用于车灯的通风构件及其制造方法

文档序号:45212 发布日期:2021-09-28 浏览:63次 >En<

阅读说明:本技术 用于车灯的通风构件及其制造方法 (Ventilation member for vehicle lamp and method of manufacturing the same ) 是由 李振源 李映昊 曺俊根 朴景泽 金亨周 沈相烨 曺晟弼 于 2021-03-22 设计创作,主要内容包括:提供了一种用于车灯的通风构件。所述通风构件包括:纳米纤维膜,复合粘附层,其堆叠在纳米纤维膜的一个表面上,以及通风结构,其设置在复合粘附层的中心部分上,并与纳米纤维膜接触。所述复合粘附层包括与纳米纤维膜接触的丙烯酸粘附层,以及设置在丙烯酸粘附层的一个表面上的硅基粘附层。所述丙烯酸粘附层与纳米纤维膜接触,丙烯酸粘附层以30微米或更深的深度渗入到纳米纤维膜中。所述用于车灯的通风构件具有1.0巴或更大的水压抗性。(A ventilation member for a vehicle lamp is provided. The ventilation member includes: the nanofiber membrane includes a nanofiber membrane, a composite adhesive layer stacked on one surface of the nanofiber membrane, and a ventilation structure disposed on a central portion of the composite adhesive layer and in contact with the nanofiber membrane. The composite adhesive layer includes an acrylic adhesive layer in contact with the nanofiber membrane, and a silicon-based adhesive layer disposed on one surface of the acrylic adhesive layer. The acrylic adhesive layer is in contact with the nanofiber membrane, and the acrylic adhesive layer penetrates into the nanofiber membrane to a depth of 30 microns or more. The ventilation member for a vehicle lamp has a water pressure resistance of 1.0 bar or more.)

用于车灯的通风构件及其制造方法

技术领域

本公开的示例性实施例涉及用于车灯的通风构件及其制造方法。

背景技术

车灯具有可通风的开放结构,以解决当车灯打开时车灯内温度和空气压力的增加。因此,由于灯的外部和内部之间的温度和湿度的差异,灯中会发生冷凝。

当车灯内反复发生的冷凝未被解决,灯性能可能会被削弱,或灯的电气绝缘会被减弱,从而对车内人员的安全产生负面影响。因此,车灯具有连接到其上的通风构件,例如通风贴片。通风构件用于防止冷凝,保持灯的内部和外部之间的压力平衡,并防止外部杂质或水汽的进入。例如,诸如通风贴片的通风构件可以附接到设置在车灯一侧的通风结构。

然而,相关技术中的此类通风构件对车灯的粘附力不足,且具有较低的耐久性和水压抗性。因此,外部水汽即使在低水压下也可以轻松渗入到通风构件中,由此降低灯的耐久性和性能。

申请号为10-1812784的韩国专利(于2017年12月27日获得专利,标题为“防水通风座椅及其制造方法”)公开了与本公开相关的

背景技术

发明内容

本公开的一个目的在于提供一种用于车灯的通风构件,该通风构件由于灯材料和纳米纤维膜之间的优异粘附性而具有优异的耐久性和水压抗性。

本公开的另一个目的是提供一种用于车灯的通风构件,该通风构件具有优异的防水性、防尘性和透气性。

本公开的再一个目的是提供一种上述用于车灯的通风构件的制造方法。

本公开的一个方面涉及用于车灯的通风构件。所述通风构件可以包括:纳米纤维膜;复合粘附层,其堆叠在纳米纤维膜的一个表面上;以及通风结构,其设置在复合粘附层的中心部分上,并与纳米纤维膜接触。所述复合粘附层可以包括与纳米纤维膜接触的丙烯酸粘附层,以及设置在丙烯酸粘附层的一个表面上的硅基粘附层。所述丙烯酸粘附层可以与纳米纤维膜接触,丙烯酸粘附层以30微米或更深的深度渗入到纳米纤维膜中。用于车灯的通风构件可以具有1.0巴或更大的水压抗性。

在一个实施例中,纳米纤维膜可以通过热熔纳米纤维网来制造,该纳米纤维网通过电纺包含聚偏二氟乙烯的纺丝溶液而形成。

在一个实施例中,纳米纤维膜的纤维直径可以在50纳米-500纳米的范围内,孔隙率可以在10%-80%的范围内。

在一个实施例中,丙烯酸粘附层可以以30微米-80微米的深度渗入到纳米纤维膜中。

在一个实施例中,纳米纤维膜的厚度范围可以为30微米-150微米。复合粘附层的厚度范围可以为50微米-300微米。

在一个实施例中,纳米纤维膜的厚度以及硅基粘附层和丙烯酸粘附层的总厚度之间的厚度比可以在1:0.3-1:0.8的范围内。

在一个实施例中,硅基粘附层和丙烯酸粘附层之间的厚度比可以在1:0.5-1:4的范围内。

在一个实施例中,复合粘附层可以进一步包括设置在丙烯酸粘附层和硅基粘附层之间的载体层。

在一个实施例中,复合粘附层可以在占纳米纤维膜一个表面的全部面积55%-80%的区域范围内形成。

在一个具体实施例中,在70毫巴的压力下,纳米纤维膜可以具有25升/小时或更大的透气性,以及超过850毫克水汽/天的水汽渗透率。

本公开的另一方面涉及用于车灯的通风构件的制造方法。该制造方法可以包括通过将复合粘附构件热层压到纳米纤维膜的一个表面上来形成复合粘附层。所述复合粘附构件可以包括与纳米纤维膜接触的丙烯酸粘附层,以及设置在丙烯酸粘附层的一个表面上的硅基粘附层。在热层压过程中,丙烯酸粘附层可以以30微米或更深的深度渗入到纳米纤维膜中。

在一个实施例中,热熔可以在120℃-140℃的温度范围内进行。

在一个实施例中,纳米纤维膜可以通过形成纳米纤维网并将该纳米纤维网热熔来形成,该纳米纤维网通过电纺包含聚偏二氟乙烯的纺丝溶液而形成。

在一个实施例中,热熔可以在60℃-150℃的温度范围内进行。

根据本公开的用于车灯的通风构件可以在灯材料和纳米纤维膜之间具有优异的粘附性,具有优异的耐久性和水压抗性,并且具有优异的防水性、防尘性和透气性。

附图说明

图1示出了根据本公开实施例用于车灯的通风构件的横剖面图;

图2示出了根据本公开实施例用于车灯的通风构件的平面图;

图3示出了根据本公开实施例用于车灯的通风构件的水压抗性的测量方法;

图4示出了根据本公开示例1的纳米纤维膜的SEM图像;

图5示出了根据对比示例1的丙烯酸粘附层在纳米纤维膜中的渗入深度的SEM图像;

图6示出了根据示例1的用于车灯的通风构件的图像;以及

图7示出了根据示例1的附接在车灯上的用于车灯的通风构件的图像。

具体实施方式

在本公开的以下描述中,在确定本公开的主题可以因此变得相当不清楚的情况下,将省略相关公知技术和配置的详细描述。

此外,这里使用的术语是考虑到其在本公开中的功能而定义的,但是可以根据用户或操作者的意图或实践而变化。因此,在整篇说明书中,术语应该以描述为基础来定义。

这里使用的术语“(甲基)丙烯酸”可以指“丙烯酸”和“甲基丙烯酸”中的至少一个。

用于车灯的通风构件

本公开的一个方面涉及用于车灯的通风构件。图1示出了根据本公开实施例用于车灯的通风构件的横剖面图,图2示出了根据本公开实施例用于车灯的通风构件的平面图。

参考图1和2,用于车灯的通风构件100可以包括:纳米纤维膜10;复合粘附层20,其堆叠在纳米纤维膜10的一个表面上;以及通风结构30,其设置在复合粘附层20的中心部分上,并与纳米纤维膜10接触。

在一个具体实施例中,纳米纤维膜10的纵向剖面可以具有圆形、矩形或多边形的形状。

在一个具体实施例中,复合粘附层20包括与纳米纤维膜10接触的丙烯酸粘附层22,以及设置在丙烯酸粘附层22的一个表面上的硅基粘附层26。丙烯酸粘附层22以30微米或更深的深度渗入到纳米纤维膜10中。在一个具体实施例中,硅基粘附层26可以附接在其上安装有灯的表面上。

在一个实施例中,丙烯酸粘附层可以包括(甲基)丙烯酸烷基酯。例如,(甲基)丙烯酸烷基酯可以包括(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸乙基己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸月桂酯和(甲基)丙烯酸十二烷基酯中的一种或多种。当丙烯酸粘附层包含上述化合物中的一种或多种时,丙烯酸粘附层可以容易地渗入到纳米纤维膜中,并且通风构件可以具有优异的耐久性。

例如,丙烯酸粘附层可以利用包括(甲基)丙烯酸甲酯的粘附成分而形成。

在一个实施例中,硅基粘附层可以包含环氧硅烷化合物、氨基硅烷化合物、乙烯基硅烷化合物、卤代硅烷化合物、(甲基)丙烯酰氧基硅烷化合物和异氰酸酯硅烷化合物中的一个或多个。当硅基粘附层包含上述化合物中的一个或多个时,硅基粘附层对车灯构件具有优异的粘附性。

例如,硅基粘附层可以利用包括二氯二甲基硅烷的粘附成分而形成。

参考图1,释放层40可以设置在硅基粘附层26的一个表面上,防止硅基粘附层26被污染,或者防止硅基粘附层26的粘附性被削弱。

在一个实施例中,复合粘附层面积可以占纳米纤维膜的一个表面的全部面积的55%-80%。在这种情况下,纳米纤维膜和复合粘附层之间的粘附力优异,并且根据本公开的通风构件可以具有优异的耐久性和水压抗性。例如,复合粘附层的面积可以是纳米纤维膜的一个表面的总面积的55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%或80%。

在一个实施例中,纳米纤维膜可以通过热熔纳米纤维网来制造,该纳米纤维网通过电纺包含聚偏二氟乙烯(polyvinylidene fluoride,PVDF)的纺丝溶液而形成。

纺丝溶液可以包括PVDF和溶剂。当电纺的纳米纤维网热熔后,纳米纤维膜形成三维(three-dimensional,3D)多层结构。相应地,纳米纤维膜可以具有优异的耐久性、透气性和水压抗性。此外,当水渗透到纳米纤维膜中时,纳米纤维网的各层可以阻止水的渗入,并因此纳米纤维膜可以具有优异的水压抗性性能。

在一个实施例中,纳米纤维膜10的纤维直径可以在50纳米-500纳米的范围内,孔隙率可以在10%-80%的范围内。在这种情况下,纳米纤维膜10可以具有优异的透气性和耐久性,防止车灯内部和外部之间存在压力差,并防止由于其优异的水压抗性而引起水通过纳米纤维膜泄露。

在一个实施例中,丙烯酸粘附层以30微米或更深的深度渗入到纳米纤维膜中。

这里使用的术语“渗入”是指丙烯酸粘附层的组分通过热层压而熔合,从而渗透到纳米纤维膜的孔隙之间的空间中。

当丙烯酸粘附层以小于30微米的深度渗入到纳米纤维膜中时,纳米纤维膜和丙烯酸粘附层之间的粘附性被削弱。因此,根据本公开的通风构件可能无法获得预期水平的耐久性和水压抗性。例如,丙烯酸粘附层可以以30微米-80微米的深度范围渗入到纳米纤维膜中。例如,丙烯酸粘附层可以以30微米、31微米、32微米、33微米、34微米、35微米、36微米、37微米、38微米、39微米、40微米、41微米、42微米、43微米、44微米、45微米、46微米、47微米、48微米、49微米、50微米、51微米、52微米、53微米、54微米、55微米、56微米、57微米、58微米、59微米、60微米、61微米、62微米、63微米、64微米、65微米、66微米、67微米、68微米、69微米、70微米、71微米、72微米、73微米、74微米、75微米、76微米、77微米、78微米、79微米或80微米的深度渗入到纳米纤维膜中。

在一个实施例中,纳米纤维膜的厚度范围可以为30微米-150微米。在该厚度范围内,纳米纤维膜可以具有优异的耐久性和水压抗性。

在一个实施例中,复合粘附层的厚度范围可以为50微米-300微米。在该厚度范围内,复合粘附层可以具有优异的耐久性和水压抗性。

参考图1,复合粘附层20可以进一步包括设置在丙烯酸粘附层22和硅基粘附层26之间的载体层24。在一个实施例中,载体层24可以包含聚对苯二甲酸乙二醇酯。当设置载体层时,可以增加复合粘附层的耐久性和水压抗性。

参考图1,纳米纤维层的厚度以及硅基粘附层和丙烯酸粘附层的总厚度之间的厚度比可以在1:0.3-1:0.8的范围内。此处,丙烯酸粘附层的厚度不包含丙烯酸粘附层渗入到纳米纤维膜中的部分。在该厚度比范围内,对灯表面的粘附性和对纳米纤维膜的粘附性均很优异,且可以最小化由于温度和湿度变化而对车灯构件造成的诸如防水性和水压抗性等性能的削弱。例如,厚度比可以在1:0.5至1:0.8的范围内。此处,丙烯酸粘附层的厚度不包含丙烯酸粘附层渗入到纳米纤维膜中的部分。

在一个实施例中,硅基粘附层和丙烯酸粘附层之间的厚度比可以在1:0.5-1:4的范围内。在该厚度比范围内,对灯表面的粘附性和对纳米纤维膜的粘附性均很优异,且因此通风构件的防水性和水压抗性可以很优异。

此处,丙烯酸粘附层的厚度不包含丙烯酸粘附层渗入到纳米纤维膜中的部分。

例如,硅基粘附层和丙烯酸粘附层之间的厚度比可以在1:0.5-1:3的范围内。

在一个实施例中,载体层24的厚度可以在10微米-100微米的范围内。在该厚度范围内,可以增加复合粘附层的耐久性和水压抗性。

在一个实施例中,在70毫巴的压力下,纳米纤维膜可以具有25升/小时或更大的透气性,以及超过850毫克水汽/天的水汽渗透率(moisture vapor transmission rate,MVTR)。例如,在70毫巴的压力下,纳米纤维膜可以具有25升/小时到50升/小时范围内的透气性,以及860毫克水汽/天到2000毫克水汽/天的水汽渗透率。

在一个实施例中,纳米纤维膜和复合粘附层的水压抗性为1.0巴或更大。当水压抗性小于1.0巴时,本公开中预期的水压抗性可能无法获得。例如,水压抗性可以在1.0巴-8.0巴的范围内。例如,水压抗性可以是1巴,2巴,3巴,4巴,5巴,6巴,7巴或者8巴。

图3示出了根据本公开实施例用于车灯的通风构件的水压抗性的测量方法。参考图3,测量水压抗性的方法可以通过下述执行:制备一个具有10立方厘米容积的测量模块200,且其上表面设置有1.5厘米直径的孔,将测量模块200注入水,将纳米纤维膜附接在孔上,在往测量模块中施加空气压力使得水压增加时,测量纳米纤维膜撕裂或贴片的复合粘附层破裂而水泄露的压力。

所使用的测量模块可以由包括PC-ABS或者PC的材料形成。当水压抗性小于1.0巴时,本公开中预期的水压抗性可能无法获得。例如,水压抗性可以在1.0巴-8.0巴范围内。例如,水压抗性可以是1巴,2巴,3巴,4巴,5巴,6巴,7巴或者8巴。

用于车灯的通风构件的制造方法

本公开的另一方面涉及用于车灯的通风构件的制造方法。在一个具体实施例中,用于车灯的通风构件的制造方法可以包括通过将复合粘附构件热层压到纳米纤维膜的一个表面上来形成复合粘附层的步骤。

所述复合粘附构件包括与纳米纤维膜接触的丙烯酸粘附层,以及形成在丙烯酸粘附层的一个表面上的硅基粘附层。在热层压期间,丙烯酸粘附层以30微米或更深的深度渗入到纳米纤维膜中。当渗入深度小于30微米时,通风构件的水压抗性和耐久性可能被削弱。

在一个具体实施例中,热层压可以在120℃-140℃的温度范围内进行。当在该条件下进行热层压时,丙烯酸粘附层的至少一部分可以渗入到纳米纤维膜中,从而提高通风构件的水压抗性和耐久性。例如,在120℃-140℃的温度范围内,热层压可以以1米/分钟-10米/分钟范围内的速率进行。

在一个具体实施例中,纳米纤维膜可以通过形成纳米纤维网并将该纳米纤维网热熔的步骤来形成,该纳米纤维网通过电纺包含聚偏二氟乙烯(polyvinylidene fluoride,PVDF)的纺丝溶液的步骤而形成。

在一个具体实施例中,热熔可以在60℃-150℃的温度范围内进行。在该条件下,具有三维(3D)多层结构的纳米纤维膜可以很容易形成。

下文中,本公开的配置和操作将参考本公开的优选示例进行更详细的描述。然而,应当注意,这些示例被展示为本公开的优选示例,且不应以任何方式被认为是对本公开的限制。此处未描述的内容可以被本领域技术人员充分地和技术性地预见,且因此其描述在此省略。

示例及对比示例

示例1

纳米纤维膜(水压抗性为5巴,且70毫巴压力下,透气性为25升/小时或更大,MVTR超过850毫克/天)具有圆形纵向剖面,厚度为100微米,如图4所示,其通过形成纳米纤维网,并在60℃-150℃的温度范围内热熔该纳米纤维网来制造,该纳米纤维网通过电纺包含PVDF的纺丝溶液而形成。

之后,用于车灯的通风构件的制造通过下述进行:制备复合粘附构件,其中丙烯酸粘附层(包含(甲基)丙烯酸甲酯)、由PET形成的载体层和硅基粘附层(包含二氯二甲基硅烷)按顺序堆叠,通过在120℃-140℃的温度范围内以1米/分钟-10米/分钟的速率将复合粘附构件热层压到纳米纤维膜的一个表面上来形成复合粘附层,并且形成位于复合粘附层的中心部分并与纳米纤维膜接触的通风结构。在热层压期间,丙烯酸粘附层以30微米的深度渗入到纳米纤维膜中。复合粘附层由厚度为30微米的丙烯酸粘附层(除去渗入到纳米纤维膜中的部分),厚度为50微米的PET形成的载体层以及厚度为40微米的硅基粘附层形成。

图6示出了根据示例1的用于车灯的通风构件的图像,图7示出了根据示例1的附接在车灯上的用于车灯的通风构件的图像。

丙烯酸粘附层的渗入深度由扫描电子显微镜(scanning electron microscope,SEM)测量。此外,形成的复合粘附层的面积占纳米纤维膜的一个表面的总面积的68.7%。

示例2和3及对比示例

通风构件通过与示例1相同的方法制造,除了通风构件通过对如表1所示的丙烯酸粘附层的渗透厚度进行热层压来制造。

水压抗性的测量:将测量模块200注入水,该测量模块200具有10立方厘米容量且在其上表面上形成有1.5厘米直径的孔,使根据示例和比较示例的每个通风贴片与该孔接触,并且通过使用夹具按压通风贴片的外围部分并将通风贴片在室温下保持在该位置30分钟,来将通风贴片的硅基粘附层附接到测量模块上。然后,在通过向测量模块中施加空气压力来增加水压的同时,测量随着纳米纤维膜被撕裂或贴片的复合粘附层破裂而漏水的空气压力(水压抗性)。其结果列在下方表1中。

表1

图5示出了根据对比示例的丙烯酸粘附层在纳米纤维膜中的渗入深度的SEM图像。参考图5和表1的结果可以得知,在对比示例中,丙烯酸粘附层的渗入深度比根据本公开的丙烯酸粘附层的渗入深度小,水压抗性被大幅减小到0.7巴。

反之,可以得知,在示例1-3中,每个通风构件的水压抗性为1巴或更大,因此通风构件具有优异的防水性和水压抗性,且可以适用于用于车灯的通风构件。

上述内容参考本公开的具体实施例对本公开进行了详细描述。本公开涉及领域的技术人员可以理解,本公开可以在不脱离本公开的本质特征的情况下以修改的形式实现。因此,在此公开的上述实施例应当被认为是说明性的而非限制性的。应当理解本公开的保护范围不应由上述描述所定义,而应由所附权利要求以及属于本公开权利要求的等同的所有差异所定义。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种矿棉纤维毡针刺成型设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!