MoS2纳米片垂直内嵌生物碳纳米复合材料及其制备方法与应用

文档序号:1955779 发布日期:2021-12-10 浏览:10次 >En<

阅读说明:本技术 MoS2纳米片垂直内嵌生物碳纳米复合材料及其制备方法与应用 (MoS2Nano-sheet vertically embedded biological carbon nano composite material and preparation method and application thereof ) 是由 吴正颖 田浩祥 陈志刚 邢凯 刘谢 钱君超 陈丰 于 2021-07-09 设计创作,主要内容包括:本发明涉及一种MoS-(2)纳米片垂直内嵌生物碳纳米复合材料及其制备方法与应用,属于新材料技术领域。本发明的MoS-(2)/C纳米复合材料是以植物细胞为碳源和结构导向模板,通过浸润、煅烧等过程成功合成的。本发明所合成的材料保留了植物的宏观形貌,同时MoS-(2)纳米片均匀定向地生长在生物碳层上,生物碳的形貌促进了MoS-(2)的分散,所得材料无明显团聚现象。在电池的充放电过程中,MoS-(2)纳米片增加了电极材料和电解液之间的接触面积,产生了更多的Li~(+)嵌入活性位点,形成了具有更高电荷迁移率的混合纳米结构。在500次充放电循环后保留有951mAhg~(-1)的可逆比容量以及98%的库伦效率。(The invention relates to a MoS 2 A nano-sheet vertically embedded biological carbon nano composite material and a preparation method and application thereof belong to the technical field of new materials. MoS of the invention 2 the/C nano composite material is successfully synthesized by taking plant cells as a carbon source and a structure-oriented template through the processes of infiltration, calcination and the like. The material synthesized by the invention keeps the macroscopic morphology of plants, and simultaneously MoS 2 The nano-sheets uniformly and directionally grow on the biological carbon layer, and the morphology of the biological carbon promotes MoS 2 The obtained material has no obvious agglomeration phenomenon. In the charging and discharging process of the battery, MoS 2 The nano-sheet increases the contact area between the electrode material and the electrolyte, and generates more Li &#43; Active sites are embedded, forming a hybrid nanostructure with higher charge mobility. 951mAhg remained after 500 charge-discharge cycles ‑1 Reversible specific capacity and coulombic efficiency of 98%.)

MoS2纳米片垂直内嵌生物碳纳米复合材料及其制备方法与 应用

技术领域

本发明涉及新材料技术领域,尤其涉及一种MoS2纳米片垂直内嵌生物碳纳米复合材料及其制备方法与应用。

背景技术

二硫化钼(MoS2)是一种类石墨层状结构的过渡金属硫化物,具有性质稳定、耐高温、制备简单、价格低廉等特点,在新能源领域有着广泛的应用前景。锂离子电池作为一种新型储能器件,被认为是最能满足未来社会可持续发展要求的高能电池之一,但商用锂离子电池的石墨负极理论比容量小 (372mAhg-1),已逐渐无法满足人们对高能量密度、高倍率性能储能设备的需求。研究者期待具有特殊层状结构和高理论比容量的MoS2(670mAhg-1)材料能够成为石墨负极的有效替代材料。

MoS2在实际电化学应用中存在两大问题:(1)MoS2在生长过程中容易聚集成花球,导致其活性位点减少;同时在充放电过由于锂离子和MoS2的反应会引起材料体积发生膨胀、导致结构断裂,从而引起电池容量的明显衰减、循环性能变差;(2)MoS2电导率低,使得材料在充放电过程中电子传输速率慢,加上循环过程中的体积粉化进一步影响了电子的传输,导致较低的倍率性能。

针对上述问题,将MoS2用于电池往往需要改性,常见方法主要有两种: (1)减小MoS2层厚、构筑少层结构MoS2。少层MoS2能够提供更短的锂离子迁移路径,暴露更多的有效储锂位点;同时层厚减小后还能增加电极与电解液的接触面积,有助于电池快速充放电;(2)将MoS2与碳素材料(如活性炭、碳纳米管、石墨烯、介孔碳等)复合,提升材料导电性。同时,碳结构的支撑可有效缓解MoS2电极在充放电过程中的体积膨胀,增强材料稳定性。与碳纳米颗粒、碳纳米管相比,具有一定储锂比容量的片层石墨与无定形碳能够更好的与MoS2纳米片匹配,构成二维片-片耦合结构。但是,目前构筑二维MoS2/C片-片耦合结构的方法都比较繁琐且成本高。因此,如何通过简单且环境友好的方法来制备二维MoS2/C纳米复合材料成为科学研究的热点。

不同于人工合成的材料,自然界中的动植物、微生物在长期的自然演变过程中创造出各种各样的精细结构与组织。采用生物模板法,以这些复杂的生物组织结构为基质和模板来设计具有独特结构和形貌的材料,为复杂结构材料的合成提供了新的思路。但是目前还没有采用生物模板法来制备特殊二维结构MoS2/C纳米复合材料的报道。

发明内容

为解决上述技术问题,本发明提供了一种二维MoS2纳米片垂直内嵌生物碳(MoS2/C)纳米复合材料及其制备方法与应用。本发明以大自然界中广泛存在的植物组织细胞为结构导向剂,通过水热反应、高温煅烧等过程直接合成二维MoS2/C纳米复合材料,其作为锂离子电池的电极材料表现出了良好的储锂性能。

本发明的第一个目的是提供了一种MoS2纳米片垂直内嵌生物碳纳米复合材料的制备方法,包括如下步骤:

S1、将生物模板浸泡、洗涤、晾干备用;

S2、将S1步骤所得的备用生物模板浸入钼酸铵和硫脲的混合溶液中,进行水热反应,得到反应液;

S3、将S2步骤所述反应液进行抽滤、洗涤、烘干,得到部分碳化生物模板/MoS2材料;

S4、将S3步骤所述部分碳化生物模板/MoS2材料在惰性气体气氛下升温、煅烧,得到所述MoS2纳米片垂直内嵌生物碳纳米复合材料。

进一步地,所述生物模板为山茶花花瓣、桃花花瓣、杜鹃花花瓣或琼花花瓣。

进一步地,在S1步骤中,所述浸泡采用的是浓度为40%~60%的乙醇溶液,且所述的乙醇溶液的pH为2~4;浸泡的时间为2~4周。

进一步地,在S2步骤中,所述混合溶液中钼酸铵的浓度为 0.0075~0.029mol/L;混合溶液中硫脲溶液的浓度为0.028~0.114mol/L;

进一步地,在S2步骤中,所述水热反应是180~220℃反应6~24h。

进一步地,在S3步骤中,所述烘干是40~80℃烘干12~24h。

进一步地,在S4步骤中,所述升温的速率为5~10℃·min-1

进一步地,在S4步骤中,所述煅烧是550℃煅烧2h。

进一步地,在S4步骤中,所述惰性气体为氮气或氩气。

本发明的第二个目的是提供所述的方法制备得到的MoS2/C纳米复合材料。

本发明的第三个目的是提供一种锂电池,其负极采用所述的MoS2/C纳米复合材料制备得到。

本发明的上述技术方案相比现有技术具有以下优点:

本发明所述的二维结构的MoS2/C纳米复合材料是以花瓣的组织结构为生物模板,通过前驱体溶液中的离子渗透、水热陈化、再煅烧碳化的方式成功合成的。本发明所合成的二维MoS2/C纳米复合材料保留了模板的宏观形貌,同时MoS2纳米片均匀定向地生长在生物碳层上。在MoS2的成核、生长过程中,由于生物组织结构的导向作用,使得MoS2片层的生长受到空间上的限制、片层厚度减少,并且煅烧后片层高度均匀且垂直生长在碳层上。在电池充放电的过程中,层数减少、高度分散且垂直生长的MoS2纳米片可以增加电极材料和电解液之间的接触面积,产生更多的锂离子嵌入/脱出活性位点。将MoS2纳米薄片与碳基体紧密结合,形成具有更高电荷迁移率的混合纳米结构。同时,生物碳在充放电过程中提供了高稳定性的骨架支撑,缓解了MoS2的体积粉化。该材料作为锂电池负极材料表现出良好的循环稳定性和可逆性,500次循环后保留有951mAhg-1的可逆比容量以及98%的库伦效率。

附图说明

为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中

图1为实施例1合成的二维MoS2/C纳米复合材料的SEM图像。

图2为实施例1合成的二维MoS2/C纳米复合材料的TEM图像。

图3为实施例1合成的二维MoS2/C纳米复合材料的XRD图像。

图4为实施例1合成的二维MoS2/C纳米复合材料、生物碳、单纯MoS2的循环性能图。

图5为实施例2合成的二维MoS2/C-0.2纳米复合材料的SEM图像。

图6为实施例3合成的二维MoS2/C纳米复合材料的SEM图像。

图7为实施例4合成的二维MoS2/C纳米复合材料的SEM图像。

图8为对比例1合成的MoS2材料的SEM图像。

图9为对比例2合成的MoS2材料的SEM图像。

具体实施方式

下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。

一种MoS2纳米片垂直内嵌生物碳纳米复合材料的制备方法,包括下述步骤:

(1)从校园采集山茶花花瓣,用去离子水冲洗去除表面灰尘。然后将花瓣在乙醇水溶液(50%)中浸泡2周以去除花瓣的颜料和其他有机物质。

(2)将预处理好的花瓣用去离子水清洗3次后晾干,然后浸入到配制的浓度为0.0075moL/L的钼酸铵和0.028moL/L硫脲的混合溶液中。后将钼酸铵与硫脲浸润生物模板转移至反应釜内衬中,在220℃下水热6h。

(3)将水热结束后的混合物进行抽滤,并用去离子水和乙醇分别清洗三次,后将所获得的固体产物放入80℃烘箱24h。此样品为部分碳化花瓣 /MoS2

(4)将烘干的部分碳化花瓣/MoS2置于管式炉中在氮气下550℃煅烧 2h,所得材料即为MoS2/C纳米复合材料。

下面结合实施例合成得到的纳米MoS2/C纳米复合材料,我们进一步分析本发明中纳米MoS2/C纳米复合材料的形貌结构和性能特点:

图1是MoS2/C纳米复合材料的扫描电镜(SEM)图像,在MoS2/C纳米复合材料的SEM图像中,可以观察到从花瓣细胞骨架衍生出的周期性浮雕状排列,这起源于花瓣原始的细胞表面形貌。与原来的花瓣模板相比, MoS2/C纳米复合材料的表面含有大量的硫化钼纳米片,这些纳米片均匀定向地生长在生物碳上。

图2是MoS2/C纳米复合材料的TEM图像。TEM图像给出了复合材料中MoS2和碳层之间的结构。TEM图像弯曲的薄片是典型的MoS2纳米片,这些硫化钼分布均匀,呈现出少层的形貌。高分辨透射电镜(HR-TEM)显示复合材料中的MoS2为少层(层数为在3~8层)结构,晶格间距为0.65nm。

图3是MoS2/C纳米复合材料的XRD图谱。在2θ为8.86°、17.96°、33.38°、 33.80°和59.21°处的特征峰,分别对应于立方MoS2的(002)、(004)、(100)、 (101)、和(008)晶面。与传统2H相的MoS2相比,二维少层MoS2/C纳米复合材料的(002)和(004)晶面向左偏移,说明了MoS2/C纳米复合材料中的 MoS2在生长过程中晶体结构发生了变化,有转变成导电1T相的趋势。1T 相的MoS2比2H相的MoS2导电性能更好,这在后期用作电池电极材料时更有利于电子的传输,提升材料的储锂容量。

下面对于本发明合成的二维MoS2/C纳米复合材料的电化学性能进行测试:测试条件将实施例所得MoS2/C纳米复合材料作为负极,锂片作为对电极和参比电极,采用CR2032型纽扣式电池系统测试材料的电化学性能。具体的,称取适量的样品,先与导电炭黑(SuperP)混合研磨25-30min,后加入PVDF作为粘结剂再次研磨5min(三种物料的比例为7:2:1)。将混合研磨均匀的粉末转移至小烧杯中,加入适量NMP作溶剂,后用乳化机乳化 30min。将乳化完成的溶剂使用100μm的刀片均匀涂抹于铜箔上,后置于真空烘箱中80℃烘干24h。后将烘干的铜箔用锟压机锟压后用切片机切割成同等大小的圆形极片。最后在手套箱中安装成纽扣电池。电池性能测试由多通道电池测试仪(LAND CT2001A)进行测试。

图4是MoS2/C纳米复合材料在500mA/g高电流密度下的循环性能图。采用生物模板导向的二维少层MoS2/C纳米复合材料在首圈的可逆比容量为 1041mAh·g-1,远高于生物碳和单纯MoS2的样品。同时经过100圈的循环后依然能够保持有516mAh·g-1的可逆比容量,同样高于生物碳 (205mAh·g-1)和单纯MoS2(284mAh·g-1)的样品。该结果表明二维 MoS2/C纳米复合材料具有大电流充放电的能力,稳定性良好。该MoS2/C 纳米复合材料具有优异的电化学性能主要是因为生物碳的导电性和发生了相转变的MoS2具有更好的导电性。同时在充放电过程中,锂离子的嵌入/ 脱出基本发生在MoS2结构中,而均匀分散的MoS2提供的足够的活性位点,使锂离子的嵌入/脱出更为简单迅速。同时因为MoS2晶体成长过程中晶核嵌入在生物碳的表面结构中,使锂离子嵌入/脱出带来的体积膨胀大为减小, MoS2与碳的紧密结合使MoS2处于一个稳定状态,致使材料表现出优异的性能。

实施例2:

(1)从校园采集山茶花花瓣,用去离子水冲洗去除表面灰尘。然后将花瓣在乙醇水溶液中浸泡2周(50%)以去除花瓣的颜料和其他有机物质。

(2)将预处理好的花瓣用去离子水清洗3次后晾干,然后浸入到配制的浓度为0.029moL/L的钼酸铵和0.114moL/L硫脲的混合溶液中。后将钼酸铵与硫脲浸润生物模板转移至反应釜内衬中,在220℃下水热6h。

(3)将水热结束后的材料进行抽滤,并用去离子水和乙醇分别清洗三次,后将所获得的固体产物放入80℃烘箱24h。此样品为部分碳化花瓣 /MoS2

(4)将烘干的部分碳化花瓣/MoS2置于管式炉中在氮气下550℃煅烧 2h,所得材料即为MoS2/C-0.2复合材料。

图5是钼酸铵浓度为0.029moL/L时所合成的MoS2/C纳米复合材料(标记为MoS2/C-0.2)的扫描电镜(SEM)图像。从MoS2/C-02复合材料的SEM 图像中,可以明显观察到MoS2纳米片非常均匀、垂直地生长在生物碳上,由于合成时钼源的浓度较高,MoS2纳米片的密度也比较大。

实施例3:

(1)从校园采集桃花花瓣,用去离子水冲洗去除表面灰尘。然后将花瓣在乙醇水溶液中浸泡2周(50%)以去除花瓣的颜料和其他有机物质。

(2)将预处理好的花瓣用去离子水清洗3次后晾干,然后浸入到配制的浓度为0.029moL/L的钼酸铵和0.114moL/L硫脲的混合溶液中。后将钼酸铵与硫脲浸润生物模板转移至反应釜内衬中,在220℃下水热6h。

(3)将水热结束后的材料进行抽滤,并用去离子水和乙醇分别清洗三次,后将所获得的固体产物放入80℃烘箱24h。此样品为部分碳化花瓣 /MoS2

(4)将烘干的部分碳化花瓣/MoS2置于管式炉中在氮气下550℃煅烧 2h,所得材料即为桃花为模板所得MoS2/C纳米复合材料。

图6是桃花为结构导向剂和生物碳模板、钼酸铵浓度为0.029moL/L时所合成的MoS2/C纳米复合材料(标记为MoS2/C-0.2-p)的扫描电镜(SEM) 图像。从MoS2/C-02-p复合材料的SEM图像中,可以明显观察到高度取向生长、垂直于生物碳表面且分散均的MoS2纳米片。同时也能观察到极少量略微团聚的MoS2花球在复合材料的表面,这是由于合成时钼源的浓度较高所致。

实施例4:

(1)从校园采集琼花花瓣,用去离子水冲洗去除表面灰尘。然后将花瓣在乙醇水溶液中浸泡4周(60%)以去除花瓣的颜料和其他有机物质。

(2)将预处理好的花瓣用去离子水清洗3次后晾干,然后浸入到配制的浓度为0.029moL/L的钼酸铵和硫脲的混合溶液中。后将钼酸铵与硫脲浸润生物模板转移至反应釜内衬中,在220℃下水热6h。

(3)将水热结束后的材料进行抽滤,并用去离子水和乙醇分别清洗三次,后将所获得的固体产物放入80℃烘箱24h。此样品为部分碳化花瓣 /MoS2

(4)将烘干的部分碳化花瓣/MoS2置于管式炉中在氮气下550℃煅烧 2h,所得材料即为桃花为模板所得MoS2/C纳米复合材料。

图7是琼花为结构导向剂和生物碳模板、钼酸铵浓度为0.029moL/L时所合成的MoS2/C纳米复合材料(标记为MoS2/C-0.2-v)的扫描电镜(SEM) 图像。从MoS2/C-02-v复合材料的SEM图像中,也可以明显观察到高度取向生长、垂直于生物碳表面且分散均的MoS2纳米片。并且,由于生物细胞结构的细微差别导致琼花模板所获得的MoS2纳米片分散非常均匀、生长取向也很明显。

对比例1:

(1)从公园采集山茶花花瓣,用去离子水冲洗去除表面灰尘。然后将花瓣在乙醇水溶液中浸泡4周(50%)以去除花瓣的颜料和其他有机物质。

(2)将预处理好的花瓣用去离子水清洗3次后晾干。

(3)将晾干的花瓣置于管式炉中在氮气下550℃煅烧2h。取样、研磨、收集,所得材料即为生物碳材料。

图8为对比例1所获得的单纯生物碳材料的SEM图像。从图上可以看出,直接由花瓣经过预处理、煅烧后得到的生物碳具有与花瓣模板类似的形貌结构,且表面均匀光滑,无任何纳米片的嵌入。

对比例2:

称取一定的量的钼酸铵溶于水,使得钼离子的浓度为0.029moL/L,然后再加入一定量的硫脲(钼和硫的摩尔比为1:4),搅拌溶解后转移到高压釜汇总,220℃下水热6h,然后取出抽滤、洗涤、烘干,得到单纯MoS2材料。

图9为对比例2所得单纯MoS2材料的SEM图像,从图中可以看出, MoS2的合成体系中未加入生物组织结构,所得到的MoS2为团聚的花球状,花球尺寸为500-600nm,并且MoS2纳米片没有发生定向地排列,形貌与加入生物模板后的复合材料完全不一样。

显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:高比能钠离子电池锰基层状正极材料及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类