一种用于纸质文物预防性保护复合纤维膜及其制备方法

文档序号:1948820 发布日期:2021-12-10 浏览:17次 >En<

阅读说明:本技术 一种用于纸质文物预防性保护复合纤维膜及其制备方法 (Composite fiber membrane for preventive protection of paper cultural relics and preparation method thereof ) 是由 李锐新 张笛 王林格 顾欣意 唐静远 贾毅凡 彭博昊 于倩倩 张勃兴 于 2021-08-06 设计创作,主要内容包括:本发明属高分子纤维领域,具体公开了一种用于纸质文物预防性保护复合纤维膜及其制备方法,其特征为集紫外屏蔽、超疏水、力学支撑等功能为一体,同时兼顾纤维材料的柔性、高孔隙率、高比表面积的性能。该方法操作简便,能够有效地防止紫外线、灰尘、害虫、细菌真菌对纸质文物的破坏,同时保证纸张的字画不会发生变化。(The invention belongs to the field of polymer fibers, and particularly discloses a composite fiber membrane for preventive protection of paper cultural relics and a preparation method thereof. The method is simple and convenient to operate, can effectively prevent the damage of ultraviolet rays, dust, pests and bacteria and fungi to the paper cultural relics, and simultaneously ensures that the calligraphy and painting of the paper are not changed.)

一种用于纸质文物预防性保护复合纤维膜及其制备方法

技术领域

本发明涉及高分子纤维领域,具体为一种可用于纸质文物预防性防护复合纤维的制备方法及其应用。

背景技术

纸质文物作为承载历史和文化的载体,是文化遗产的重要组成部分,它包含了大量珍贵文化史料和记录,也是最难长时间保存的文物种类之一。因为纸质文物的主要原料是纤维素等植物纤维,纤维素中使葡萄糖连接成长链的氧桥吸引H+的特性和纤维素结构中易氧化的基团(-CH2OH和-OH)使其易发生一系列化学反应,进而引发纤维素链断裂。因此在保存过程中,纸质文物会很容易受湿度、微生物、紫外线等环境因素的影响而断链,导致机械强度降低,滋生细菌和害虫,进而发生如发黄、脆断、破碎等损坏,大大降低了保存寿命和观赏、研究价值。

用于保存纸制品的材料的理想特性应包括柔韧性,透明性,内聚力,长期耐用性和可逆性,同时保护方法应快速,能够广泛使用且对纸质物品无害。在提高纸张强度方面的一些科学研究包括丝网层压,聚酯薄膜封装,辐射聚合,聚对二甲苯工艺和接枝共聚涂层方法。但是,所有这些方法都有一些不可避免的缺点。丝网本身很容易老化,导致受保护的纸制品老化,而聚酯薄膜会改变纸的外观,光学性能,质地和厚度,并在老化过程后变硬。辐射法是对纸质遗迹产生正面还是负面的影响尚无定论。聚对二甲苯保护需要在真空中进行,涉及复杂的过程和严格的条件。直接树脂涂层也会导致纸张快速老化,这是由于纸张表面和内部之间的浓度差异所致,这是由树脂和纸张纤维之间较差的润湿引起的。接枝聚合可以很好地保护纤维素基基材,并引入接枝聚合物的优越性,例如具有抗生物攻击性。固结作用是通过难以分离的接枝过程实现的。但是,可逆性的困难似乎是应用中的最大障碍。因此,迫切需要一种高效,便捷,无害且长期稳定的纸张保存方法。

本发明根据纸质文物预防性保护所需性能通过对筛选纺丝原料、调控静电纺参数来获得不同直径、形貌及拓扑结构的纤维及纤维膜,有效实现纸质文物的预防性保护。

发明内容

本发明的首要目的是提供了一种用于纸质文物预防性保护的复合纤维的制备方法。

本法另一目的是提供上述方法制备得到的用于纸质文物预防性保护的复合纤维。

一种用于纸质文物预防性保护的复合纤维的制备方法,包括以下步骤:

S1.配制纺丝溶液:将高分子材料与负载物溶于有机溶剂中,充分搅拌溶解得到高分子溶液;

S2.将步骤S1中配制的高分子溶液装入带有喷射头的储存容器中进行静电纺丝,纺丝结束后,待溶剂挥发完全,得到纺丝纤维;

S3.配制纺丝溶液:将高分子材料与负载物溶于有机溶剂中,充分搅拌溶解,得到纺丝溶液;

S4.纤维膜上表层微纳结构的制备:将步骤S3中得到的纺丝溶液装入带有喷丝针头的注射装置中,采用步骤S2中得到的纤维的上表层为接收装置,进行静电纺丝,在其表面制备微球构建微纳结构,纺丝结束后,待溶剂挥发完全,得到复合纤维。

步骤S1与步骤S3中所述的负载物为杀菌剂、紫外屏蔽剂中的一种以上。

进一步优选的,所述杀菌剂为地塞米松、尼莫地平、三七总皂苷、冷宁康、德莫林、慷舒灵、利多卡因、莫匹罗星、盐酸四环素、环丙沙星、聚六亚甲基胍、盐酸莫西沙星、纳米银、溶菌酶、万古霉素、黄连素、抗菌多肽、小叶藤黄粗提物、鸸鹋油、沙漠柚木提取物和姜黄素中的至少一种;所述紫外屏蔽剂为二氧化钛、氧化锌、炭黑、滑石粉和陶土粉中的至少一种。

步骤S1与步骤S3中所述高分子为天然高分子材料,合成高分子材料或天然高分子与合成高分子混合物;高分子溶液中高分子的质量分数为1%~40%。

优选地,所述天然高分子材料为聚乙交酯、聚丙交酯、聚羟基乙酸、透明质酸、纤维蛋白、丝蛋白、壳聚糖、胶原蛋白和明胶中的至少一种;

优选地,所述合成高分子材料为聚乙烯、聚丙烯、聚丙烯腈、聚氯乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚酰胺、聚碳酸酯、聚甲醛、聚对苯二甲酸丁二酯、聚对苯二甲酸乙二酯、醋酸纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素、氰乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、羟乙基淀粉、羧甲基淀粉、聚乙二醇-聚乙烯吡咯烷酮嵌段共聚物、聚苯乙烯-聚丁二烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯三嵌段共聚物、聚苯乙烯-聚(乙烯-丁烯)-聚苯乙烯嵌段共聚物、苯乙烯-异戊二烯/丁二烯-苯乙烯嵌段共聚物、聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物中的至少一种。

步骤S1与步骤S3中所述的负载物与高分子的质量比为0~0.8:1,负载物的质量不为0。

步骤S1与步骤S3中所述的有机溶剂为二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、丙烯酸甲酯、四氢呋喃、甲基四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮、三氟乙酸、四氯化碳、二甲苯、甲苯、苯酚、氯苯、硝基苯、戊烷、正己烷、甲基环己烷、N-甲基吡咯烷酮、苯甲醚、N-甲基吗啉-N-氧化物、氯化甲基咪唑盐或甲酚中的至少一种。

步骤S2与步骤S4中所述纺丝参数为,喷丝头处接0.5~50kV电压(可正可负),收集装置接0~50kV电压(可正可负,与喷丝头电势相反,或接地)。喷丝头与收集装置距离5~50cm,纺丝溶液供给速度为0.1~30mL/h。纺丝环境温度5~60℃,相对湿度25%~95%。

一种用于纸质文物预防性保护的复合纤维,通过上述方法制备得到。

与现有技术相比,本发明具有以下有益效果:

1.本发明制备得到的复合纤维能够在不改变纸质文物本身质地、颜料的情况下,有效达到超疏水、紫外屏蔽、抗菌等性能。

2.本发明选用纤维-微球体系,构建了新的微纳复合体系,有利于增大复合材料的接触角。同时,纤维和微球两体系还可以复合不同功能的物质,有效防止功能物质间的作用。

3.本发明工艺过程简单,质量可靠,可重复性高。制得的复合纤维膜可以用于纸质文物预防性保护。

附图说明

图1为实施例1制备的底层纤维膜的扫描电子显微镜照片。

图2为实施例2制备的上层微球的扫描电子显微镜照片。

图3为实施例3制备的底层纤维膜的扫描电子显微镜照片。

图4为实施例3制备的复合纤维膜的接触角图。

图5为实施例2制备的复合纤维膜的抗菌图。

图6为实施例1制备的不同紫外屏蔽剂浓度下纤维膜的紫外-可见光吸收图。

具体实施方式

下面结合具体实施例和附图进一步说明本发明的内容,但不应理解为对本发明的限制。

实施例1

将二氧化钛与聚偏氟乙烯溶解在N,N-二甲基甲酰胺和丙酮(质量比4:1)的混合溶剂中,形成质量分数为12wt%的高分子溶液,其中紫外屏蔽剂与高分子的质量比为0.8:1。

喷丝头处接+15kV电压,接收装置接-0.5kV电压。喷丝头与接收装置距离为15cm,纺丝溶液供给速度为3mL/h。纺丝环境温度为25℃,相对湿度60%。纺丝结束后,待溶剂挥发完全,得到复合纤维。

将环丙沙星与氢化聚(苯乙烯-丁二烯-苯乙烯)溶解在N,N-二甲基甲酰胺和丙酮(质量比4:1)的混合溶剂中,形成质量分数为8wt%的高分子溶液,其中药物与高分子的质量比为0.5:1。

将前一步骤中的复合纤维作为接收装置,喷丝头处接+13kV电压,接收装置接-3kV电压。喷丝头与接收装置距离为15cm,纺丝溶液供给速度为2mL/h。纺丝环境温度为25℃,相对湿度50%。纺丝结束后,待溶剂挥发完全,得到纤维最终产品。

实施例2

将环丙沙星与聚偏氟乙烯溶解在N,N-二甲基甲酰胺和丙酮(质量比4:1)的混合溶剂中,形成质量分数为12wt%的高分子溶液,其中药物与高分子的质量比为0.5:1。

喷丝头处接+15kV电压,接收装置接-0.5kV电压。喷丝头与接收装置距离为15cm,纺丝溶液供给速度为3mL/h。纺丝环境温度为25℃,相对湿度60%。纺丝结束后,待溶剂挥发完全,得到复合纤维。

将氧化锌与氢化聚(苯乙烯-丁二烯-苯乙烯)溶解在N,N-二甲基甲酰胺和丙酮(质量比4:1)的混合溶剂中,形成质量分数为8wt%的高分子溶液,其中药物与高分子的质量比为0.5:1。

将前一步骤中的复合纤维作为接收装置,喷丝头处接+13kV电压,接收装置接-3kV电压。喷丝头与接收装置距离为15cm,纺丝溶液供给速度为2mL/h。纺丝环境温度为25℃,相对湿度50%。纺丝结束后,待溶剂挥发完全,得到纤维最终产品。

实施例3

将姜黄素与氢化聚(苯乙烯-丁二烯-苯乙烯)溶解在N,N-二甲基甲酰胺和丙酮(质量比4:1)的混合溶剂中,形成质量分数为14wt%的高分子溶液,其中药物与高分子的质量比为0.2:1。

喷丝头处接+14kV电压,接收装置接-1kV电压。喷丝头与接收装置距离为15cm,纺丝溶液供给速度为1mL/h。纺丝环境温度为25℃,相对湿度40%。纺丝结束后,待溶剂挥发完全,得到复合纤维。

将炭黑与聚丙烯腈溶解在N,N-二甲基甲酰胺中,形成质量分数为4wt%的高分子溶液,其中药物与高分子的质量比为0.2:1。

将前一步骤中的复合纤维作为接收装置,喷丝头处接+10kV电压,接收装置接-1kV电压。喷丝头与接收装置距离为15cm,纺丝溶液供给速度为0.3mL/h。纺丝环境温度为25℃,相对湿度50%。纺丝结束后,待溶剂挥发完全,得到纤维最终产品。

图1为实施例1制备的底层复合纤维膜的扫描电子显微镜照片,平均直径约1.5μm。

图2为实施例2制备的微球的扫描电子显微镜照片,直径约5~8μm。

图3为实施例3制备的层复合纤维膜的扫描电子显微镜照片,直径约5μm。

图4为实施例3制备的复合纤维接触角照片,达到了120°,基本具备疏水的性能。

图5为通过实施例2制备的复合纤维膜的抑菌性能图。通过测试发现,复合纤维膜周围出现明显的抑菌环,说明复合纤维膜具有良好的抑菌效果。

图6为实施例1制备的复合纤维膜与纯聚偏氟乙烯纤维的紫外-可见光吸收图。通过测试发现,复合纤维膜在365nm处出现明显的吸收峰,而聚偏氟乙烯纤维膜没有明显的吸收峰出现。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种石墨烯复合聚丙烯酸高吸水纤维及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!