陶瓷加热器

文档序号:590520 发布日期:2021-05-25 浏览:17次 >En<

阅读说明:本技术 陶瓷加热器 (Ceramic heater ) 是由 相川贤一郎 赤塚祐司 竹林央史 安藤孝浩 于 2020-09-15 设计创作,主要内容包括:本发明的陶瓷加热器在氧化铝基板的上表面设有晶片载置面,从晶片载置面侧起依次在氧化铝基板中埋设有设置于每个区域的电阻发热体以及向电阻发热体供电的多级跳线,且具备将电阻发热体和跳线沿上下方向连结的发热体连结导通孔、以及为了向跳线供电而向外部取出的供电导通孔。发热体连结导通孔的电阻率小于电阻发热体的电阻率。发热体连结导通孔的热膨胀系数与氧化铝基板的热膨胀系数之差的绝对值小于电阻发热体的热膨胀系数与氧化铝基板的热膨胀系数之差的绝对值。(The ceramic heater of the present invention is provided with a wafer mounting surface on the upper surface of an alumina substrate, resistance heating elements provided in each region and a multi-stage jumper wire for supplying power to the resistance heating elements are embedded in the alumina substrate in this order from the side of the wafer mounting surface, and is provided with a heating element connecting via hole for connecting the resistance heating elements and the jumper wire in the up-down direction, and a power supply via hole for taking out the resistance heating elements and the jumper wire to the outside for supplying power to the jumper wire. The resistivity of the heating element connecting through hole is smaller than that of the resistance heating element. The absolute value of the difference between the thermal expansion coefficient of the heating element connecting via hole and the thermal expansion coefficient of the alumina substrate is smaller than the absolute value of the difference between the thermal expansion coefficient of the resistance heating element and the thermal expansion coefficient of the alumina substrate.)

陶瓷加热器

技术领域

本发明涉及一种陶瓷加热器。

背景技术

以往,在加工半导体晶片时,使用吸附保持晶片的静电卡盘加热器。作为这样的静电卡盘加热器,如专利文献1所示,已知有具备静电卡盘和片加热器的静电卡盘加热器,所述静电卡盘在陶瓷烧结体中埋设有静电电极,所述片加热器为具有多个电阻发热体的树脂片且一面与静电卡盘树脂粘接。片加热器还具备对多个电阻发热体分别供电的跳线、将电阻发热体和跳线沿上下方向连结的发热体连结导通孔、为了向跳线供电而向外部取出的供电导通孔等。

现有技术文献

专利文献

专利文献1:国际公开第2017/029876号小册子

发明内容

发明所要解决的课题

在这样的静电卡盘加热器中,由于在树脂片的情况下无法充分得到耐热性、散热能力,因此存在希望变更为将静电电极埋设于陶瓷烧结体的结构这样的要求,但在使用氧化铝作为陶瓷的情况下,存在因通电导致的导通孔的发热大,从而晶片的均热性恶化,或在导通孔的周边破损这样的问题。

本发明是为了解决这样的课题而完成的,其主要目的在于,在氧化铝基板内置电阻发热体、跳线和导通孔的陶瓷加热器中,提高晶片的均热性,并且防止导通孔周边的破损。

用于解决课题的方案

本发明的陶瓷加热器在氧化铝基板的上表面设有晶片载置面,从上述晶片载置面侧起依次在上述氧化铝基板中埋设有设置于每个区域的电阻发热体以及向所述电阻发热体供电的多级跳线,且具备将上述电阻发热体和上述跳线沿上下方向连结的发热体连结导通孔、以及为了向上述跳线供电而向外部取出的供电导通孔,

上述发热体连结导通孔的电阻率小于上述电阻发热体的电阻率,

上述发热体连结导通孔的热膨胀系数与上述氧化铝基板的热膨胀系数之差的绝对值小于上述电阻发热体的热膨胀系数与上述氧化铝基板的热膨胀系数之差的绝对值。

在该陶瓷加热器中,发热体连结导通孔的电阻率小于电阻发热体的电阻率。因此,由电阻发热体的通电引起的发热大,但由发热体连结导通孔的通电引起的发热小。因此,晶片的均热性提高。另外,发热体连结导通孔的热膨胀系数与氧化铝基板的热膨胀系数之差的绝对值小于电阻发热体的热膨胀系数与氧化铝基板的热膨胀系数之差的绝对值。因此,能够防止由厚度薄的电阻发热体引起的裂纹的产生,并且即使为了抑制由通电引起的发热而增大发热体连结导通孔的截面积,也能够减小制造时、使用时的破损的风险。

在本发明的陶瓷加热器中,优选上述发热体连结导通孔的电阻率小于上述电阻发热体的电阻率的0.75倍。这样一来,晶片的均热性进一步提高。

在本发明的陶瓷加热器中,优选上述电阻发热体的热膨胀系数相对于氧化铝的热膨胀系数为±4ppm/K以内,上述发热体连结导通孔的热膨胀系数相对于氧化铝的热膨胀系数为±0.6ppm/K以内。电阻发热体由于厚度薄,因此如果相对于作为母材的氧化铝的热膨胀系数为±4ppm/K以内,则能够充分防止裂纹的产生。发热体连结导通孔优选为了抑制因通电引起的发热而增大截面积,但在该情况下,与作为母材的氧化铝的热膨胀系数差小至±0.6ppm/K以内时,能够充分减小制造时、使用时的破损的风险。

在本发明的陶瓷加热器中,优选上述发热体连结导通孔包含金属钌。氧化铝的热膨胀系数在40~800℃为7.9ppm/K,金属钌的热膨胀系数在40~800℃为7.2ppm/K。因此,氧化铝基板与导通孔的热膨胀差非常小。因此,如果使用含有金属钌的发热体连结导通孔,则能够在制造时、使用时抑制由发热体连结导通孔引起的裂纹的产生。发热体连结导通孔优选含有10重量%以上95重量%以下,更优选含有20重量%以上95重量%以下,进一步优选含有60重量%以上95重量%以下。发热体连结导通孔除了金属钌以外,还可以含有填料成分。作为填料成分,优选氧化铝和/或氧化锆。氧化铝是与母材(氧化铝基板)相同的材料,因此发热体连结导通孔与母材的界面强度得到改善。氧化锆的热膨胀系数大于氧化铝,因此通过添加少量的氧化锆,能够使发热体连结导通孔的热膨胀系数与氧化铝基板的热膨胀系数一致。在添加氧化铝和氧化锆这两者作为填料成分的情况下,能够得到两者的效果。

需要说明的是,40~800℃的热膨胀系数是将从40℃变为800℃时的每1m的膨胀量(单位:μm)除以温度差760℃(或K)而得到的值(以下相同)。

在本发明的陶瓷加热器中,优选从上述发热体连结导通孔向上述电阻发热体的扩散比从上述电阻发热体向上述发热体连结导通孔的扩散多。这样一来,由于从电阻发热体向发热体连结导通孔的扩散少,因此能够防止发热体连结导通孔的热膨胀系数偏离氧化铝的热膨胀系数。因此,能够防止在制造时、使用时产生以发热体连结导通孔为起点的裂纹,或在发热体连结导通孔的周边产生裂纹。另外,能够通过从发热体连结导通孔向电阻发热体的扩散来确保两者的接合。

在本发明的陶瓷加热器中,优选上述电阻发热体的主成分为碳化钨或金属钌,上述发热体连结导通孔的主成分为金属钌。需要说明的是,“主成分”是指占50体积%以上的体积比例的成分、或全部成分中体积比例最高的成分。

在本发明的陶瓷加热器中,上述供电导通孔和上述跳线也可以由与上述发热体连结导通孔相同的材料制作。

附图说明

图1是静电卡盘加热器10的纵剖视图。

具体实施方式

以下,参照附图对本发明的优选实施方式进行说明。在本实施方式中,作为本发明的陶瓷加热器的一个例子,示出静电卡盘加热器10。图1是静电卡盘加热器10的纵剖视图。

如图1所示,静电卡盘加热器10在氧化铝基板12的上表面设有晶片载置面12a,从晶片载置面12a侧起依次在氧化铝基板12中埋设有静电电极(ESC电极)14、设置于每个区域的电阻发热体16以及向电阻发热体16供电的多级(在此为2级)跳线18。在氧化铝基板12中设有将电阻发热体16和跳线18沿上下方向连结的发热体连结导通孔20、以及为了向跳线18供电而向外部取出的供电导通孔22。

发热体连结导通孔20的电阻率小于电阻发热体16的电阻率。发热体连结导通孔20的电阻率优选为电阻发热体16的电阻率的0.75倍以下。发热体连结导通孔20的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值小于电阻发热体16的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值。电阻发热体16的热膨胀系数优选相对于氧化铝基板12的热膨胀系数为±4ppm/K以内,发热体连结导通孔20的热膨胀系数优选相对于氧化铝基板12的热膨胀系数为±0.6ppm/K以内。

电阻发热体16优选主成分为碳化钨。电阻发热体16除了碳化钨之外,还可以含有氧化铝作为填料成分。碳化钨的热膨胀系数在40~800℃为4.0ppm/K,氧化铝的热膨胀系数在40~800℃为7.9ppm/K。因此,碳化钨的热膨胀系数为氧化铝的热膨胀系数的±4ppm/K以内。电阻发热体16也可以代替氧化铝或在其基础上含有氧化锆作为填料成分。氧化铝的热膨胀系数在40~800℃为7.9ppm/K,氧化锆的热膨胀系数在40~800℃为10.5ppm/K。因此,氧化铝、氧化锆作为想要提高电阻发热体16的热膨胀系数时的填料成分是有用的。通过调整电阻发热体16的填料成分的含量,能够使发热体连结导通孔20的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值小于电阻发热体16的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值,或者将电阻发热体16的热膨胀系数调整为相对于氧化铝基板12的热膨胀系数为±4ppm/K以内。

发热体连结导通孔20优选主成分为金属钌。金属钌的热膨胀系数在40~800℃为7.2ppm/K,氧化铝的热膨胀系数在40~800℃为7.9ppm/K。因此,金属钌的热膨胀系数为氧化铝的热膨胀系数的±0.6ppm/K以内。另外,金属钌的电阻率为2×10-5Ωcm,碳化钨的电阻率为3×10-5Ωcm。因此,金属钌的电阻率为碳化钨的电阻率的0.75倍以下。另外,从金属钌向碳化钨的扩散比从碳化钨向金属钌的扩散多。发热体连结导通孔20除了金属钌之外,还可以含有氧化铝和/或氧化锆作为填料成分。氧化铝、氧化锆作为想要提高电阻发热体16的热膨胀系数时的填料成分是有用的。通过调整发热体连结导通孔20的填料成分的含量,能够使发热体连结导通孔20的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值小于电阻发热体16的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值,或者将发热体连结导通孔20的热膨胀系数调整为相对于氧化铝基板12的热膨胀系数为±0.6ppm/K以内。

跳线18和供电导通孔22优选由与发热体连结导通孔20相同的材料制作。

在以上详述的静电卡盘加热器10中,发热体连结导通孔20的电阻率小于电阻发热体16。因此,由电阻发热体16的通电引起的发热大,但由发热体连结导通孔20的通电引起的发热小。因此,晶片的均热性提高。另外,发热体连结导通孔20的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值小于电阻发热体16的热膨胀系数与氧化铝基板12的热膨胀系数之差的绝对值。因此,能够防止由厚度薄(例如10~100μm)的电阻发热体16引起的裂纹的产生,并且即使为了抑制由通电引起的发热而增大发热体连结导通孔20的截面积,也能够减小制造时、使用时的破损的风险。

另外,发热体连结导通孔20的电阻率优选小于电阻发热体16的电阻率的0.75倍。这样一来,晶片的均热性进一步提高。

进而,优选电阻发热体16的热膨胀系数相对于氧化铝基板12的热膨胀系数为±4ppm/K以内,发热体连结导通孔20的热膨胀系数相对于氧化铝基板12的热膨胀系数为±0.6ppm/K以内。电阻发热体16由于厚度薄(例如10~100μm),因此若相对于作为母材的氧化铝的热膨胀系数为±4ppm/K以内,则能够充分防止裂纹的产生。发热体连结导通孔20优选为了抑制由通电引起的发热而增大截面积,但在该情况下,与作为母材的氧化铝的热膨胀系数差小至±0.6ppm/K以内时,能够充分减小制造时、使用时的破损的风险。

此外,从发热体连结导通孔20(主成分为金属钌)向电阻发热体16(主成分为碳化钨)的扩散比从电阻发热体16向发热体连结导通孔20的扩散多。即,从电阻发热体16向发热体连结导通孔20的扩散少。因此,能够防止发热体连结导通孔20的热膨胀系数偏离氧化铝的热膨胀系数。因此,能够防止在制造时、使用时产生以发热体连结导通孔20为起点的裂纹、或在发热体连结导通孔20的周边产生裂纹。另外,能够通过从发热体连结导通孔20向电阻发热体16的扩散来确保两者的接合。

需要说明的是,本发明不受上述实施方式的任何限定,不言而喻,只要属于本发明的技术范围就能够以各种方式实施。

例如,在上述的实施方式中,说明了发热体连结导通孔20优选主成分为金属钌,但并不特别限定于此。例如,发热体连结导通孔20也可以包含金属钌。此时,发热体连结导通孔20优选含有10重量%以上95重量%以下的金属钌,更优选含有20重量%以上95重量%以下的金属钌,进一步优选含有60重量%以上95重量%以下的金属钌。发热体连结导通孔20除了金属钌以外,还可以含有填料成分。作为填料成分,优选氧化铝和/或氧化锆。

在上述实施方式中,电阻发热体16可以含有金属钌,也可以将主成分设为金属钌。电阻发热体16除了金属钌以外,还可以含有填料成分。作为填料成分,优选氧化铝和/或氧化锆。

实施例

作为实验例1~7,制作了图1的静电卡盘加热器10。静电卡盘加热器10是在直径300mm、厚度4mm的氧化铝基板12中埋设有直径290mm、厚度0.1mm的静电电极14、内周侧及外周侧的电阻发热体16、宽度5mm的带状的跳线18、以及直径1.2mm、厚度0.6mm的导通孔20、22。内周侧的电阻发热体16在与氧化铝基板12为同心圆的直径200mm的圆形区域中以一笔画的要领进行配线,外周侧的电阻发热体16在圆形区域的外侧的环状区域中以一笔画的要领进行配线。静电电极14的材料设为碳化钨,电阻发热体16的材料设为碳化钨,跳线18的材料设为金属钌。另外,导通孔20、22中使用的填料成分的材料为氧化铝、或氧化锆、或氧化铝和氧化锆这两者。在实验例1~7中,除了分别使用表1所示的材料作为发热体连结导通孔20和供电导通孔22的材料以外,在全部相同的条件下制作静电卡盘加热器10。

将实验例1~7的导通孔20、22在40~800℃的CTE、导通孔20、22在40~800℃的CTE与氧化铝基板12在40~800℃的CTE之差(第一CTE差)、电阻发热体16在40~800℃的CTE与氧化铝基板12在40~800℃的CTE之差(第二CTE差)、以及导通孔20、22的电阻率相对于电阻发热体16的电阻率的比率(电阻率的比例)示于表1中。另外,关于实验例4、5,将导通孔20、22的电阻率也示于表1中。

将实验例1~7的静电卡盘加热器10分别设置于真空腔内,利用红外线放射温度计(IR摄像机)从腔室外部测定预先确定的基准点成为60℃时的晶片载置面12a的温度分布,求出导通孔20、22的正上方的晶片载置面12a的温度与基准点的温度之差(=表1的发热[℃])。另外,调查氧化铝基板12内有无裂纹。具体而言,在进行截面研磨后,通过SEM(扫描型电子显微镜)观察来调查有无裂纹。将其结果示于表1中。

[表1]

由表1可知,在实验例1~7中,能够将导通孔20、22的正上方处的发热抑制在2.0[℃]以下,并且也没有产生裂纹。特别是,在实验例2~7中,能够将导通孔20、22的正上方处的发热抑制在1.8[℃]以下,在实验例4~7中,能够将导通孔20、22的正上方处的发热抑制在1.0[℃]以下。实验例1~7相当于本发明的实施例。需要说明的是,本发明不受这些实施例的任何限定。

本申请将2019年9月18日申请的日本专利申请第2019-169349号作为主张优先权的基础,并通过引用将其内容全部包含在本说明书中。

产业上的利用可能性

本发明例如能够用于加工半导体晶片的技术中。

符号说明

10静电卡盘加热器,12氧化铝基板,12a晶片载置面,14静电电极,16电阻发热体,18跳线,20发热体连结导通孔,22供电导通孔。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:加热器和载物台

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类