一种基于卫星资料的海洋锋识别方法

文档序号:1921775 发布日期:2021-12-03 浏览:13次 >En<

阅读说明:本技术 一种基于卫星资料的海洋锋识别方法 (Ocean front identification method based on satellite data ) 是由 郭海龙 王宁 杜辉 史剑 张雪艳 于 2021-07-16 设计创作,主要内容包括:本发明公开了一种基于卫星资料的海洋锋识别方法,本发明方法在梯度阈值法部分,采用了基于概率密度函数的分区段阈值,尽可能地降低了主观阈值选取对识别结果的影响,提高了阈值选取的合理性;在锋生动力函数法部分,将锋生因子分解为不同动力学框架下的平流作用项、流场散度项、变形场项和外强迫项,提出动力学判定标准,并对像素点进行再次筛选,对阈值进行动力学订正,提高锋面识别的准确性。本发明结合了海洋锋要素特征及动力学特征,兼具阈值法的高计算效率特征和动力学法的科学可靠性特征,能够基于卫星资料实时进行海洋锋面识别;输入数据为卫星观测的海表温度场、盐度场、海表风场及动力学高度数据,具备易收集、高分辨率和全公开等特征。(The invention discloses a sea front identification method based on satellite data, which adopts a subsection threshold based on a probability density function in a gradient threshold method part, reduces the influence of subjective threshold selection on an identification result as much as possible, and improves the rationality of threshold selection; in the frontal generation power function part, the frontal generation factor is decomposed into a advection action item, a flow field divergence item, a deformation field item and an external forcing item under different dynamic frames, a dynamic judgment standard is put forward, pixel points are screened again, a threshold value is subjected to dynamic correction, and the accuracy of frontal surface identification is improved. The ocean front feature identification method combines the ocean front feature and the dynamics feature, has the high calculation efficiency feature of a threshold value method and the scientific reliability feature of the dynamics method, and can identify the ocean front in real time based on satellite data; the input data are sea surface temperature field, salinity field, sea surface wind field and dynamic height data observed by a satellite, and the sea surface wind field and dynamic height data have the characteristics of easy collection, high resolution, full disclosure and the like.)

一种基于卫星资料的海洋锋识别方法

技术领域

本发明涉及的是一种海洋锋识别方法,具体涉及一种基于卫星资料的海洋锋识别方法。

背景技术

海洋锋面是一种普遍存在于海洋中的现象,是指海洋要素剧烈变化的狭窄过渡带。海洋锋面拥有多种类型,由其生成源地和形成机理不同而差异显著。如温度锋,是指海水温度在水平方向发生强烈变化,具有较大梯度的过渡带,由于锋面两侧温度的急剧变化,常伴随着强烈的动量、热量和水汽交换,是海气相互作用最活跃的区域之一;由于锋生作用,在海洋锋区常伴随强烈的次级环流,是海洋初级生产力较丰富的区域;此外,海洋锋面对水下声信号传播存在巨大的影响,是军事应用中最为关注的海洋中小尺度现象之一。因此,准确识别海洋锋区的位置是研究海洋锋面强度、动力环境等特征的必要前提。

现有海洋锋识别技术重点关注海洋温度锋面,主要基于海洋锋温度梯度阈值进行识别,此种方法简单有效,优点是能够快速识别海洋中温度锋的位置,缺点是温度梯度阈值的选取受主观因素影响严重;基于此方法,由Cayula和Cornillon(1992,1995)等人提出了直方图阈值法,首次基于卫星图像得到了海洋温度锋的位置;具体方案如图1所示。随后,Diehl发展了这一方法,提高了该方法的应用范围和识别能力,有效地降低了主观因素在梯度阈值选取中的影响作用,但此方法受统计区域内温度梯度的限制,且未考虑海洋锋生过程中的动力学因子,如锋区流场等特征。

Hideyuki Nakano et(2018)等人基于卫星高度计资料,从动力学因子的角度对西北太平洋区域的海洋锋进行了识别,定义平均动力高度为某一具体值时,其等值线位置便为海洋锋面位置,理论基础为海洋锋区内地转流速较大,即锋生过程伴随着流场的切变或辐合等特征,具体技术方案如图2所示。

其中,核心技术为第二步,平均速度的计算,采用累积积分法求取,公式为:

其中为平均速度,为平均动力学高度值,基于此式得到平均速度关于动力学高度值的分布,结合局地最大值法,得到平均速度局地最大值对应的平均动力学高度值,基于先验海洋锋信息,确定该平均动力学高度值对应的海洋锋,则该平均动力学高度等值线所在位置即为海洋锋的位置。

这一方法的优点在于识别出的海洋锋轴线连续光滑,重点适用于永久性或半永久性存在的海洋锋,但计算量较大,需具备一定的海洋锋先验信息,但识别结果中海洋锋位置误差较大,难以识别生命周期较短的海洋锋,且识别出的海洋锋存在虚假信息。

综上所述,随着卫星资料分辨率的提高,本发明提出一种结合要素梯度和动力因子的海洋锋识别方法,综合考虑不同生命周期的海洋锋特征,以期实现不同分辨率需求下的海洋锋目标识别功能。

发明内容

针对现有技术上存在的不足,本发明目的是在于提供一种基于卫星资料的海洋锋识别方法,基于卫星资料,实现海洋锋面的实时识别;提高梯度阈值法中阈值选取的准确度;提高海洋锋识别结果的准确度。

为了实现上述目的,本发明是通过如下的技术方案来实现:一种基于卫星资料的海洋锋识别方法,包括以下步骤:

1、第一部分采用梯度阈值法模块,对某一具体海区而言,输入卫星观测的温度和盐度数据,基于梯度算子求得该要素梯度分布,基于累积概率密度函数给出一个阈值范围,当要素梯度小于非锋区最大梯度阈值时,像素点被判定为非锋区,当要素梯度大于锋区最小梯度阈值时,像素点被判定为锋区,当要素梯度介于该阈值范围内时,被划归为可能锋区像素点;利用贝叶斯原理,将该像素点划归为最大概率值对应的类别,基于判断标准2进行判定,若满足条件则划归为锋区像素点,否则划归为非锋区像素点;并输出识别结果到锋生动力函数模块。

2、第二部分采用锋生动力函数模块基于锋生倾向方程,由三类构成,分别为准地转框架下的锋生倾向方程、半地转锋生倾向方程和全流锋生倾向方程,用于不同尺度和形成机制海洋锋的识别,以行星尺度锋面为例,则采用准地转框架下的锋生倾向方程,具体形式如下式所示:

其中微分算子为梯度算子,F表征温度、盐度或密度等参数,为卫星高度计资料反演的地转流场水平分量,Fout表征外强迫项对因子的锋生贡献作用。通过将锋生函数分解,可得到锋生因子的贡献项为地转流场平流作用项、流场散度作用项、变形场作用项及外强迫项,利用这些因子的贡献权重,判识该类锋面生成的基本机制,基于锋生因子进行锋区像素点识别,若非锋区像素点处于锋生因子大值区,则将非像素点对应的要素梯度值与非锋区最大梯度阈值进行比对,若小于该阈值,则修改阈值,重新进行第一部分判识,反之则划归为锋区像素点。

本发明具有以下有益效果:

(1)本发明识别方法结合了海洋锋要素特征及动力学特征,计算效率高,能够基于卫星资料实时进行海洋锋面识别;本方法输入数据为卫星观测的海表温度场、盐度场、海表风场及动力学高度数据,具备易收集、高分辨率和全公开等特征。

(2)本发明方法在梯度阈值法部分,针对传统单一阈值选取的弊端,采用了基于概率密度函数的分区段阈值,尽可能地消除了主观阈值选取对识别结果的影响,提高了阈值选取的合理性。

(3)本发明方法在锋生动力函数法部分,将锋生因子分解为不同动力学框架下的平流作用项、流场散度项、变形场项和外强迫项,提出判定标准,并对像素点进行再次筛选,对阈值进行动力学订正,提高锋面识别的准确性。

附图说明

下面结合附图和

具体实施方式

来详细说明本发明;

图1为本发明背景技术中的Cayula and Cornillon海洋锋识别技术方案流程图;

图2为本发明背景技术中的Hideyuki Nakano海洋锋识别技术方案流程图;

图3为本发明的海洋锋识别流程图。

具体实施方式

为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。

参照图3,本具体实施方式采用以下技术方案:一种基于卫星资料的海洋锋识别方法,具体步骤如下:

1、第一部分采用梯度阈值法模块,对某一具体海区而言,输入卫星观测的温度和盐度数据,基于梯度算子求得该要素梯度分布,基于累积概率密度函数给出一个阈值范围,当要素梯度小于非锋区最大梯度阈值时,像素点被判定为非锋区,当要素梯度大于锋区最小梯度阈值时,像素点被判定为锋区,当要素梯度介于该阈值范围内时,被划归为可能锋区像素点;利用贝叶斯原理,将该像素点划归为最大概率值对应的类别,基于判断标准2进行判定,若满足条件则划归为锋区像素点,否则划归为非锋区像素点;并输出识别结果到锋生动力函数模块。

2、第二部分采用锋生动力函数模块基于锋生倾向方程,由三类构成,分别为准地转框架下的锋生倾向方程、半地转锋生倾向方程和全流锋生倾向方程,用于不同尺度和形成机制海洋锋的识别,以行星尺度锋面为例,则采用准地转框架下的锋生倾向方程,具体形式如下式所示:

其中微分算子为梯度算子,F表征温度、盐度或密度等参数,为卫星高度计资料反演的地转流场水平分量,Fout表征外强迫项对因子的锋生贡献作用。通过将锋生函数分解,可得到锋生因子的贡献项为地转流场平流作用项、流场散度作用项、变形场作用项及外强迫项,利用这些因子的贡献权重,判识该类锋面生成的基本机制,基于锋生因子进行锋区像素点识别,若非锋区像素点处于锋生因子大值区,则将非像素点对应的要素梯度值与非锋区最大梯度阈值进行比对,若小于该阈值,则修改阈值,重新进行第一部分判识,反之则划归为锋区像素点。

其中所述的卫星观测资料如温度、盐度、动力学高度、海面风场、动力学高度等。

本具体实施方式基于卫星资料,实现海洋锋面的实时识别:随着海洋观测卫星资料的发展,能够实时提供海表热力学参数,如温度、盐度;还能同时提供相应的动力学要素,如流场、海面风场等信息,基于此,本方法结合热力学参数和动力学特征,实现不同类型海洋锋的实时识别,为科学研究和经济生产提供支持。

本具体实施方式提高梯度阈值法中阈值选取的准确度:本方法采用贝叶斯原理进行海洋锋要素梯度阈值的选取,分步骤消除阈值选取中主观因素的影响,为后续的动力学检测模块提供数据输入。

本具体实施方式提高海洋锋识别结果的准确度:本方法采用锋生动力因子检测作为海洋锋梯度识别模块的后处理部分,基于锋生动力学理论提高海洋锋识别结果的准确度。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:企业数据推演计算系统及方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!