Method for calculating load distribution rule of planetary threaded roller bearing based on direct rigidity method

文档序号:1964008 发布日期:2021-12-14 浏览:23次 中文

阅读说明:本技术 一种基于直接刚度法的行星螺纹滚柱轴承载荷分布规律计算方法 (Method for calculating load distribution rule of planetary threaded roller bearing based on direct rigidity method ) 是由 解志杰 倪佳楠 于迪 尹继辉 刘九庆 于 2021-08-25 设计创作,主要内容包括:本发明提出一种基于直接刚度法的行星螺纹滚柱轴承载荷分布规律计算方法,属于行星滚柱丝杠及行星螺纹滚柱轴承接触载荷计算技术领域;根据行星螺纹滚柱轴承的结构特征,对其结构进行离散化并将离散化结构简化为等效弹簧;计算螺纹牙刚度、轴段刚度及赫兹接触刚度,建立行星螺纹滚柱轴承的一维等效弹簧网络模型;利用直接刚度法,计算外部载荷作用下,弹簧网络内各个弹簧的内力与变形,得到对应的螺纹牙轴向接触载荷,从而计算接触变形与接触应力;本发明在考虑所有结构变形的基础上,通过直接刚度法精确计算了行星螺纹滚柱轴承的接触载荷分布,无需采用迭代计算,计算速度快,实用性与通用性好。(The invention provides a method for calculating a load distribution rule of a planetary threaded roller bearing based on a direct rigidity method, belonging to the technical field of calculation of contact loads of a planetary roller screw and the planetary threaded roller bearing; according to the structural characteristics of the planetary threaded roller bearing, discretizing the structure and simplifying the discretized structure into an equivalent spring; calculating the rigidity of the thread, the rigidity of the shaft section and the Hertz contact rigidity, and establishing a one-dimensional equivalent spring network model of the planetary threaded roller bearing; calculating the internal force and deformation of each spring in the spring network under the action of an external load by using a direct stiffness method to obtain the corresponding axial contact load of the thread teeth, thereby calculating the contact deformation and the contact stress; the method accurately calculates the contact load distribution of the planetary threaded roller bearing by a direct rigidity method on the basis of considering all structural deformations, does not need to adopt iterative calculation, and has high calculation speed and good practicability and universality.)

1. A method for calculating the load distribution rule of a planetary threaded roller bearing based on a direct rigidity method is characterized by comprising the following steps:

the method specifically comprises the following steps:

step 1: discretizing the structure of the planetary threaded roller bearing into a shaft section among the thread teeth, a thread tooth body and a contact area meshed among the thread teeth;

step 2: respectively calculating the Hertz contact rigidity of the thread, the self rigidity of the thread and the shaft section rigidity of the thread;

and step 3: establishing a one-dimensional equivalent spring network model according to the discretization structure of the planetary threaded roller bearing, and calculating the equivalent stiffness of each equivalent spring based on the stiffness of each discretization structure;

and 4, step 4: calculating the internal force and deformation of each equivalent spring in the spring network model by using a direct stiffness method to obtain the corresponding axial contact load and equivalent deformation of the thread;

and 5: and calculating the corresponding Hertz contact stress and contact deformation through the axial contact load and the Hertz contact theory of the thread ridge.

2. The method of claim 1, further comprising: in the step 1, the planetary threaded roller bearing comprises a bearing outer ring (1), rollers (2), a bearing inner ring (3) and a retainer (4), wherein two ends of each roller (2) are arranged in through holes which are uniformly distributed in the circumferential direction of the retainer (4), and the outer ring groove threads of the rollers (2) are simultaneously meshed with the outer ring groove threads of the bearing inner ring (3) and the inner ring groove threads of the bearing outer ring (1).

3. The method of claim 2, further comprising: the threads of the bearing outer ring (1) and the bearing inner ring (3) are standard triangular ring groove threads, and the thread type of the roller (2) is a convex arc ring groove thread.

4. The method of claim 2, further comprising: in the step 2, the process is carried out,

the shaft section rigidity of the thread ridge is RB=EA/p,

Wherein E is the elastic modulus of the material, A is the effective cross-sectional area of the shaft section, and p is the screw pitch;

the calculation formula of the self axial rigidity Rnt of the thread of the bearing outer ring (1), the self axial rigidity Rrt of the thread of the roller (2) and the self axial rigidity Rst of the thread of the bearing inner ring (3) is as follows:

where N is the normal force per unit width to which the thread contact point is subjected in axial cross-section, β is the flank angle of the thread ridge, and εaFor axial deformation by bending moments,. epsilonbFor axial deformation by shear forces,. epsiloncFor axial deformation caused by root inclination, epsilondAxial deformation, epsilon, for root shear deformationeAxial deformation, e, for radial contraction of the inner race of the bearingfAxial deformation, epsilon, produced by radial contraction of the rollersgAxial deformation generated by radial expansion of the bearing outer ring;

the contact deformation of the contact area of the thread engagement among the bearing outer ring (1), the bearing inner ring (3) and the roller (2) isρ is the principal curvature at the contact point, Q is the normal load of the contact area, eεCan be obtained by looking up a table according to rho;

axial Hertz contact stiffness R of contact sides of the bearing outer ring (1) and the bearing inner ring (3) and the roller (2) after linearizationsAnd RnThe calculation formula is as follows:

in the formula, eε_s、eε_nHertz contact parameters of the bearing inner ring (3) and the bearing outer ring (1) are respectively; faveThe theoretical average axial load value of a single thread is obtained; rhosAnd rhonThe main curvatures of the contact areas of the roller, the bearing inner ring (3) and the bearing outer ring (1) are respectively.

5. The method of claim 4, further comprising: in the step 3, the process is carried out,

the one-dimensional equivalent spring network model of the planetary threaded roller bearing only considers the elastic deformation of the planetary threaded roller bearing; epsilonSnAnd εNnThe thread shaft sections of the bearing inner ring (3) and the bearing outer ring (1) of the planet thread roller bearing are respectively deformed, and epsilonRnIn order to deform the shaft section of the roller thread ridge,andthe sum of the self deformation and the contact area contact deformation of the thread teeth of the bearing inner ring (3), the bearing outer ring (1) and the roller (2) is respectively; the above-mentioned deformation corresponds to the spring rate one-to-one, and the corresponding equivalent spring rate R is as follows:

6. the method of claim 5, further comprising:

in step 4, the direct stiffness method calculation process is as follows:

according to the existing equivalent spring network model, assuming the positive direction of node displacement and the positive and negative judgment basis of the deformation of the equivalent spring, obtaining the deformation matrix of the equivalent springWith its node displacement matrixIn relation to each other, i.e.

WhereinIs a contiguous matrix, shifted by nodes andconstant coefficient composition in the relation between effective spring deformations;

multiplying the deformation of the equivalent spring by the rigidity of the equivalent spring to obtain the internal force of the equivalent spring:

a diagonal matrix composed of the stiffness of the equivalent springs;for an unknown equivalent spring internal force, the value of the equivalent spring between two intermeshing threads represents the value of the axial load on the threads;

for an otherwise linear equivalent spring,for an otherwise nonlinear equivalent spring that has been linearized, i.e. the hertzian contact stiffness,is about QavenRA column vector of/2; by substituting formula (8) for formula (9)

Can change the equivalent spring internal forceInto a known external force applied to the node of the equivalent springI.e. the total axial load to which the inner ring of the bearing is subjected, to

Displacement vector of nodeIt can be calculated according to equation (8), so that the planetary threaded roller bearing linearizes the internal force of any equivalent spring in the equivalent spring network and its equivalent deformation:

wherein the content of the first and second substances,middle and equivalent springSRTnNRTnThe corresponding internal force and the deformation thereof are the axial contact load and the equivalent deformation of the thread.

7. The method of claim 6, further comprising:

in step 5, the thread ridge is deformed by hertzian contactThe hertzian contact stress can be calculated by the following formula:

in the formula,. pi.eaebThe Hertz contact parameter is obtained according to Hertz contact theory, Pmax is the maximum Hertz contact stress, and Q is Fs/cosβ。

Technical Field

The invention belongs to the field of planetary roller screws and planetary threaded roller bearings, and particularly relates to a method for calculating a load distribution rule of a planetary threaded roller bearing based on a direct rigidity method.

Background

The planet thread roller bearing is a rolling bearing with a thread roller as a rolling body, is a derivative mechanism of a planet thread roller screw, mainly comprises a retainer, a bearing outer ring with annular threads, a bearing inner ring and a roller, has the performance advantages of large bearing and high rigidity, and can obviously improve the power-volume ratio of a system when being applied to an electric actuating mechanism. Because the planetary thread roller bearing and the planetary roller screw belong to the same screw transmission mechanism, the distribution rule of the contact load of the internal threads is an important factor influencing the mechanical property index of the planetary thread roller bearing and the planetary roller screw. Under the action of axial load, the planetary threaded roller bearing has thread deformation, shaft section deformation and contact deformation inside the planetary threaded roller bearing, and interaction relations exist among the three kinds of deformation. Therefore, in order to calculate the contact stress and strain at each thread contact point of the planetary threaded roller bearing, it is necessary to calculate the internal load distribution thereof by fully considering the influence relationship between the internal elastic deformations thereof from the viewpoint of the whole. Because the contact between the roller and the outer ring of the bearing and the contact between the roller and the thread of the inner ring of the bearing in the planetary threaded roller bearing can be equivalent to the combination of a plurality of angular contact ball bearings, the existing ball bearing contact load calculation method has certain reference significance for the contact load calculation of the planetary threaded roller bearing. However, most of the contact load distribution calculation methods of the ball bearing only analyze the contact mechanical characteristics of a single rolling body and the inner ring and the outer ring of the bearing in the axial direction and the circumferential direction. Therefore, on the basis of obtaining a single contact point contact load calculation method of the planetary threaded roller bearing, a load distribution rule calculation method is provided for the structure and the deformation mode of the planetary threaded roller bearing, the contact mechanical characteristics of each thread contact area are further analyzed, and theoretical support is provided for research work of the bearing characteristics of the planetary threaded roller bearing.

Disclosure of Invention

The invention provides a method for calculating the load distribution rule of a planetary threaded roller bearing based on a direct rigidity method, which can accurately calculate the contact load distribution of the planetary threaded roller bearing without adopting iterative calculation, and has high calculation speed and good practicability and universality.

The invention is realized by the following scheme:

a method for calculating the load distribution rule of a planetary threaded roller bearing based on a direct rigidity method comprises the following steps:

the method specifically comprises the following steps:

step 1: discretizing the structure of the planetary threaded roller bearing into a shaft section among the thread teeth, the thread teeth and a contact area where the thread teeth are meshed;

step 2: respectively calculating the Hertz contact rigidity of the thread, the self rigidity of the thread and the shaft section rigidity of the thread;

and step 3: establishing a one-dimensional equivalent spring network model according to the discretization structure of the planetary threaded roller bearing, and calculating the equivalent stiffness of each equivalent spring based on the stiffness of each discretization structure;

and 4, step 4: calculating the internal force and deformation of each equivalent spring in the spring network model by using a direct stiffness method to obtain the corresponding axial contact load and equivalent deformation of the thread;

and 5: and calculating the corresponding Hertz contact stress and contact deformation through the axial contact load and the Hertz contact theory of the thread ridge.

Further, in step 1, the planetary threaded roller bearing comprises a bearing outer ring 1, rollers 2, a bearing inner ring 3 and a retainer 4, wherein both ends of all the rollers 2 are installed in uniformly distributed through holes in the circumferential direction of the retainer 4, and the outer ring groove threads of the rollers 2 are simultaneously meshed with the outer ring groove threads of the bearing inner ring 3 and the inner ring groove threads of the bearing outer ring 1.

Further, the threads of the bearing outer ring 1 and the bearing inner ring 3 are standard triangular ring groove threads, and the thread type of the roller 2 is a convex arc ring groove thread.

Further, in step 2,

axial section stiffness of the thread ridgeIs RB=EA/p,

Wherein E is the elastic modulus of the material, A is the effective cross-sectional area of the shaft section, and p is the screw pitch;

the calculation formulas of the self axial rigidity Rnt of the thread of the bearing outer ring 1, the self axial rigidity Rrt of the thread of the roller 2 and the self axial rigidity Rst of the thread of the bearing inner ring 3 are as follows:

where N is the normal force per unit width to which the thread contact point is subjected in axial cross-section, β is the flank angle of the thread ridge, and εaFor axial deformation by bending moments,. epsilonbFor axial deformation by shear forces,. epsiloncFor axial deformation caused by root inclination, epsilondAxial deformation, epsilon, for root shear deformationeAxial deformation, e, for radial contraction of the inner race of the bearingfAxial deformation, epsilon, produced by radial contraction of the rollersgAxial deformation generated by radial expansion of the bearing outer ring;

the contact deformation of the contact area of the thread engagement between the bearing outer ring 1, the bearing inner ring 3 and the roller 2 isρ is the principal curvature at the contact point, Q is the normal load of the contact area, eεCan be obtained by looking up a table according to rho;

axial Hertz contact stiffness R of contact sides of bearing outer ring 1 and bearing inner ring 3 and roller 2 after linearizationsAnd RnThe calculation formula is as follows:

in the formula,eε_s、eε_nHertz contact parameters of the bearing inner ring 3 and the bearing outer ring 1 are respectively; faveThe theoretical average axial load value of a single thread is obtained; rhosAnd rhonThe main curvatures of the contact areas of the rollers with the bearing inner ring 3 and the bearing outer ring 1 are respectively.

Further, in step 3,

the one-dimensional equivalent spring network model of the planetary threaded roller bearing only considers the elastic deformation of the planetary threaded roller bearing; epsilonSnAnd εNnThe bearing inner ring 3 and the bearing outer ring 1 of the planet thread roller bearing are deformed by thread shaft sections, epsilonRnIn order to deform the shaft section of the roller thread ridge,SεTnandNεTnthe sum of the self deformation and the contact area contact deformation of the thread teeth of the bearing inner ring 3, the bearing outer ring 1 and the roller 2 respectively; the above-mentioned deformation corresponds to the spring rate one-to-one, and the corresponding equivalent spring rate R is as follows:

further, in step 4, the direct stiffness method calculation process is as follows:

according to the existing equivalent spring network model, assuming the positive direction of node displacement and the positive and negative judgment basis of the deformation of the equivalent spring, obtaining the deformation matrix of the equivalent springWith its node displacement matrixIn relation to each other, i.e.

WhereinThe adjacent matrix is composed of constant coefficients in a relational expression between node displacement and equivalent spring deformation;

multiplying the deformation of the equivalent spring by the rigidity of the equivalent spring to obtain the internal force of the equivalent spring:

a diagonal matrix composed of the stiffness of the equivalent springs;for an unknown equivalent spring internal force, the value of the equivalent spring between two intermeshing threads represents the value of the axial load on the threads;

for an otherwise linear equivalent spring,for an otherwise nonlinear equivalent spring that has been linearized, i.e. the hertzian contact stiffness,is about QavenRA column vector of/2; by substituting formula (8) for formula (9)

Can change the equivalent spring internal forceInto a known external force applied to the node of the equivalent springI.e. the total axial load to which the inner ring of the bearing is subjected, to

Displacement vector of nodeIt can be calculated according to equation (8), so that the planetary threaded roller bearing linearizes the internal force of any equivalent spring in the equivalent spring network and its equivalent deformation:

wherein the content of the first and second substances,middle and equivalent springSRTnNRTnThe corresponding internal force and the deformation thereof are the axial contact load and the equivalent deformation of the thread.

Further, in step 5, the thread ridge may be deformed by hertzian contactThe hertzian contact stress can be calculated by the following formula:

in the formula,. pi.eaebThe Hertz contact parameter is obtained according to Hertz contact theory, Pmax is the maximum Hertz contact stress, and Q is Fs/cosβ。

The invention has the beneficial effects

(1) According to the structural characteristics of the planetary threaded roller bearing, discretization processing is carried out on the structure; simplifying the scattered elastic structure into an equivalent spring, calculating the axial stiffness of different structures, and establishing the one-dimensional equivalent spring network model of the planetary threaded roller bearing; according to a direct stiffness method, calculating the internal force and deformation of each spring in the equivalent spring network under the action of an external load to obtain the corresponding axial contact load of the thread; calculating corresponding contact deformation and contact stress by utilizing a Hertz contact theory according to the obtained axial contact load of the thread;

(2) the method can accurately calculate the contact load distribution of the planetary threaded roller bearing, does not need to adopt iterative calculation, and has high calculation speed and good practicability and universality.

Drawings

FIG. 1 is a flow chart of a method for calculating the load distribution law of a planetary threaded roller bearing based on a direct stiffness method according to the invention;

FIG. 2 is a schematic structural view of a planetary threaded roller bearing; wherein (1) is a bearing outer ring, (2) is a roller, (3) is a bearing inner ring, (4) is a retainer, and (5) is an elastic retainer ring;

FIG. 3 is a schematic view of a force analysis of a thread tooth contact interface;

FIG. 4 is a one-dimensional equivalent spring network model of a planetary threaded roller bearing;

FIG. 5 is a calculation of the thread tooth contact load distribution; wherein (a) is the axial contact load distribution of the roller and the contact side of the bearing outer ring, and (b) is the axial contact load distribution of the roller and the contact side of the bearing inner ring;

FIG. 6 shows the calculation results of the Hertz contact deformation distribution of the thread teeth; the contact deformation of the roller and the bearing inner ring is shown as the Hertz contact deformation cloth of the contact side of the roller and the bearing outer ring;

FIG. 7 shows the calculation results of the Hertz contact stress distribution of the thread teeth; wherein (a) is the contact stress of the roller and the bearing outer ring, and (b) is the contact stress of the roller and the bearing inner ring.

Detailed Description

The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments; all other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

In conjunction with the figures 1 to 7,

example 1: as shown in fig. 1, the present embodiment specifically includes:

step 1: discretizing the structure of the planetary threaded roller bearing into a shaft section among the thread teeth, the thread teeth and a contact area where the thread teeth are meshed;

step 2: respectively calculating the Hertz contact rigidity of the thread, the self rigidity of the thread and the shaft section rigidity of the thread;

and step 3: establishing a one-dimensional equivalent spring network model according to the discretization structure of the planetary threaded roller bearing, and calculating the equivalent stiffness of each equivalent spring based on the stiffness of each discretization structure;

and 4, step 4: calculating the internal force and deformation of each equivalent spring in the spring network model by using a direct stiffness method to obtain the corresponding axial contact load and equivalent deformation of the thread;

and 5: and calculating the corresponding Hertz contact stress and contact deformation through the axial contact load and the Hertz contact theory of the thread ridge.

The planetary threaded roller bearing structure is shown in fig. 2 and comprises a bearing outer ring 1, a bearing inner ring 3, rollers 2 and a retainer 4, wherein the rollers 2 are uniformly distributed around the bearing inner ring 3 through the retainer 4, threads of the rollers 2 are simultaneously meshed with threads of the bearing inner ring 3 and the bearing outer ring 1 to realize a rotary supporting effect, the threads of the bearing inner ring 3 and the bearing outer ring 1 are triangular threads with a thread form angle of 90 degrees, the thread form side surface of the roller 2 is in a convex arc shape, and the threads of the bearing outer ring 1, the rollers 2 and the bearing inner ring 3 are all ring groove threads with zero lead;

in the step 2, the process is carried out,

the shaft section rigidity of the thread ridge is RB=EA/p,

Wherein E is the elastic modulus of the material, A is the effective cross-sectional area of the shaft section, and p is the screw pitch;

the calculation formulas of the self axial rigidity Rnt of the thread of the bearing outer ring 1, the self axial rigidity Rrt of the thread of the roller 2 and the self axial rigidity Rst of the thread of the bearing inner ring 3 are as follows:

where N is the normal force per unit width to which the thread contact point is subjected in axial cross-section, β is the flank angle of the thread ridge, and εaFor axial deformation by bending moments,. epsilonbFor axial deformation by shear forces,. epsiloncFor axial deformation caused by root inclination, epsilondAxial deformation, epsilon, for root shear deformationeAxial deformation, e, for radial contraction of the inner race of the bearingfAxial deformation, epsilon, produced by radial contraction of the rollersgAxial deformation generated by radial expansion of the bearing outer ring;

the contact deformation of the contact area of the thread engagement between the bearing outer ring 1, the bearing inner ring 3 and the roller 2 isρ is the principal curvature at the contact point, Q is the normal load of the contact area, eεCan be obtained by looking up a table according to rho;

axial Hertz contact stiffness R of contact sides of bearing outer ring 1 and bearing inner ring 3 and roller 2 after linearizationsAnd RnThe calculation formula is as follows:

in the formula, eε_s、eε_nHertz contact parameters of the bearing inner ring 3 and the bearing outer ring 1 are respectively; faveThe theoretical average axial load value of a single thread is obtained; rhosAnd rhonThe main curvatures of the contact areas of the rollers with the bearing inner ring 3 and the bearing outer ring 1 are respectively.

In step 3, the one-dimensional equivalent spring network model of the planetary threaded roller bearing is shown in figure 4

The one-dimensional equivalent spring network model of the planetary threaded roller bearing only considers the elastic deformation of the planetary threaded roller bearing; epsilonSnAnd εNnThe bearing inner ring 3 and the bearing outer ring 1 of the planet thread roller bearing are deformed by thread shaft sections, epsilonRnIn order to deform the shaft section of the roller thread ridge,SεTnandNεTnthe sum of the self deformation and the contact area contact deformation of the thread teeth of the bearing inner ring 3, the bearing outer ring 1 and the roller 2 respectively; the above-mentioned deformation corresponds to the spring rate one-to-one, and the corresponding equivalent spring rate R is as follows:

in step 4, the direct stiffness method calculation process is as follows:

firstly, according to the existing equivalent spring network model, assuming the positive direction of node displacement and the positive and negative judgment basis of the deformation of the equivalent spring, obtaining the deformation matrix of the equivalent springWith its node displacement matrixIn relation to each other, i.e.

WhereinThe adjacent matrix is composed of constant coefficients in a relational expression between node displacement and equivalent spring deformation;

multiplying the deformation of the equivalent spring by the rigidity of the equivalent spring to obtain the internal force of the equivalent spring:

a diagonal matrix composed of the stiffness of the equivalent springs;for an unknown equivalent spring internal force, the value of the equivalent spring between two intermeshing threads represents the value of the axial load on the threads;

for an otherwise linear equivalent spring,for an otherwise nonlinear equivalent spring that has been linearized, i.e. the hertzian contact stiffness,is about QavenRA column vector of/2; by substituting formula (8) for formula (9)

Can change the equivalent spring internal forceInto a known external force applied to the node of the equivalent springI.e. the total axial load to which the inner ring of the bearing is subjected, to

Displacement vector of nodeIt can be calculated according to equation (8), so that the planetary threaded roller bearing linearizes the internal force of any equivalent spring in the equivalent spring network and its equivalent deformation:

wherein the content of the first and second substances,middle and equivalent springSRTnNRTnThe corresponding internal force and the deformation thereof are the axial contact load and the equivalent deformation of the thread.

In step 5, the thread ridge is deformed by hertzian contactThe hertzian contact stress can be calculated by the following formula:

in the formula,. pi.eaebThe Hertz contact parameter is obtained according to Hertz contact theory, Pmax is the maximum Hertz contact stress, and Q is Fs/cosβ。

Through the calculation, under the condition that the structural dimension parameters, the installation mode and the external axial load of the planetary threaded roller bearing are known, the axial contact load, the normal contact deformation and the contact stress of the internal thread contact area of the planetary threaded roller bearing can be obtained.

The dimension parameters of the planetary threaded roller bearing are shown in table 1, and if the loaded external axial load is selected to be 50kN, the contact load distribution of the screw threads in different contact areas in the planetary threaded roller bearing is shown in fig. 5; the normal Hertz contact deformation distribution of the thread teeth of different contact areas in the planet thread roller bearing is shown in figure 6; the hertzian contact stress distribution of the threads of the different contact zones inside the planetary threaded roller bearing is shown in figure 7.

TABLE 1 model size parameters for finite element simulation

As can be seen from FIG. 5, the screw contact load distribution of the different contact areas of the planetary screw roller bearing is different. The maximum normal contact load of the screw threads of the roller and the outer ring of the bearing is smaller than that of the contact side of the roller and the inner ring of the bearing, the contact load distribution of the side is uniform on the whole, the screw thread contact loads of the two contact sides in the bearing begin to decline from the stress end, the contact load of the roller and the contact side of the inner ring of the bearing presents a geometrical decline trend, and the change of the contact load tends to be smooth when the number of the screw threads exceeds 30. As can be seen from FIGS. 6 and 7, the distribution of the Hertz contact deformation and the Hertz contact stress of the planetary threaded roller bearing is similar to the distribution of the normal contact load of the threads.

The method for calculating the load distribution rule of the planetary threaded roller bearing based on the direct stiffness method is introduced in detail, the principle and the implementation mode of the invention are explained, and the description of the embodiment is only used for helping to understand the method and the core idea of the invention; meanwhile, for a person skilled in the art, according to the idea of the present invention, there may be variations in the specific embodiments and the application scope, and in summary, the content of the present specification should not be construed as a limitation to the present invention.

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于深度学习的旋转机械齿轮箱故障诊断方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类