荧光探针及制备和应用

文档序号:1916045 发布日期:2021-12-03 浏览:25次 >En<

阅读说明:本技术 可避免细胞内GSH干扰的Cys荧光探针及制备和应用 (Cys fluorescent probe capable of avoiding interference of intracellular GSH (glutathione) and preparation and application thereof ) 是由 刘景� 张洪星 于 2021-09-02 设计创作,主要内容包括:本发明涉及荧光探针领域,具体涉及一种可避免细胞内GSH干扰的Cys荧光探针及制备和应用。近年来一系列高选择性Cys荧光探针被相继开发,这些探针尽管在一定程度上排除了GSH引发的荧光信号的干扰,但GSH消耗探针所带来的敏感性降低的限制仍然没有有效地克服。为解决上述问题,本发明开发了一种不受GSH干扰的特异性Cys荧光探针及其制备和应用,该荧光探针不仅能直接与Cys反应产生大的荧光关-开响应,而且其与GSH的反应产物能进一步被Cys取代,产生同样的荧光产物和荧光响应,因此不仅能避免细胞内高浓度GSH对荧光信号的干扰,而且能避免GSH对探针的消耗。(The invention relates to the field of fluorescent probes, in particular to a Cys fluorescent probe capable of avoiding interference of intracellular GSH (glutathione) and preparation and application thereof. In recent years a series of highly selective Cys fluorescent probes have been developed in succession, which, although eliminating to some extent the interference of GSH-induced fluorescence signals, still do not effectively overcome the limitation of reduced sensitivity brought about by GSH-consuming probes. In order to solve the problems, the invention develops a specific Cys fluorescent probe which is not interfered by GSH, and preparation and application thereof, the fluorescent probe can directly react with Cys to generate large fluorescence off-on response, and the reaction product of the fluorescent probe and the GSH can be further replaced by Cys to generate the same fluorescent product and fluorescent response, thereby not only avoiding the interference of high-concentration GSH in cells on fluorescent signals, but also avoiding the consumption of the probe by the GSH.)

可避免细胞内GSH干扰的Cys荧光探针及制备和应用

技术领域

本发明涉及荧光探针领域,具体涉及一种可避免细胞内GSH干扰的Cys荧光探针及制备和应用。

背景技术

线粒体呼吸作用除了为细胞的生存与发展提供能量之外,也会因为呼吸链的电子泄露诱发大量的活性氧(ROS),主要包括超氧自由基(O2 ·-)、过氧化氢(H2O2)、次氯酸(HClO)、次溴酸(HBrO)、羟基自由基(HO·)。在细胞氧化还原平衡失衡的条件下,过度产生的ROS能够氧化细胞内各种生物大分子,造成细胞正常功能的损伤,最终引发各种各样的疾病。这种倾向于氧化一方的氧化与抗氧化失衡被称为氧化应激(Oxidative Stress)。实际上,为了维持氧化还原平衡,细胞天然表达了各种各样的抗氧系统,其中小分子生物硫醇构成了细胞内重要的抗氧系统之一,在维持细胞内氧化还原平衡方面扮演了关键的角色。其中,半胱氨酸(Cys)是一个重要的生物硫醇。在生物体内,Cys与同型半胱氨酸(Hcy)、谷胱甘肽(GSH)共同维持着生物体内氧化-还原平衡;其次,由于Cys结构中巯基的强亲核能力和配位能力,Cys能与有毒的芳香族化合物缩合成硫醚氨酸,还能与铜、汞等重金属络合,从而起到解毒作用。另外,Cys还参与多种蛋白质的构成,同时还与生物催化、蛋白质的翻译后修饰等生物反应有关。由于这些重要的生理功能,Cys在体内含量的异常将导致严重的疾病发生。

鉴于此,开发一种生物兼容的、选择性高且敏感的Cys检测方法,不仅对于Cys的各种已知的和未知的生理病理功能的研究,而且对于相关治疗药物的开发均意义重大。

在各种检测方法中,荧光探针技术由于分析时间短、操作简单、灵敏度高、可视化以及样品的无损性等特点,已是现代生物医学研究不可缺少的工具,在揭示生物活性分子、离子的定位及功能方面发挥了巨大的作用。鉴于此,近十几年来,利用生物硫醇发生的系列特异性化学反应,大量的生物硫醇荧光探针被相继报道。然而,由于Cys与GSH有相似的结构和反应性且细胞内Cys浓度(200-300μM)远低于GSH的浓度(1-10mM),开发能避免细胞内GSH干扰的Cys荧光探针具有相当的挑战。需要指出的是,尽管同型半胱氨酸(Hcy)与Cys的结构和反应性及其相似(仅差一个-CH2-基团),由于其极低的细胞内浓度(~10μM),其所造成的干扰通常可以忽略不计。迄今报道的能选择性传感细胞内Cys的荧光探针主要分为如下三类:醛基成环型、加成-环化型和取代-重排型。尽管基于上述三个策略的荧光探针能高选择性荧光传感Cys,但在实际使用时仍存在一些缺点。例如,大部分“醛基成环型”Cys荧光探针的反应性弱、水溶性低,导致了敏感性差、荧光响应时间长、生物兼容性低,而且该类探针的荧光调控机理不明确,设计时难以把握荧光响应的方式;“加成-环化型”和“取代-重排型”Cys荧光探针尽管能避免GSH引发的荧光信号的干扰,但其能被细胞内高浓度的GSH所消耗,导致细胞内探针浓度的降低,因此影响了细胞内Cys的检测敏感性。因此,如何避免这些缺点,尤其是GSH消耗探针的问题,是当前设计Cys荧光探针所面临的重要挑战。硅吡啰红是一类具有高的摩尔消光系数和荧光量子产率、强的pH耐受性、良好的水溶性和光稳定性的近红外荧光染料。重要的是,硅吡啰红及其衍生物的9号碳原子具有强的电正性,能与亲核试剂发生加成或芳香亲核取代反应。利用该性质,针对上述挑战,本发明利用取代反应的可逆性和重排反应的不可逆性,合成了一种可避免GSH干扰的Cys荧光探针SiPyCl。

发明内容

针对上述问题,本发明提供了一种可避免GSH干扰的Cys荧光探针及其制备、应用。该探针可与Cys发生“取代-重排”反应,生成一个红荧光的“胺基-硅吡啰红”染料,而与GSH仅发生取代反应,生成一个非荧光的“硫代硅吡啰红”染料。重要的是,SiPyCl与GSH反应后生成的“硫代硅吡啰红”染料能进一步与Cys发生“取代-重排”反应,生成红荧光的“胺基-硅吡啰红”;而且,该反应的效率很高,甚至能在毫摩尔水平GSH的存在下几分钟内完成。因此,无论GSH是否存在,探针SiPyCl均能与Cys反应生成红荧光的“胺基-硅吡啰红”染料。换句话说,SiPyCl是一个可避免GSH干扰的Cys荧光探针。

为了达到上述目的,本发明采用了下列技术方案:

一种可避免细胞内GSH干扰的Cys荧光探针,所述探针为SiPyCl,其结构式为:

一种可避免细胞内GSH干扰的Cys荧光探针的制备方法,包括以下步骤:

(1)在氮气保护下,将4,4’-亚甲基双(N,N-二甲基苯胺)(化合物1)溶于超干四氢呋喃中,控温-78℃条件下,向上述反应液中逐滴滴入正丁基锂,继续控温反应2小时;在该温度下,向上述反应液中逐渐滴入二氯二甲基硅烷,反应液升至室温并搅拌反应2小时,反应结束后,加入盐酸水溶液以中和反应液,蒸干四氢呋喃,残余液体用乙醚萃取,合并的有机相分别用饱和NaHCO3溶液、水、饱和氯化钠水溶液洗涤,干燥旋干后得二氢硅吡啰红(化合物2),化合物2无需进行提纯直接进行下一步反应;

(2)将二氢硅吡啰红(化合物2)溶于丙酮中,在冰盐浴下条件控温-15℃,向上述溶液中加入高锰酸钾粉末,反应液恢复到室温继续反应2小时,反应液经过滤、干燥和柱色谱分离后得到硅吡啰红酮(化合物3)为黄色固体;

(3)将硅吡啰红酮(化合物3)溶解在干燥的二氯甲烷中,向上述溶液中逐滴滴加草酰氯,反应液室温搅拌反应10分钟,反应结束后,将溶剂旋干,粗产品经柱色谱分离得所述探针SiPyCl。

进一步,所述步骤(1)中4,4’-亚甲基双(N,N-二甲基苯胺)、正丁基锂与二氯二甲基硅烷的摩尔比为1:4:1.8。

进一步,所述步骤(1)中盐酸水溶液的浓度为1mol/L。

进一步,所述步骤(3)中硅吡啰红酮与草酰氯的摩尔比为1:1.2。

进一步,所述步骤(3)中柱色谱分离展开剂CH2Cl2:CH3CN的体积比为5:2。

一种可避免细胞内GSH干扰的Cys荧光探针的应用,在制备检测细胞内Cys试剂中的应用。

与现有技术相比本发明具有以下优点:

GSH在细胞中的浓度为毫摩尔(1-10mM)水平,目前报道的大部分Cys荧光探针存在易被细胞内GSH消耗的限制。本发明提供的探针能直接与Cys发生“取代-重排”反应生成高荧光的“胺基-吡啰红”染料,而且其与GSH反应生成的非荧光的“硫代吡啰红”染料能进一步与Cys发生“取代-重排”反应生成高荧光的“胺基-吡啰红”染料。因此本发明提供的探针是一个能避免细胞内高浓度GSH消耗探针的高选择性Cys荧光探针。

附图说明

图1为化合物3的1H NMR图(CDCl3,600MHz);

图2为化合物3的13C NMR图(CDCl3,150MHz);

图3为化合物3的HRMS图;

图4为化合物SiPyCl的1H NMR图(CDCl3,600MHz);

图5为化合物SiPyCl的13C NMR图(CDCl3,150MHz);

图6为化合物SiPyCl的HRMS图;

图7为探针在PBS中荧光光谱随时间(0-30min)的变化图。

图8为探针SiPyCl与Cys/GSH反应所引起的吸收和荧光光谱变化,(图8A)Cys/GSH引发的SiPyCl的吸收光谱变化;(图8B)Cys/GSH引发的SiPyCl的荧光光谱变化;(图8C)在GSH缺乏下,SiPyCl对Cys的荧光滴定光谱;(图8D)在GSH(1mM)存在下SiPyCl对Cys的荧光滴定光谱;(图8E)探针SiPyCl对Cys的选择性结果;

图9为本发明探针SiPyC1对Cys的传感机理示意图。

具体实施方式

实施例1

一种可避免细胞内GSH干扰的Cys荧光探针,其结构式为:

一种所述可避免细胞内GSH干扰的Cys荧光探针的制备方法,包括以下步骤:

(1)氮气保护下,将化合物1(6.00g,14.6mmol)溶于超干四氢呋喃(200mL)中,控温-78℃条件下,向上述反应液中缓慢滴入正丁基锂(浓度为2.4M的正己烷溶液,24.3mL,58.4mmol,4当量),继续控温反应2小时;在该温度下,向上述反应液中缓慢滴入二氯二甲基硅烷(3.2mL,26.28mmol,1.8当量),反应液缓慢升至室温并搅拌反应2小时;反应结束后,小心加入盐酸水溶液(1M,50mL)以中和反应液;蒸干四氢呋喃,残余液体用乙醚萃取,合并的有机相分别用饱和NaHCO3溶液、水、饱和氯化钠水溶液洗涤,干燥旋干后得化合物2,化合物2无需进行提纯直接进行下一步反应。

(2)将化合物2溶于丙酮(30mL)中,在冰盐浴下控温-15℃条件下,向上述溶液中缓慢加入高锰酸钾粉末(5.75g),反应液恢复到室温继续反应2小时。反应液经过滤、干燥和柱色谱(CH2Cl2)分离后得到化合物3为黄色固体(1.65g,产率34.7%)。

1H NMR(600Hz,CDCl3)δ8.10(d,J=9.0Hz,2H),6.87(d,J=9.0Hz,2H),6.83(s,2H),3.11(s,12H),0.49(s,6H).13C NMR(150MHz,CDCl3)δ185.3,151.4,140.5,131.6,129.7,114.3,113.2,40.1,0.97.ESI-MS:[M+H]+calcd for 325.1736,Found 325.1734.

(3)将化合物3(0.324g,1.0mmol)溶解在干燥的二氯甲烷(10mL)中,向上述溶液中缓慢滴加草酰氯(1.2mmol,1.2当量),反应液室温搅拌反应10分钟。反应结束后,将溶剂旋干,粗产品经柱色谱(CH2Cl2/CH3CN=5/2,v/v)分离得探针SiPyC1(0.313g,产率82.8%)。

1H NMR(600Hz,CDCl3)δ8.43(d,J=9.6Hz,2H),7.14(s,2H),6.97(d,J=9.6Hz,2H),3.48(s,12H),0.58(s,6H).13C NMR(150MHz,CDCl3)δ164.0,155.6,148.7,140.9,127.4,121.4,119.4,42.7,0.41.ESI-MS:[M]+calcd for 343.1392,Found 343.1390.

实施例2

1.测试溶液配制

将探针用乙腈配成2mM的储存液,随后用20mM的PBS(pH 7.4)稀释至测试浓度。

2.探针稳定性实验

首先在荧光光谱仪上研究探针在水溶液中的稳定性,配置探针的PBS溶液(2μM),置于比色皿中,如图7所示,探针在PBS中的发射波长为688nm,连续扫描30分钟后,荧光光谱几乎保持不变。上述结果表明,阳离子特性赋予了探针优良的水溶性且可以在PBS中稳定存在,该特性对于生物应用至关重要。

3.探针与Cys/GSH的反应性能研究

在PBS缓冲中,SiPyCl本身在663nm处有一个主要的吸收峰;加入Cys后,一个蓝移的吸收峰出现在470nm处,而加入GSH后,一个红移的吸收峰出现在688nm处。该结果暗示了SiPyCl分别与Cys和GSH生成了“胺基-硅吡啰红”和“硫代吡啰红”染料(图8A)。在470nm的激发光激发下,SiPyCl本身几乎是非荧光的;加入Cys后,一个强的荧光峰出现在618nm处;加入GSH后,几乎没有任何荧光峰被观察(图8A)。该结果暗示了SiPyCl能避免GSH引发的干扰荧光信号。重要的是,当在SiPyCl溶液中首先加入GSH然后再加入Cys后,GSH所引起的红移的吸收峰消失,而Cys引起的蓝移的吸收峰出现,而且这个蓝移的吸收峰的吸收强度与GSH缺乏下的情况几乎一致(图8A)。不仅如此,当在SiPyCl溶液中首先加入GSH然后再加入Cys后,一个强的荧光峰也被观察,而且该峰的荧光密度与GSH缺乏下的情况也几乎一致(图8B)。因此,SiPyCl也是一个能避免GSH消耗探针的Cys荧光探针。进一步的荧光滴定化验表明,在缺乏(图8C)和存在(图8D)1mM的GSH的情况下,SiPyC1几乎表现了一致的Cys传感性能,而且后者对低浓度的Cys表现了更好的荧光响应。选择性实验表明,生物相关的阳离子、阴离子、活性氧化物、氨基酸均不会引发SiPyCl的荧光增强(图8E),因此探针对Cys具有非常好的选择性。

4.探针对Cys的传感机理研究

在纯PBS中,SiPyCl能与Cys发生快速的“取代-重排”反应生成高荧光的胺基-硅吡啰红(λex:470nm);然而,由于不稳定的大环过渡态,SiPyCl与GSH仅能发生“取代”反应而生成在470nm激发下非荧光的硫代硅吡啰红;重要的是,硫代硅吡啰红能进一步与Cys发生快速的“取代-重排”反应,同样生成高荧光的胺基-吡啰红;因此,SiR是一个可避免GSH干扰的(包括信号干扰和消耗探针)、高敏感的Cys荧光探针。发明人推测,Cys能取代SiR-GSH中GSH单元的推动力来自于两方面:一是Si-吡啰红9号碳原子大的电正性,二是Cys取代GSH单元后随即发生的不可逆重排,前者建立了一个Cys/GSH与探针之间的平衡反应,后者促使了总反应向右的不可逆移动。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种有机化合物及其应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!