Medium-speed coal mill fault early warning method and system based on least square support vector machine algorithm

文档序号:68803 发布日期:2021-10-01 浏览:10次 中文

阅读说明:本技术 基于最小二乘支持向量机算法的中速磨煤机故障预警方法及系统 (Medium-speed coal mill fault early warning method and system based on least square support vector machine algorithm ) 是由 王远鑫 许文良 陈俊 徐民 吴万范 程时鹤 于 2021-05-10 设计创作,主要内容包括:本发明提供了基于最小二乘支持向量机算法的中速磨煤机故障预警系统,包括:(1)采集磨煤机历史数据,对数据预处理,根据皮尔逊相关系数,选取与目标回归参数相关性较大的参数;(2)将选取历史参数录入LS-SVM算法进行训练,获取最佳回归结果模型;(3)将实际参数输入训练好的算法得到实际值回归结果,计算自适应阈值区间,判断实际值是否处于自适应阈值区间,连续15s超过自适应阈值区间认为参数出现异常,对异常状态进行预警。本方法可根据不同参数预测不同故障。(The invention provides a medium speed coal mill fault early warning system based on a least square support vector machine algorithm, which comprises the following steps: (1) acquiring historical data of a coal mill, preprocessing the data, and selecting a parameter with larger correlation with a target regression parameter according to a Pearson correlation coefficient; (2) recording the selected historical parameters into an LS-SVM algorithm for training to obtain an optimal regression result model; (3) inputting the actual parameters into a trained algorithm to obtain an actual value regression result, calculating a self-adaptive threshold interval, judging whether the actual values are in the self-adaptive threshold interval, and early warning the abnormal state when the parameters are considered abnormal when the actual values continuously exceed the self-adaptive threshold interval for 15 s. The method can predict different faults according to different parameters.)

1. The medium speed coal mill fault early warning method based on the least square support vector machine algorithm is characterized by comprising the following steps of:

step 1, collecting historical data of a coal mill, carrying out standardization processing on the data, and selecting parameters with large correlation with target parameters according to a Pearson correlation system;

step 2, inputting the selected historical parameters into an LS-SVM algorithm for training to obtain an optimal regression result model;

step 3, inputting each actual parameter into a trained algorithm to obtain an actual value regression result, and calculating a self-adaptive threshold interval;

and 4, judging whether the actual value is in the adaptive threshold interval, continuously setting the time length to exceed the adaptive threshold interval, considering that the parameter is abnormal, and early warning the abnormal state.

2. The medium speed coal mill fault early warning method based on the least square support vector machine algorithm according to claim 1, wherein the step 1 specifically comprises: firstly, standardizing all parameters of collected historical data, wherein the standardized formula is as follows:

where x (t) denotes the actual value at the moment of the respective parameter t,is the mean value of each parameter, σx(t)The variance of each parameter;

calculating the Pearson correlation coefficient between the target parameter of the coal mill and each parameter, wherein the calculation formula is as follows:

wherein X is other parameter value, Y is target parameter value, Cov (X, Y) is covariance of X and Y, D (X) is variance of X, and D (Y) is variance of Y.

3. The method of claim 2 based on a least squares support vector machine algorithmThe coal mill fault early warning method is characterized in that the step 2 specifically comprises the following steps: with ytIs a target parameter value, xtInputting LS-SVM for other parameters for training:

the Lagrange multiplier method is adopted to convert the original problem into a single parameter, and the new problem is as follows:

for omega, b, e respectivelyt,atThe derivative is equal to 0:

according to the above conditions, a can be listedtAnd b system of linear equations

yt T·at=[0,0,0...,0]The number of the N is N in total,

the number of the N is N in total,

solving the above equation can obtain at,b

Wherein gamma is a weight value and is used for finding the optimal hyperplane in a balanced way and minimizing the deviation amount;is xtSelf inner product; y isk、yl,xk、xlAnd representing target parameter values and other parameter values of the historical data at the time k and the time l respectively, and adjusting gamma according to the regression result.

4. The medium speed coal mill fault early warning method based on the least square support vector machine algorithm according to claim 3, wherein the step 3 specifically comprises:

step 31. according to the current input parameters, the formulaWherein K (x)t,xAt present) The inner product of the historical input parameter and the current input parameter;

step 32, calculating the average value epsilon of the previous K predicted valuesKAnd variance deltaKWith an adaptive threshold interval of [ epsilon ]K-zδKK+zδK]Wherein Z is a selected integer.

5. Medium speed pulverizer fault early warning system based on least square support vector machine algorithm, its characterized in that includes:

the preprocessing module is used for acquiring historical data of the coal mill, normalizing the data and selecting parameters with large correlation with target parameters according to a Pearson correlation system;

the model training module is used for inputting the selected historical parameters into an LS-SVM algorithm for training to obtain an optimal regression result model;

the self-adaptive threshold interval calculation module is used for inputting each actual parameter into a trained algorithm to obtain an actual value regression result and calculating a self-adaptive threshold interval;

and the judging module is used for judging whether the actual value is in the self-adaptive threshold interval or not, continuously setting the time length to exceed the self-adaptive threshold interval, considering that the parameter is abnormal, and early warning the abnormal state.

6. The medium speed coal mill fault early warning system based on the least squares support vector machine algorithm according to claim 5, wherein the preprocessing module specifically executes the following process: firstly, standardizing all parameters of collected historical data, wherein the standardized formula is as follows:

where x (t) denotes the actual value at the moment of the respective parameter t,is the mean value of each parameter, σx(t)The variance of each parameter;

calculating the Pearson correlation coefficient between the target parameter of the coal mill and each parameter, wherein the calculation formula is as follows:

wherein X is other parameter value, Y is target parameter value, Cov (X, Y) is covariance of X and Y, D (X) is variance of X, and D (Y) is variance of Y.

7. The coal mill fault early warning method based on the least squares support vector machine algorithm according to claim 6, wherein the model training module is specifically executed in the following process: with ytIs a target parameter value, xtInputting LS-SVM for other parameters for training:

the Lagrange multiplier method is adopted to convert the original problem into a single parameter, and the new problem is as follows:

for omega, b, e respectivelyt,atThe derivative is equal to 0:

according to the above conditions, a can be listedtAnd b system of linear equations

yt T·at=[0,0,0...,0]The number of the N is N in total,

the number of the N is N in total,

solving the above equation can obtain at,b

Wherein gamma is a weight value and is used for finding the optimal hyperplane in a balanced way and minimizing the deviation amount;is xtSelf inner product; y isk、yl,xk、xlAnd representing target parameter values and other parameter values of the historical data at the time k and the time l respectively, and adjusting gamma according to the regression result.

8. The medium speed coal mill fault early warning system based on least squares support vector machine algorithm according to claim 7, characterized in that the adaptive threshold interval calculation module specifically executes the process:

step 31. according to the current input parameters, the formulaWherein K (x)t,xAt present) The inner product of the historical input parameter and the current input parameter;

step 32, calculating the average value epsilon of the previous K predicted valuesKAnd variance deltaKWith an adaptive threshold interval of [ epsilon ]K-zδKK+zδK]Wherein Z is a selected integer.

9. A processing device comprising at least one processor and at least one memory communicatively coupled to the processor, wherein: the memory stores program instructions executable by the processor, the processor invoking the program instructions to perform the method of any of claims 1 to 4.

10. A computer-readable storage medium storing computer instructions for causing a computer to perform the method of any one of claims 1 to 4.

Technical Field

The invention relates to the technical field of equipment fault early warning, in particular to a medium speed coal mill fault early warning method and system based on a least square support vector machine algorithm.

Background

The coal mill of the thermal power plant is an important factor influencing the safe operation of a boiler as auxiliary equipment, along with the development of information technology, a DCS (distributed control system) of a power plant generates a large number of equipment operation parameters, and how to efficiently process and analyze the data resources is an important means for further improving the management level of a power station and guaranteeing the safe operation.

The abnormity or the fault of the equipment is shown by the change of the operation parameters in the operation process of the equipment, the characteristic parameters reflecting the equipment state are obtained by taking the main abnormity or the fault in the operation process of the equipment as clues, and the operation state of the equipment can be effectively evaluated.

Because the coal quality for combustion in a thermal power plant is complex and changeable, the medium-speed coal mill has the operation faults of abnormal vibration, blocked grinding, deflagration of a powder pipe, abnormal grinding body caused by foreign matters entering the coal mill during the operation, and the safe operation of the coal mill is seriously influenced. The thermal power plant mainly monitors the common operation safety risk by intermittent manual on-site inspection and centralized control room dial plate monitoring, and the intermittent manual on-site inspection and the centralized control room dial plate monitoring often cannot find and early warn the fault risk in time. The medium-speed coal mill is a direct-blowing coal mill, the coal powder stays in the coal mill for a short time without being stored, and the parameters of the coal mill can reflect the real-time state. This feature is not currently well utilized in the early warning of faults in medium speed coal mills.

Such as the vibration fault diagnosis method of the medium speed coal mill disclosed in the application number CN201510170470.7, the method comprises the steps of firstly analyzing the fault characteristics of the vibration of the coal mill to obtain the current of the coal mill as an important monitoring parameter for analyzing the vibration fault of the coal mill, then screening out four auxiliary variables of the air pressure at a mill outlet, the coal feeding quantity of the coal feeder, the primary air quantity at the mill inlet and the temperature at the mill outlet from the analysis through the correlation of historical data, predicting the current by the four auxiliary variables, taking the difference between the actually measured current and the predicted current, taking the current residual sequence of the coal mill to construct the grinding vibration quantity, and performing three-layer wavelet packet decomposition on the grinding current residual sequence to obtain an energy ratio of 8 frequency bands, and performing statistical analysis on the energy ratio of two faults to obtain the characteristic quantity of serious grinding roller abrasion and obvious characteristic quantity distinguishing of two faults of foreign matters entering the grinding roller. According to the method, only the current of the coal mill is predicted, the vibration fault of the coal mill is judged according to the prediction result, and other faults cannot be predicted by using other parameters.

Disclosure of Invention

The invention aims to solve the technical problem of predicting various faults through the real-time parameter relation of the coal mill.

The invention solves the technical problems through the following technical means:

the medium speed coal mill fault early warning method based on the least square support vector machine algorithm comprises the following steps:

step 1, collecting historical data of a coal mill, carrying out standardization processing on the data, and selecting parameters with large correlation with target parameters according to a Pearson correlation system;

step 2, inputting the selected historical parameters into an LS-SVM algorithm for training to obtain an optimal regression result model;

step 3, inputting each actual parameter into a trained algorithm to obtain an actual value regression result, and calculating a self-adaptive threshold interval;

and 4, judging whether the actual value is in the adaptive threshold interval, continuously setting the time length to exceed the adaptive threshold interval, considering that the parameter is abnormal, and early warning the abnormal state.

Aiming at the medium-speed coal mill, parameters with high correlation with target parameters are selected through Pearson correlation coefficients, the regression target parameters are regressed by using an LS-SVM algorithm, the regression target parameters are compared with the current target parameters, threshold upper and lower limits are set for the regression parameters, and real-time target parameters and threshold upper and lower limit intervals are compared, so that threshold interval distortion caused by the fact that the running state of the auxiliary machine deviates from a normal state to different degrees in different variable working condition stages is avoided.

Further, the step 1 specifically comprises: firstly, standardizing all parameters of collected historical data, wherein the standardized formula is as follows:

where x (t) denotes the actual value at the moment of the respective parameter t,is the mean value of each parameter, σx(t)The variance of each parameter;

calculating the Pearson correlation coefficient between the target parameter of the coal mill and each parameter, wherein the calculation formula is as follows:

wherein X is other parameter value, Y is target parameter value, Cov (X, Y) is covariance of X and Y, D (X) is variance of X, and D (Y) is variance of Y.

Further, the step 2 specifically comprises: with ytIs a target parameter value, xtInputting LS-SVM for other parameters for training:

the Lagrange multiplier method is adopted to convert the original problem into a single parameter, and the new problem is as follows:

for omega, b, e respectivelyt,atThe derivative is equal to 0:

according to the above conditions, a can be listedtAnd b system of linear equations

yt T·at=[0,0,0...,0]The number of the N is N in total,

the number of the N is N in total,

solving the above equation can obtain at,b

Wherein gamma is a weight value and is used for finding the optimal hyperplane in a balanced way and minimizing the deviation amount;is xtSelf inner product; y isk、yl,xk、xlAnd representing target parameter values and other parameter values of the historical data at the time k and the time l respectively, and adjusting gamma according to the regression result.

Further, the step 3 specifically includes:

step 31. according to the current input parameters, the formulaWherein K (x)t,xAt present) The inner product of the historical input parameter and the current input parameter;

step 32, calculating the average value epsilon of the previous K predicted valuesKAnd variance deltaKWith an adaptive threshold interval of [ epsilon ]K-zδKK+zδK]Wherein Z is a selected integer.

Corresponding to the method, the invention also provides a medium speed coal mill fault early warning system based on the least square support vector machine algorithm, which comprises the following steps:

the preprocessing module is used for acquiring historical data of the coal mill, carrying out standardization processing on the data, and selecting parameters with large correlation with target parameters according to a Pearson correlation system;

the model training module is used for inputting the selected historical parameters into an LS-SVM algorithm for training to obtain an optimal regression result model;

the self-adaptive threshold interval calculation module is used for inputting each actual parameter into a trained algorithm to obtain an actual value regression result and calculating a self-adaptive threshold interval;

and the judging module is used for judging whether the actual value is in the self-adaptive threshold interval or not, continuously setting the time length to exceed the self-adaptive threshold interval, considering that the parameter is abnormal, and early warning the abnormal state.

Further, the execution process of the preprocessing module specifically includes: firstly, standardizing all parameters of collected historical data, wherein the standardized formula is as follows:

where x (t) denotes the actual value at the moment of the respective parameter t,is the mean value of each parameter, σx(t)For each parameterA difference;

calculating the Pearson correlation coefficient between the target parameter of the coal mill and each parameter, wherein the calculation formula is as follows:

wherein X is other parameter value, Y is target parameter value, Cov (X, Y) is covariance of X and Y, D (X) is variance of X, and D (Y) is variance of Y.

Further, the model training module specifically executes a process that: with ytIs a target parameter value, xtInputting LS-SVM for other parameters for training:

the Lagrange multiplier method is adopted to convert the original problem into a single parameter, and the new problem is as follows:

for omega, b, e respectivelyt,atThe derivative is equal to 0:

according to the above conditions, a can be listedtAnd b system of linear equations

yt T·at=[0,0,0...,0]The number of the N is N in total,

the number of the N is N in total,

solving the above equation can obtain at,b

Wherein gamma is a weight value and is used for finding the optimal hyperplane in a balanced way and minimizing the deviation amount;is xtSelf inner product; y isk、yl,xk、xlAnd representing target parameter values and other parameter values of the historical data at the time k and the time l respectively, and adjusting gamma according to the regression result.

Further, the adaptive threshold interval calculation module specifically executes a process including:

step 31. according to the current input parameters, the formulaWherein K (x)t,xAt present) The inner product of the historical input parameter and the current input parameter;

step 32, calculating the average value epsilon of the previous K predicted valuesKAnd variance deltaKWith an adaptive threshold interval of [ epsilon ]K-zδKK+zδK]Wherein Z is a selected integer.

The present invention also provides a processing device comprising at least one processor, and at least one memory communicatively coupled to the processor, wherein: the memory stores program instructions executable by the processor, which when called by the processor are capable of performing the methods described above.

The present invention also provides a computer-readable storage medium storing computer instructions that cause the computer to perform the above-described method.

The invention has the advantages that:

aiming at the medium-speed coal mill, parameters with high correlation with target parameters are selected through Pearson correlation coefficients, the regression target parameters are regressed by using an LS-SVM algorithm, the regression target parameters are compared with the current target parameters, threshold upper and lower limits are set for the regression parameters, and real-time target parameters and threshold upper and lower limit intervals are compared, so that threshold interval distortion caused by the fact that the running state of the auxiliary machine deviates from a normal state to different degrees in different variable working condition stages is avoided.

The invention carries out regression prediction on main parameters of the medium-speed coal mill, such as current, inlet air quantity, outlet air pressure, outlet temperature, pulverized coal pipe air speed, mill body differential pressure and the like, and carries out early warning diagnosis on various faults (coal breaking, blockage, pulverized coal leakage of the pulverized coal pipe and the like) of the coal mill except vibration faults.

Drawings

Fig. 1 is a flow chart of a medium speed coal mill fault early warning algorithm based on a least square support vector machine algorithm in the embodiment of the invention.

Detailed Description

In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are some embodiments of the present invention, but not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

As shown in fig. 1, the medium speed coal mill fault early warning method based on the least square support vector machine algorithm includes the following steps:

step 1, collecting historical data of a coal mill, carrying out standardization processing on the data, and selecting parameters with large correlation with target parameters according to a Pearson correlation system; the method specifically comprises the following steps:

taking the current of the coal mill as an example, acquiring historical data of the coal mill, carrying out standardization processing on the acquired data, and calculating a parameter with larger correlation with the current of the coal mill according to a Pearson correlation coefficient;

the selected coal mill parameters include: the current (A), the coal feeding amount (t/h), the inlet air pressure (KPa), the differential pressure (KPa) of a coal mill, the inlet air temperature (DEG C), the outlet air temperature (DEG C), the inlet air amount (t/h), the load (MW), the air speed (m/s) of a powder pipe 1, the air speed (m/s) of a powder pipe 2, the air speed (m/s) of a powder pipe 3, the air speed (m/s) of a powder pipe 4, the vibration (mm) of a bearing x direction, the grinding roller temperature (DEG C) 2, the grinding roller temperature (DEG C), the CO concentration (ppm) of a grinding body, the sealing air pressure (KPa), the primary air differential pressure (KPa) of sealing air and the loading oil pressure feedback of the grinding roller are totally 20 items.

The method comprises the following steps of standardizing all parameters of collected historical data, wherein a standardization formula is as follows: firstly, standardizing all parameters of collected historical data, wherein the standardized formula is as follows:

where x (t) denotes the actual value at the moment of the respective parameter t,is the mean value of each parameter, σx(t)The variance of each parameter;

calculating the Pearson correlation coefficient between the target parameter of the coal mill and each parameter, wherein the calculation formula is as follows:

wherein X is other parameter value, Y is target parameter value, Cov (X, Y) is covariance of X and Y, D (X) is variance of X, and D (Y) is variance of Y.

The parameters having a large current dependency include: coal quantity, inlet wind pressure, outlet wind pressure, inlet temperature, load, sealing wind pressure and grinding roller loading oil pressure.

Step 2, inputting the selected historical parameters into an LS-SVM algorithm for training to obtain an optimal regression result model; the method specifically comprises the following steps: using current as target value, coal quantity, inlet wind pressure, outlet wind pressure, inlet temperature, load, sealing wind pressure and grinding roller loading oil pressure as input parameters, and using ytIs a target parameter value, xtInputting LS-SVM for other parameters for training:

the Lagrange multiplier method is adopted to convert the original problem into a single parameter, and the new problem is as follows:

for omega, b, e respectivelyt,atThe derivative is equal to 0:

according to the above conditions, a can be listedtAnd b system of linear equations

yt T·at=[0,0,0...,0]The number of the N is N in total,

the number of the N is N in total,

solving the above equation can obtain at,b

Wherein gamma is a weight value and is used for finding the optimal hyperplane in a balanced way and minimizing the deviation amount;is xtSelf inner product; y isk、yl,xk、xlAnd representing target parameter values and other parameter values of the historical data at the time k and the time l respectively, and adjusting gamma according to the regression result.

Step 3, inputting each actual parameter into a trained algorithm to obtain an actual value regression result, and calculating a self-adaptive threshold interval; the method specifically comprises the following steps: inputting an actual input value to the trained LS-SVM model, regressing an actual current value, and calculating an adaptive threshold interval according to a regression result:

step 31. according to the current input parameters, the formulaWherein K (x)t,xAt present) The inner product of the historical input parameter and the current input parameter;

step 32, calculating the average value epsilon of the previous K predicted valuesKAnd variance deltaKWith an adaptive threshold interval of [ epsilon ]K-zδKK+zδK]Wherein Z is a selected integer.

And 4, judging whether the actual value is in the adaptive threshold interval, continuously setting the time length to exceed the adaptive threshold interval, considering that the parameter is abnormal, and early warning the abnormal state. In the embodiment, the condition that the parameter is considered to be abnormal when the continuous 15s exceeds the adaptive threshold interval is provided, and the abnormal state is warned.

Aiming at the medium-speed coal mill, parameters with high correlation with target parameters are selected through Pearson correlation coefficients, the regression target parameters are regressed by using an LS-SVM algorithm, the regression target parameters are compared with the current target parameters, threshold upper and lower limits are set for the regression parameters, and real-time target parameters and threshold upper and lower limit intervals are compared, so that threshold interval distortion caused by the fact that the running state of the auxiliary machine deviates from a normal state to different degrees in different variable working condition stages is avoided.

The invention carries out regression prediction on main parameters of the medium-speed coal mill, such as current, inlet air quantity, outlet air pressure, outlet temperature, pulverized coal pipe air speed, mill body differential pressure and the like, and carries out early warning diagnosis on various faults (coal breaking, blockage, pulverized coal leakage of the pulverized coal pipe and the like) of the coal mill except vibration faults.

Corresponding to the method, the invention also provides a medium speed coal mill fault early warning system based on the least square support vector machine algorithm, which is characterized by comprising the following steps:

the preprocessing module is used for acquiring historical data of the coal mill, carrying out standardization processing on the data, and selecting parameters with large correlation with target parameters according to a Pearson correlation system; taking the current of the coal mill as an example, acquiring historical data of the coal mill, carrying out normalization processing on the acquired data, and calculating a parameter with larger correlation with the current of the coal mill according to a Pearson correlation coefficient;

the selected coal mill parameters include: the current (A), the coal feeding amount (t/h), the inlet air pressure (KPa), the differential pressure (KPa) of a coal mill, the inlet air temperature (DEG C), the outlet air temperature (DEG C), the inlet air amount (t/h), the load (MW), the air speed (m/s) of a powder pipe 1, the air speed (m/s) of a powder pipe 2, the air speed (m/s) of a powder pipe 3, the air speed (m/s) of a powder pipe 4, the vibration (mm) of a bearing x direction, the grinding roller temperature (DEG C) 2, the grinding roller temperature (DEG C), the CO concentration (ppm) of a grinding body, the sealing air pressure (KPa), the primary air differential pressure (KPa) of sealing air and the loading oil pressure feedback of the grinding roller are totally 20 items.

The method comprises the following steps of standardizing all parameters of collected historical data, wherein a standardization formula is as follows: firstly, standardizing all parameters of collected historical data, wherein the standardized formula is as follows:

where x (t) denotes the actual value at the moment of the respective parameter t,is the mean value of each parameter, σx(t)The variance of each parameter;

calculating the Pearson correlation coefficient between the target parameter of the coal mill and each parameter, wherein the calculation formula is as follows:

wherein X is other parameter value, Y is target parameter value, Cov (X, Y) is covariance of X and Y, D (X) is variance of X, and D (Y) is variance of Y.

The parameters having a large current dependency include: coal quantity, inlet wind pressure, outlet wind pressure, inlet temperature, load, sealing wind pressure and grinding roller loading oil pressure.

The model training module is used for inputting the selected historical parameters into an LS-SVM algorithm for training to obtain an optimal regression result model; the specific execution process comprises the following steps:

using current as target value, coal quantity, inlet wind pressure, outlet wind pressure, inlet temperature, load, sealing wind pressure and grinding roller loading oil pressure as input parameters, and using ytIs a target parameter value, xtInputting LS-SVM for other parameters for training:

the Lagrange multiplier method is adopted to convert the original problem into a single parameter, and the new problem is as follows:

for omega, b, e respectivelyt,atThe derivative is equal to 0:

according to the above conditions, a can be listedtAnd b system of linear equations

yt T·at=[0,0,0...,0]The number of the N is N in total,

the number of the N is N in total,

solving the above equation can obtain at,b

Wherein gamma is a weight value and is used for finding the optimal hyperplane in a balanced way and minimizing the deviation amount;is xtSelf inner product; y isk、yl,xk、xlAnd representing target parameter values and other parameter values of the historical data at the time k and the time l respectively, and adjusting gamma according to the regression result.

The self-adaptive threshold interval calculation module is used for inputting each actual parameter into a trained algorithm to obtain an actual value regression result and calculating a self-adaptive threshold interval; the method specifically comprises the following steps: inputting an actual input value to the trained LS-SVM model, regressing an actual current value, and calculating an adaptive threshold interval according to a regression result:

step 31. according to the current input parameters, the formulaWherein K (x)t,xAt present) The inner product of the historical input parameter and the current input parameter;

step 32, calculating the average value epsilon of the previous K predicted valuesKAnd variance deltaKWith an adaptive threshold interval of [ epsilon ]K-zδKK+zδK]Wherein Z is a selected integer.

And the judging module is used for judging whether the actual value is in the adaptive threshold interval or not, continuously setting the time length to exceed the adaptive threshold interval, considering that the parameter is abnormal, early warning the abnormal state, and specifically executing the step 4.

The present invention also provides a processing device comprising at least one processor, and at least one memory communicatively coupled to the processor, wherein: the memory stores program instructions executable by the processor, which when called by the processor are capable of performing the methods described above.

The present invention also provides a computer-readable storage medium storing computer instructions that cause the computer to perform the above-described method.

The above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种静止气象卫星观测中获取近地面PM2.5浓度的方法及系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类