一种碳化硼与碳化硅复合陶瓷的制备方法

文档序号:496316 发布日期:2022-01-07 浏览:23次 >En<

阅读说明:本技术 一种碳化硼与碳化硅复合陶瓷的制备方法 (Preparation method of boron carbide and silicon carbide composite ceramic ) 是由 王汝江 董世昌 于海培 孙俊艳 于 2021-12-10 设计创作,主要内容包括:本发明公开了一种碳化硼与碳化硅复合陶瓷的制备方法,属于陶瓷制备技术领域;该制备方法包括制备初级混合粉,制备混合粉,压制,辐射处理,烧结;所述制备初级混合粉,将碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼混合均匀后置于球磨罐中进行液氮球磨,液氮球磨结束得到初级混合粉;本发明的制备方法能够在提高碳化硼与碳化硅复合陶瓷的精度,降低生产成本,提高生产效率的同时,降低烧结温度,提高碳化硼与碳化硅复合陶瓷的抗张强度和抗拉强度,降低脆性。(The invention discloses a preparation method of boron carbide and silicon carbide composite ceramic, belonging to the technical field of ceramic preparation; the preparation method comprises preparing primary mixed powder, preparing mixed powder, pressing, radiating and sintering; the preparation method comprises the following steps of preparing primary mixed powder, namely uniformly mixing boron carbide powder, silicon carbide powder, volcanic rock powder and nano boron nitride, putting the mixture into a ball milling tank for liquid nitrogen ball milling, and obtaining the primary mixed powder after the liquid nitrogen ball milling is finished; the preparation method of the invention can improve the precision of the boron carbide and silicon carbide composite ceramic, reduce the production cost, improve the production efficiency, reduce the sintering temperature, improve the tensile strength and tensile strength of the boron carbide and silicon carbide composite ceramic and reduce the brittleness.)

一种碳化硼与碳化硅复合陶瓷的制备方法

技术领域

本发明涉及陶瓷制备技术领域,具体涉及一种碳化硼与碳化硅复合陶瓷的制备方法。

背景技术

陶瓷材料作为非金属材料中的关键一员,具有良好的机械性能和电化学性能,而且具有热导率低,结构致密均匀,耐磨和耐腐蚀等优点,但是陶瓷材料脆性大,抗张强度和抗拉强度低,塑性和韧性差。随着科技的发展,人们对陶瓷要求越来越高,单一的陶瓷材料已经无法满足人们的需要,越来越多的人选择使用复合陶瓷。

碳化硅与碳化硼复合陶瓷具有高硬度和重量轻的特点,最初应用于防弹装甲领域,后来随着生产工艺的不断改进和生产成本的降低,碳化硅与碳化硼复合陶瓷被广泛应用于机械研磨、耐火材料、工程陶瓷、核工业和军事等不同领域。

但是,现有的碳化硅与碳化硼复合陶瓷的方法一般是先将碳化硅粉末和碳化硼粉末混合后,进行热压烧结,在进行热压烧结时,由于是在短时间内达到很高的压力和温度,陶瓷的微观裂纹就比较少,从而韧性较好,强度也大,但是热压烧结过程及热压烧结设备比较复杂,对设备要求高,加工成本高且生产效率低,而且制品表面较粗糙,精度低,一般需要清理和机加工;因此越来越多的技术人员转入对无压烧结的研究,但是碳化硼和碳化硅在进行无压烧结时,需要将温度升高至2100℃以上,耗能高,而且无压烧结制备出的复合陶瓷的抗张强度和抗拉强度较低,脆性大。因此,研发出一种碳化硼与碳化硅复合陶瓷的制备方法,能够在提高碳化硼与碳化硅复合陶瓷的精度,降低生产成本,提高生产效率的同时,降低烧结温度,提高碳化硼与碳化硅复合陶瓷的抗张强度和抗拉强度,降低脆性,是目前急需解决的技术问题。

发明内容

针对现有技术存在的不足,本发明提供了一种碳化硼与碳化硅复合陶瓷的制备方法,能够在提高碳化硼与碳化硅复合陶瓷的精度,降低生产成本,提高生产效率的同时,降低烧结温度,提高碳化硼与碳化硅复合陶瓷的抗张强度和抗拉强度,降低脆性。

为解决以上技术问题,本发明采取的技术方案如下:

一种碳化硼与碳化硅复合陶瓷的制备方法,包括制备初级混合粉,制备混合粉,压制,辐射处理,烧结。

所述制备初级混合粉,将碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼混合均匀后置于球磨罐中进行液氮球磨,控制液氮球磨时的球料比为17-20:1,液氮占球磨罐体积的60%-65%,球磨速度为500-550rpm,球磨时间为5-5.5h,液氮球磨结束得到初级混合粉。

所述碳化硼粉的纯度为97%-98%,粒径为20-30μm。

所述碳化硅粉的纯度为99%-99.8%,粒径为10-20μm。

所述火山石粉的粒径为5-10μm。

所述纳米氮化硼的粒径为20-30nm。

其中,碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼的质量比为30-35:20-25:5-8:2-5。

所述制备混合粉,向高剪切反应釜中加入初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠,水,然后将高剪切反应釜的温度调整为60-70℃,高剪切反应釜的剪切速度为5000-6000rpm,剪切40-50min后,得到混合物料,然后将混合物料置于真空冷冻干燥机中,将真空冷冻干燥机抽真空至40-50kpa,同时启动制冷,在 4-5小时内将真空冷冻干燥机的冷阱温度降至-50℃至-60℃,在-50℃至-60℃下冷冻处理2-3h;然后进行缓慢加热,在 10-11h内将混合物料的温度升至25-30℃,在25-30℃下干燥3-5h,得到混合粉。

其中,初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠和水的质量比为80-85:5-7:2-3:1-2:3-4:2-4:1-2:320-350。

所述纳米二氧化钛的粒径为100-200nm。

所述改性磁粉的制备方法为:将四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水混合后进行微波震荡4-5次,每次15-20s,控制微波震荡的强度为80-90W,微波震荡结束后加入3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸,然后继续进行微波震荡,继续微波震荡2-3次,每次10-15s,将微波震荡的强度控制到60-70W,微波震荡结束,进行过滤,将滤渣置于烘箱中,于60-70℃下烘1-1.5h,得到改性磁粉。

其中,四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水,3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸的质量比为30-35:10-12:20-25:3-5:100-120:5-8:3-5:5-8。

所述3-氯-2-羟丙基三甲基氯化铵的活性物含量为69%。

所述压制,将混合粉置于等静压机中,在150-170MPa的条件下进行冷等静压压制,得到胚体。

所述辐射处理,采用60Co源,在50-60℃下进行辐照,控制辐照剂量为300-400KGy,辐射结束得到处理后的胚体。

所述烧结,将处理后的胚体置于坩埚内,然后将坩埚置于无压烧结炉内,使用流动氮气作为保护气体,以5-8℃/min的升温速度升至1600-1650℃,保温40-50min,然后自然冷却至室温,得到碳化硼与碳化硅复合陶瓷。

与现有技术相比,本发明的有益效果为:

(1)本发明的碳化硼与碳化硅复合陶瓷的制备方法,能够在提高碳化硼与碳化硅复合陶瓷的精度,降低生产成本,提高生产效率;

(2)本发明的碳化硼与碳化硅复合陶瓷的制备方法,通过在制备混合粉使用改性磁粉和对胚体进行辐射处理,能够将烧结温度由2200℃降低至1600-1650℃,从而降低能耗;

(3)本发明制备的碳化硼与碳化硅复合陶瓷,通过在制备混合粉使用改性磁粉和对胚体进行辐射处理,能够提高碳化硼和碳化硅复合陶瓷的硬度和强度,制备的碳化硼和碳化硅复合陶瓷的强度的密度为2.79-2.85g/cm3,致密度为98.3-98.5%,维氏硬度为27-30GPa,弹性模量为405-410GPa,抗拉强度为304-317MPa,抗张强度为97-102MPa,抗弯强度为558-567MPa,抗压强度为2970-3110MPa;

(4)本发明制备的碳化硼与碳化硅复合陶瓷,通过在制备初级混合粉步骤中进行液氮球磨,能够降低碳化硼和碳化硅复合陶瓷的脆性,制备的碳化硼和碳化硅复合陶瓷的断裂韧性能达到7.5-7.9 MPa•m1/2

(5)本发明制备的碳化硼与碳化硅复合陶瓷,表面的光滑度高,精度低,不需要进一步清理和机加工。

具体实施方式

为了对本发明的技术特征、目的和效果有更加清楚的理解,现说明本发明的具体实施方式。

实施例1

一种碳化硼与碳化硅复合陶瓷的制备方法,具体为:

1.制备初级混合粉:将碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼混合均匀后置于球磨罐中进行液氮球磨,控制液氮球磨时的球料比为17:1,液氮占球磨罐体积的60%,球磨速度为500rpm,球磨时间为5h,液氮球磨结束得到初级混合粉。

所述碳化硼粉的纯度为97%,粒径为20μm。

所述碳化硅粉的纯度为99%,粒径为10μm。

所述火山石粉的粒径为5μm。

所述纳米氮化硼的粒径为20nm。

其中,碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼的质量比为30:20:5:2。

2.制备混合粉:向高剪切反应釜中加入初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠,水,然后将高剪切反应釜的温度调整为60℃,高剪切反应釜的剪切速度为5000rpm,剪切40min后,得到混合物料,然后将混合物料置于真空冷冻干燥机中,将真空冷冻干燥机抽真空至40kpa,同时启动制冷,在 4小时内将真空冷冻干燥机的冷阱温度降至-50℃,在-50℃下冷冻处理2h;然后进行缓慢加热,在 10h内将混合物料的温度升至25℃,在25℃下干燥3h,得到混合粉。

其中,初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠和水的质量比为80:5:2:1:3:2:1:320。

所述纳米二氧化钛的粒径为100nm。

所述改性磁粉的制备方法为:将四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水混合后进行微波震荡4次,每次15s,控制微波震荡的强度为80W,微波震荡结束后加入3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸,然后继续进行微波震荡,继续微波震荡2次,每次10s,将微波震荡的强度控制到60W,微波震荡结束,进行过滤,将滤渣置于烘箱中,于60℃下烘1h,得到改性磁粉。

其中,四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水,3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸的质量比为30:10:20:3:100:5:3:5。

所述3-氯-2-羟丙基三甲基氯化铵的活性物含量为69%。

3.压制:将混合粉置于等静压机中,在150MPa的条件下进行冷等静压压制,得到胚体。

4.辐射处理:采用60Co源,在50℃下进行辐照,控制辐照剂量为300KGy,辐射结束得到处理后的胚体。

5.烧结:将处理后的胚体置于坩埚内,然后将坩埚置于无压烧结炉内,使用流动氮气作为保护气体,以5℃/min的升温速度升至1600℃,保温40min,然后自然冷却至室温,得到碳化硼与碳化硅复合陶瓷。

实施例2

一种碳化硼与碳化硅复合陶瓷的制备方法,具体为:

1.制备初级混合粉:将碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼混合均匀后置于球磨罐中进行液氮球磨,控制液氮球磨时的球料比为18:1,液氮占球磨罐体积的62%,球磨速度为520rpm,球磨时间为5.2h,液氮球磨结束得到初级混合粉。

所述碳化硼粉的纯度为97.5%,粒径为25μm。

所述碳化硅粉的纯度为99.5%,粒径为15μm。

所述火山石粉的粒径为8μm。

所述纳米氮化硼的粒径为25nm。

其中,碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼的质量比为32:22:7:3。

2.制备混合粉:向高剪切反应釜中加入初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠,水,然后将高剪切反应釜的温度调整为65℃,高剪切反应釜的剪切速度为5500rpm,剪切45min后,得到混合物料,然后将混合物料置于真空冷冻干燥机中,将真空冷冻干燥机抽真空至45kpa,同时启动制冷,在 4.5小时内将真空冷冻干燥机的冷阱温度降至-55℃,在-55℃下冷冻处理2.5h;然后进行缓慢加热,在 10.5h内将混合物料的温度升至28℃,在28℃下干燥4h,得到混合粉。

其中,初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠和水的质量比为82:6:2:1:3:3:1:330。

所述纳米二氧化钛的粒径为150nm。

所述改性磁粉的制备方法为:将四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水混合后进行微波震荡4次,每次18s,控制微波震荡的强度为85W,微波震荡结束后加入3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸,然后继续进行微波震荡,继续微波震荡2次,每次12s,将微波震荡的强度控制到65W,微波震荡结束,进行过滤,将滤渣置于烘箱中,于65℃下烘1.2h,得到改性磁粉。

其中,四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水,3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸的质量比为32:11:22:4:110:6:4:6。

所述3-氯-2-羟丙基三甲基氯化铵的活性物含量为69%。

3.压制:将混合粉置于等静压机中,在160MPa的条件下进行冷等静压压制,得到胚体。

4.辐射处理:采用60Co源,在55℃下进行辐照,控制辐照剂量为350KGy,辐射结束得到处理后的胚体。

5.烧结:将处理后的胚体置于坩埚内,然后将坩埚置于无压烧结炉内,使用流动氮气作为保护气体,以7℃/min的升温速度升至1620℃,保温45min,然后自然冷却至室温,得到碳化硼与碳化硅复合陶瓷。

实施例3

一种碳化硼与碳化硅复合陶瓷的制备方法,具体为:

1.制备初级混合粉:将碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼混合均匀后置于球磨罐中进行液氮球磨,控制液氮球磨时的球料比为20:1,液氮占球磨罐体积的65%,球磨速度为550rpm,球磨时间为5.5h,液氮球磨结束得到初级混合粉。

所述碳化硼粉的纯度为98%,粒径为30μm。

所述碳化硅粉的纯度为99.8%,粒径为20μm。

所述火山石粉的粒径为10μm。

所述纳米氮化硼的粒径为30nm。

其中,碳化硼粉,碳化硅粉,火山石粉,纳米氮化硼的质量比为35:25:8:5。

2.制备混合粉:向高剪切反应釜中加入初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠,水,然后将高剪切反应釜的温度调整为70℃,高剪切反应釜的剪切速度为6000rpm,剪切50min后,得到混合物料,然后将混合物料置于真空冷冻干燥机中,将真空冷冻干燥机抽真空至50kpa,同时启动制冷,在5小时内将真空冷冻干燥机的冷阱温度降至-60℃,在-60℃下冷冻处理3h;然后进行缓慢加热,在11h内将混合物料的温度升至30℃,在30℃下干燥5h,得到混合粉。

其中,初级混合粉,瓜尔胶粉,塔拉胶粉,纳米二氧化钛,改性磁粉,沸石粉,氢氧化钠和水的质量比为85:7:3:2:4:4:2:350。

所述纳米二氧化钛的粒径为200nm。

所述改性磁粉的制备方法为:将四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水混合后进行微波震荡5次,每次20s,控制微波震荡的强度为90W,微波震荡结束后加入3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸,然后继续进行微波震荡,继续微波震荡3次,每次15s,将微波震荡的强度控制到70W,微波震荡结束,进行过滤,将滤渣置于烘箱中,于70℃下烘1.5h,得到改性磁粉。

其中,四氧化三铁,氧化铝,乙醇,稀土偶联剂WOT,水,3-氯-2-羟丙基三甲基氯化铵,卵磷脂,乙酸的质量比为35:12:25:5:120:8:5:8。

所述3-氯-2-羟丙基三甲基氯化铵的活性物含量为69%。

3.压制:将混合粉置于等静压机中,在170MPa的条件下进行冷等静压压制,得到胚体。

4.辐射处理:采用60Co源,在60℃下进行辐照,控制辐照剂量为400KGy,辐射结束得到处理后的胚体。

5.烧结:将处理后的胚体置于坩埚内,然后将坩埚置于无压烧结炉内,使用流动氮气作为保护气体,以8℃/min的升温速度升至1650℃,保温50min,然后自然冷却至室温,得到碳化硼与碳化硅复合陶瓷。

对比例1

采用实施例1所述的碳化硼与碳化硅复合陶瓷的制备方法,其不同之处在于:第1步制备初级混合粉步骤中将液氮球磨改为在常温下进行球磨,即在球磨过程中不使用液氮,控制球磨时的球料比为17:1,球磨速度为500rpm,球磨时间为5h。

对比例2

采用实施例1所述的碳化硼与碳化硅复合陶瓷的制备方法,其不同之处在于:第2步制备混合粉步骤中不使用改性磁粉;第5步烧结步骤改为:将处理后的胚体置于坩埚内,然后将坩埚置于无压烧结炉内,使用流动氮气作为保护气体,以5℃/min的升温速度升至2200℃,保温40min,然后自然冷却至室温,得到碳化硼与碳化硅复合陶瓷。

对比例3

采用实施例1所述的碳化硼与碳化硅复合陶瓷的制备方法,其不同之处在于:省略第4步辐射处理;第5步烧结步骤改为:将处理后的胚体置于坩埚内,然后将坩埚置于无压烧结炉内,使用流动氮气作为保护气体,以5℃/min的升温速度升至2200℃,保温40min,然后自然冷却至室温,得到碳化硼与碳化硅复合陶瓷。

对实施例1-3和对比例1-3制备的碳化硼与碳化硅复合陶瓷的致密度,维氏硬度,弹性模量,抗拉强度,抗张强度,抗弯强度,抗压强度,断裂韧性进行检测,检测结果如下所示:

除非另有说明,本发明中所采用的百分数均为质量百分数。

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:氧化铝纤维增强碳化硅陶瓷材料的制备方法及制得的氧化铝纤维增强碳化硅陶瓷材料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!