用于移动网络中的无线电资源管理的方法

文档序号:75015 发布日期:2021-10-01 浏览:27次 >En<

阅读说明:本技术 用于移动网络中的无线电资源管理的方法 (Method for radio resource management in a mobile network ) 是由 穆纳·哈吉尔 狄伦·詹姆斯·沃茨 瑜伽士瓦尔·丁努 吉斯伦·佩尔蒂埃 于 2020-02-06 设计创作,主要内容包括:一种无线发射/接收单元(WTRU)可在包括多个卫星的非陆地网络(NTN)中通信。该WTRU可被预先配置有与该多个卫星相关联的多个测量配置和对应的多个激活/停用标准。该激活/停用标准至少包括激活定时信息。该WTRU可根据该激活/停用标准而随时间来激活和停用该多个测量配置中的每一个。该WTRU可针对具有活动测量配置的卫星来对小区波束执行测量并向NTN报告基于测量的结果。(A wireless transmit/receive unit (WTRU) may communicate in a non-terrestrial network (NTN) that includes a plurality of satellites. The WTRU may be preconfigured with measurement configurations and corresponding activation/deactivation criteria associated with the plurality of satellites. The activation/deactivation criteria include at least activation timing information. The WTRU may activate and deactivate each of the plurality of measurement configurations over time according to the activation/deactivation criteria. The WTRU may perform measurements on cell beams for satellites with active measurement configurations and report measurement-based results to the NTN.)

用于移动网络中的无线电资源管理的方法

相关申请的交叉引用

本申请要求2019年2月6日提交的美国临时申请号62/802087的权益,该临时申请的内容以引用方式并入本文。

背景技术

下一代空中接口(包括LTE Advanced Pro和新无线电(NR)的进一步演进)支持具有不同服务要求的广泛使用情况。服务需求可包括例如用于海量机器通信(mMTC)的低开销低数据速率功率有效服务、超高可靠低延迟(URLLC)服务和高数据速率移动宽带(eMBB)服务。WTRU能力可以是多样化的,并且可包括低功率低带宽WTRU、能够具有极宽带宽(例如,80Mhz)WTRU、支持高频率(例如,超过6Ghz)的WTRU、在各种移动场景(例如,静止、固定、高速列车)下使用足够灵活以适应不同部署场景的架构。部署场景可包括但不限于独立式、利用来自不同空中接口的辅助的非独立式、集中式、虚拟式和/或在理想/非理想回程上的分布式。波束形成可用于补偿在较高频率(例如,超过6GHz)下增加的路径损耗。大量天线元件可用于实现更高的波束形成增益。模拟和/或混合波束形成可用于例如通过减少RF链的数量来降低实施成本。在一个示例中,模拟/混合波束可在时间上被多路复用。波束扫略可指在时间和/或频率和/或空间上多路复用的经波束形成信道的发射/接收。

发明内容

一种无线发射/接收单元(WTRU)可在包括多个卫星的非陆地网络(NTN)中通信。该WTRU可被预先配置有与该多个卫星相关联的多个测量配置和对应的多个激活/停用标准。该激活/停用标准至少包括激活定时信息。该WTRU可根据该激活/停用标准而随时间来激活和停用该多个测量配置中的每一个。该WTRU可针对具有活动测量配置的卫星来对小区波束执行测量并向NTN报告基于测量的结果。

附图说明

由以下结合附图以举例的方式给出的描述可得到更详细的理解,其中附图中类似的附图标号指示类似的元件,并且其中:

图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信系统的系统图;

图1B是示出根据一个实施方案可在图1A所示的通信系统内使用的示例性无线发射/接收单元(WTRU)的系统图;

图1C是示出根据一个实施方案可在图1A所示的通信系统内使用的示例性无线电接入网络(RAN)和示例性核心网络(CN)的系统图;

图1D是示出根据一个实施方案可在图1A所示的通信系统内使用的另外一个示例性RAN和另外一个示例性CN的系统图;

图2示出了具有弯管有效载荷的非陆地网络(NTN)无线电接入网络204中的示例性分离式下一代(NG)RAN架构的框图;

图3示出了具有gNB分布式单元(gNB-DU)处理的有效载荷的NTN无线电接入网络中的另一示例性分离式NG RAN架构的框图;

图4示出了具有gNB处理的有效载荷的NTN无线电接入网络中的另一示例性分离式NG RAN架构400的框图;

图5示出了包括每个卫星多个物理小区标识符(PCI)的示例性点波束配置;

图6示出了包括每个卫星多个PCI的示例性点波束配置,其中每个点波束对应于一个PCI;

图7示出了包括每个卫星单个PCI的示例性点波束配置700,其中每个点波束对应于一个同步信号块(SSB);

图8示出了示例性NTN的时序图,包括为WTRU服务的服务波束和卫星的离散运动;

图9示出了示例性NTN的时序图,包括服务波束和卫星随时间的连续运动;

图10示出了示例性NTN的时序图,包括经由点波束向WTRU提供网络覆盖的GEO卫星和LEO卫星;

图11示出了示例性NTN的另一时序图,包括经由点波束向WTRU提供网络覆盖的一个GEO卫星和多个LEO卫星;

图12示出了可由NTN所服务的WTRU执行的测量配置管理过程的流程图;并且

图13示出了为WTRU服务的示例性NTN网络的网络图,并且示出了服务和相邻波束的示例性边缘区和中心区。

具体实施方式

图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信系统100的示意图。通信系统100可为向多个无线用户提供诸如语音、数据、视频、消息、广播等内容的多址接入系统。通信系统100可使多个无线用户能够通过系统资源(包括无线带宽)的共享来访问此类内容。例如,通信系统100可采用一个或多个信道接入方法,诸如码分多址接入(CDMA)、时分多址接入(TDMA)、频分多址接入(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字离散傅里叶变换扩展OFDM(ZT-UW-DFT-S-OFDM)、唯一字OFDM(UW-OFDM)、资源块滤波OFDM、滤波器组多载波(FBMC)等。

如图1A所示,通信系统100可包括无线发射/接收单元(WTRU)102a、102b、102c、102d、无线电接入网络(RAN)104、核心网络(CN)106、公共交换电话网(PSTN)108、互联网110和其他网络112,但应当理解,所公开的实施方案设想了任何数量的WTRU、基站、网络和/或网络元件。WTRU 102a、102b、102c、102d中的每一者可以是被配置为在无线环境中操作和/或通信的任何类型的设备。作为示例,WTRU 102a、102b、102c、102d(其中任何一个均可被称为站(STA))可被配置为发射和/或接收无线信号,并且可包括用户装备(UE)、移动站、固定或移动用户单元、基于订阅的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型电脑、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴式显示器(HMD)、车辆、无人机、医疗设备和应用(例如,远程手术)、工业设备和应用(例如,在工业和/或自动处理链环境中操作的机器人和/或其他无线设备)、消费电子设备、在商业和/或工业无线网络上操作的设备等。WTRU 102a、102b、102c和102d中的任一者可互换地称为WTRU。

通信系统100还可包括基站114a和/或基站114b。基站114a、114b中的每一者可为任何类型的设备,其被配置为与WTRU 102a、102b、102c、102d中的至少一者无线对接以促进对一个或多个通信网络(诸如CN 106、互联网110和/或其他网络112)的访问。作为示例,基站114a、114b可为基站收发台(BTS)、NodeB、演进节点B(eNB)、家庭节点B、家庭演进节点B、下一代NodeB,诸如gNode B(gNB)、新无线电(NR)NodeB、站点控制器、接入点(AP)、无线路由器等。虽然基站114a、114b各自被描绘为单个元件,但应当理解,基站114a、114b可包括任何数量的互连基站和/或网络元件。

基站114a可以是RAN 104的一部分,该RAN还可包括其他基站和/或网络元件(未示出),诸如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等。基站114a和/或基站114b可被配置为在一个或多个载波频率上发射和/或接收无线信号,该基站可被称为小区(未示出)。这些频率可在许可频谱、未许可频谱或许可和未许可频谱的组合中。小区可向特定地理区域提供无线服务的覆盖,该特定地理区域可为相对固定的或可随时间改变。小区可进一步被划分为小区扇区。例如,与基站114a相关联的小区可被划分为三个扇区。因此,在一个实施方案中,基站114a可包括三个收发器,即,小区的每个扇区一个收发器。在一个实施方案中,基站114a可采用多输入多输出(MIMO)技术并且可针对小区的每个扇区利用多个收发器。例如,可使用波束成形在所需的空间方向上传输和/或接收信号。

基站114a、114b可通过空中接口116与WTRU 102a、102b、102c、102d中的一者或多者通信,该空中接口可为任何合适的无线通信链路(例如,射频(RF)、微波、厘米波、微米波、红外(IR)、紫外(UV)、可见光等)。可使用任何合适的无线电接入技术(RAT)来建立空中接口116。

更具体地讲,如上所指出,通信系统100可为多址接入系统,并且可采用一个或多个信道接入方案,诸如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 104中的基站114a和WTRU 102a、102b、102c可实现无线电技术诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其可使用宽带CDMA(WCDMA)来建立空中接口116。WCDMA可包括诸如高速分组接入(HSPA)和/或演进的HSPA(HSPA+)之类的通信协议。HSPA可包括高速下行链路(DL)分组接入(HSDPA)和/或高速上行链路(UL)分组接入(HSUPA)。

在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如演进的UMTS陆地无线电接入(E-UTRA)之类的无线电技术,其可使用长期演进(LTE)和/高级LTE(LTE-A)和/或高级LTE Pro(LTE-A Pro)来建立空中接口116。

在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现无线电技术诸如NR无线电接入,其可使用NR来建立空中接口116。

在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可例如使用双连接(DC)原理一起实现LTE无线电接入和NR无线电接入。因此,WTRU 102a、102b、102c所利用的空中接口可由多种类型的无线电接入技术和/或向/从多种类型的基站(例如,eNB和gNB)发送的传输来表征。

在其他实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如IEEE 802.11(即,无线保真(WiFi))、IEEE 802.16(即,全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暂行标准2000(IS-2000)、暂行标准95(IS-95)、暂行标准856(IS-856)、全球移动通信系统(GSM)、GSM增强数据率演进(EDGE)、GSM EDGE(GERAN)等无线电技术。

图1A中的基站114b可为例如无线路由器、家庭节点B、家庭演进节点B或接入点,并且可利用任何合适的RAT来促进诸如商业场所、家庭、车辆、校园、工业设施、空中走廊(例如,供无人机使用)、道路等局部区域中的无线连接。在一个实施方案中,基站114b和WTRU102c、102d可实现诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在一个实施方案中,基站114b和WTRU 102c、102d可实现诸如IEEE 802.15之类的无线电技术以建立无线个域网(WPAN)。在又一个实施方案中,基站114b和WTRU 102c、102d可利用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)来建立微微小区或毫微微小区。如图1A所示,基站114b可具有与互联网110的直接连接。因此,基站114b可不需要经由CN106访问互联网110。

RAN 104可与CN 106通信,该CN可以是被配置为向WTRU 102a、102b、102c、102d中的一者或多者提供语音、数据、应用和/或互联网协议语音技术(VoIP)服务的任何类型的网络。数据可具有不同的服务质量(QoS)要求,诸如不同的吞吐量要求、延迟要求、误差容限要求、可靠性要求、数据吞吐量要求、移动性要求等。CN 106可提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、互联网连接、视频分发等,和/或执行高级安全功能,诸如用户认证。尽管未在图1A中示出,但是应当理解,RAN 104和/或CN 106可与采用与RAN 104相同的RAT或不同RAT的其他RAN进行直接或间接通信。例如,除了连接到可利用NR无线电技术的RAN 104之外,CN 106还可与采用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi无线电技术的另一RAN(未示出)通信。

CN 106也可充当WTRU 102a、102b、102c、102d的网关,以访问PSTN 108、互联网110和/或其他网络112。PSTN 108可包括提供普通老式电话服务(POTS)的电路交换电话网络。互联网110可包括使用常见通信协议(诸如传输控制协议(TCP)、用户数据报协议(UDP)和/或TCP/IP互联网协议组中的互联网协议(IP))的互连计算机网络和设备的全球系统。网络112可包括由其他服务提供商拥有和/或操作的有线和/或无线通信网络。例如,网络112可包括连接到一个或多个RAN的另一个CN,其可采用与RAN 104相同的RAT或不同的RAT。

通信系统100中的一些或所有WTRU 102a、102b、102c、102d可包括多模式能力(例如,WTRU 102a、102b、102c、102d可包括用于通过不同无线链路与不同无线网络通信的多个收发器)。例如,图1A所示的WTRU 102c可被配置为与可采用基于蜂窝的无线电技术的基站114a通信,并且与可采用IEEE 802无线电技术的基站114b通信。

图1B是示出示例性WTRU 102的系统图。如图1B所示,WTRU 102可包括处理器118、收发器120、发射/接收元件122、扬声器/麦克风124、小键盘126、显示器/触摸板128、不可移动存储器130、可移动存储器132、电源134、全球定位系统(GPS)芯片组136和/或其他外围设备138等。应当理解,WTRU 102可包括前述元件的任何子组合,同时保持与实施方案一致。

处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、任何其他类型的集成电路(IC)、状态机等。处理器118可执行信号编码、数据处理、功率控制、输入/输出处理和/或任何其他功能,这些其他功能使WTRU 102能够在无线环境中工作。处理器118可耦合到收发器120,该收发器可耦合到发射/接收元件122。虽然图1B将处理器118和收发器120描绘为单独的部件,但是应当理解,处理器118和收发器120可在电子封装或芯片中集成在一起。

发射/接收元件122可被配置为通过空中接口116向基站(例如,基站114a)传输信号或从基站接收信号。例如,在一个实施方案中,发射/接收元件122可以是被配置为传输和/或接收RF信号的天线。在一个实施方案中,发射/接收元件122可以是被配置为传输和/或接收例如IR、UV或可见光信号的发射器/检测器。在又一个实施方案中,发射/接收元件122可被配置为传输和/或接收RF和光信号。应当理解,发射/接收元件122可被配置为传输和/或接收无线信号的任何组合。

尽管发射/接收元件122在图1B中被描绘为单个元件,但是WTRU 102可包括任何数量的发射/接收元件122。更具体地讲,WTRU 102可采用MIMO技术。因此,在一个实施方案中,WTRU 102可包括用于通过空中接口116传输和接收无线信号的两个或更多个发射/接收元件122(例如,多个天线)。

收发器120可被配置为调制将由发射/接收元件122传输的信号并且解调由发射/接收元件122接收的信号。如上所指出,WTRU 102可具有多模式能力。因此,收发器120可包括多个收发器,以便使WTRU 102能够经由多种RAT(诸如NR和IEEE 802.11)进行通信。

WTRU 102的处理器118可耦合到扬声器/麦克风124、小键盘126和/或显示器/触摸板128(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元)并且可从其接收用户输入数据。处理器118还可将用户数据输出到扬声器/麦克风124、小键盘126和/或显示器/触摸板128。此外,处理器118可从任何类型的合适存储器(诸如不可移动存储器130和/或可移动存储器132)访问信息,并且将数据存储在任何类型的合适存储器中。不可移动存储器130可包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或任何其他类型的存储器存储设备。可移动存储器132可包括用户身份模块(SIM)卡、记忆棒、安全数字(SD)存储卡等。在其他实施方案中,处理器118可从未物理上定位在WTRU 102上(诸如,服务器或家用计算机(未示出)上)的存储器访问信息,并且将数据存储在该存储器中。

处理器118可从电源134接收电力,并且可被配置为向WTRU 102中的其他部件分配和/或控制电力。电源134可以是用于为WTRU 102供电的任何合适的设备。例如,电源134可包括一个或多个干电池组(例如,镍镉(NiCd)、镍锌(NiZn)、镍金属氢化物(NiMH)、锂离子(Li-ion)等)、太阳能电池、燃料电池等。

处理器118还可耦合到GPS芯片组136,该GPS芯片组可被配置为提供关于WTRU 102的当前位置的位置信息(例如,经度和纬度)。除了来自GPS芯片组136的信息之外或代替该信息,WTRU 102可通过空中接口116从基站(例如,基站114a、114b)接收位置信息和/或基于从两个或更多个附近基站接收到信号的定时来确定其位置。应当理解,在与实施方案保持一致的同时,该WTRU 102可通过任何合适的位置确定方法来获取位置信息。

处理器118还可耦合到其他外围设备138,该其他外围设备可包括提供附加特征、功能和/或有线或无线连接的一个或多个软件模块和/或硬件模块。例如,外围设备138可包括加速度计、电子指南针、卫星收发器、数字相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发器、免提耳麦、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏播放器模块、互联网浏览器、虚拟现实和/或增强现实(VR/AR)设备、活动跟踪器等。外围设备138可包括一个或多个传感器。传感器可为以下一者或多者:陀螺仪、加速度计、霍尔效应传感器、磁力计、方位传感器、接近传感器、温度传感器、时间传感器;地理位置传感器、测高计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物识别传感器、湿度传感器等。

WTRU 102可包括全双工无线电台,对于该全双工无线电台,一些或所有信号的发射和接收(例如,与用于UL(例如,用于发射)和DL(例如,用于接收)的特定子帧相关联)可为并发的和/或同时的。全双工无线电台可包括干扰管理单元,该干扰管理单元用于经由硬件(例如,扼流圈)或经由处理器(例如,单独的处理器(未示出)或经由处理器118)进行的信号处理来减少和/或基本上消除自干扰。在一个实施方案中,WTRU102可包括半双工无线电台,对于该半双工无线电台,发射和接收一些或所有信号(例如,与用于UL(例如,用于发射)或DL(例如,用于接收)的特定子帧相关联)。

图1C是示出根据一个实施方案的RAN 104和CN 106的系统图。如上所述,RAN 104可采用E-UTRA无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 104还可与CN 106通信。

RAN 104可包括演进节点B160a、160b、160c,但是应当理解,RAN 104可包括任何数量的演进节点B,同时保持与实施方案一致。演进节点B 160a、160b、160c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在一个实施方案中,演进节点B 160a、160b、160c可实现MIMO技术。因此,演进节点B 160a例如可使用多个天线来向WTRU 102a传输无线信号和/或从WTRU 102a接收无线信号。

演进节点B 160a、160b、160c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度等。如图1C所示,演进节点B 160a、160b、160c可通过X2接口彼此通信。

图1C所示的CN 106可包括移动性管理实体(MME)162、服务网关(SGW)164和分组数据网络(PDN)网关(PGW)166。虽然前述元件被描绘为CN 106的一部分,但是应当理解,这些元件中的任何元件可由除CN运营商之外的实体拥有和/或运营。

MME 162可经由S1接口连接到RAN 104中的演进节点B 162a、162b、162c中的每一者,并且可用作控制节点。例如,MME 162可负责认证WTRU 102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、102b、102c的初始附加期间选择特定服务网关等。MME 162可提供用于在RAN 104和采用其他无线电技术(诸如GSM和/或WCDMA)的其他RAN(未示出)之间进行切换的控制平面功能。

SGW 164可经由S1接口连接到RAN 104中的演进节点B 160a、160b、160c中的每一者。SGW 164通常可向/从WTRU 102a、102b、102c路由和转发用户数据分组。SGW 164可执行其他功能,诸如在演进节点B间切换期间锚定用户平面、当DL数据可用于WTRU 102a、102b、102c时触发寻呼、管理和存储WTRU 102a、102b、102c的上下文等。

SGW 164可连接到PGW 166,该PGW可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、102c和启用IP的设备之间的通信。

CN 106可有利于与其他网络的通信。例如,CN 106可为WTRU 102a、102b、102c提供对电路交换网络(诸如,PSTN 108)的访问,以有利于WTRU 102a、102b、102c与传统传统陆线通信设备之间的通信。例如,CN 106可包括用作CN 106与PSTN 108之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN 106可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。

尽管WTRU在图1A至图1D中被描述为无线终端,但是可以设想到,在某些代表性实施方案中,这种终端可(例如,临时或永久)使用与通信网络的有线通信接口。

在代表性实施方案中,其他网络112可为WLAN。

处于基础结构基本服务集(BSS)模式的WLAN可具有用于BSS的接入点(AP)以及与AP相关联的一个或多个站点(STA)。AP可具有至分配系统(DS)或将流量承载至和/或承载流量离开BSS的另一种类型的有线/无线网络的接入或接口。源自BSS外部并通向STA的流量可通过AP到达并且可被传递到STA。源自STA并通向BSS外部的目的地的流量可被发送到AP以被传递到相应目的地。BSS内的STA之间的流量可通过AP发送,例如,其中源STA可向AP发送流量,并且AP可将流量传递到目的地STA。BSS内的STA之间的流量可被视为和/或称为点对点流量。可利用直接链路建立(DLS)在源和目的地STA之间(例如,直接在它们之间)发送点对点流量。在某些代表性实施方案中,DLS可使用802.11e DLS或802.11z隧道DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且IBSS内或使用IBSS的STA(例如,所有STA)可彼此直接通信。IBSS通信模式在本文中有时可称为“ad-hoc”通信模式。

当使用802.11ac基础结构操作模式或相似操作模式时,AP可在固定信道(诸如主信道)上传输信标。主信道可为固定宽度(例如,20MHz宽带宽)或动态设置的宽度。主信道可为BSS的操作信道,并且可由STA用来建立与AP的连接。在某些代表性实施方案中,可例如在802.11系统中实现载波侦听多路访问/冲突避免(CSMA/CA)。对于CSMA/CA,STA(例如,每个STA)(包括AP)可侦听主信道。如果主信道被特定STA侦听/检测和/或确定为繁忙,则特定STA可退避。一个STA(例如,仅一个站)可在给定BSS中在任何给定时间传输。

高吞吐量(HT)STA可使用40MHz宽的信道进行通信,例如,经由主20MHz信道与相邻或不相邻的20MHz信道的组合以形成40MHz宽的信道。

极高吞吐量(VHT)STA可支持20MHz、40MHz、80MHz和/或160MHz宽的信道。40MHz和/或80MHz信道可通过组合连续的20MHz信道来形成。可通过组合8个连续的20MHz信道,或通过组合两个非连续的80MHz信道(这可被称为80+80配置)来形成160MHz信道。对于80+80配置,在信道编码之后,数据可通过可将数据分成两个流的段解析器。可单独地对每个流进行快速傅里叶逆变换(IFFT)处理和时间域处理。可将这些流映射到两个80MHz信道,并且可通过发射STA来传输数据。在接收STA的接收器处,可颠倒上述用于80+80配置的操作,并且可将组合的数据发送到介质访问控制(MAC)。

802.11af和802.11ah支持低于1GHz的操作模式。相对于802.11n和802.11ac中使用的那些,802.11af和802.11ah中减少了信道操作带宽和载波。802.11af支持电视白空间(TVWS)频谱中的SMHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。根据代表性实施方案,802.11ah可支持仪表类型控制/机器类型通信(MTC),诸如宏覆盖区域中的MTC设备。MTC设备可具有某些能力,例如有限的能力,包括支持(例如,仅支持)某些带宽和/或有限的带宽。MTC设备可包括电池寿命高于阈值(例如,以保持非常长的电池寿命)的电池。

可支持多个信道的WLAN系统以及诸如802.11n、802.11ac、802.11af和802.11ah之类的信道带宽包括可被指定为主信道的信道。主信道可具有等于由BSS中的所有STA支持的最大公共操作带宽的带宽。主信道的带宽可由来自在BSS中操作的所有STA的STA(其支持最小带宽操作模式)设置和/或限制。在802.11ah的示例中,对于支持(例如,仅支持)1MHz模式的STA(例如,MTC型设备),主信道可为1MHz宽,即使AP和BSS中的其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽操作模式。载波侦听和/或网络分配向量(NAV)设置可取决于主信道的状态。如果主信道繁忙,例如,由于STA(仅支持1MHz操作模式)正在向AP传输,即使大多数可用频段保持空闲,全部可用频段也可被视为繁忙。

在美国,可供802.11ah使用的可用频段为902MHz至928MHz。在韩国,可用频段为917.5MHz至923.5MHz。在日本,可用频段为916.5MHz至927.5MHz。802.11ah可用的总带宽为6MHz至26MHz,具体取决于国家代码。

图1D是示出根据一个实施方案的RAN 104和CN 106的系统图。如上所指出,RAN104可采用NR无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 104还可与CN106通信。

RAN 104可包括gNB 180a、180b、180c,但是应当理解,RAN 104可包括任何数量的gNB,同时保持与实施方案一致。gNB 180a、180b、180c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在一个实施方案中,gNB 180a、180b、180c可实现MIMO技术。例如,gNB 180a、108b可利用波束成形来向gNB 180a、180b、180c传输信号和/或从gNB 180a、180b、180c接收信号。因此,gNB 180a例如可使用多个天线来向WTRU102a传输无线信号和/或从WTRU 102a接收无线信号。在一个实施方案中,gNB 180a、180b、180c可实现载波聚合技术。例如,gNB 180a可向WTRU 102a(未示出)传输多个分量载波。这些分量载波的子集可在免许可频谱上,而其余分量载波可在许可频谱上。在一个实施方案中,gNB 180a、180b、180c可实现协作多点(CoMP)技术。例如,WTRU 102a可从gNB 180a和gNB180b(和/或gNB 180c)接收协作传输。

WTRU 102a、102b、102c可使用与可扩展参数集相关联的传输来与gNB 180a、180b、180c通信。例如,OFDM符号间隔和/或OFDM子载波间隔可因不同传输、不同小区和/或无线传输频谱的不同部分而变化。WTRU 102a、102b、102c可使用各种或可扩展长度的子帧或传输时间间隔(TTI)(例如,包含不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB180a、180b、180c通信。

gNB 180a、180b、180c可被配置为以独立配置和/或非独立配置与WTRU 102a、102b、102c通信。在独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信,同时也不访问其他RAN(例如,诸如演进节点B 160a、160b、160c)。在独立配置中,WTRU 102a、102b、102c可将gNB 180a、180b、180c中的一者或多者用作移动性锚定点。在独立配置中,WTRU 102a、102b、102c可在未许可频带中使用信号与gNB 180a、180b、180c通信。在非独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信或连接,同时也与其他RAN(诸如演进节点B 160a、160b、160c)通信或连接。例如,WTRU 102a、102b、102c可实现DC原理以基本上同时与一个或多个gNB 180a、180b、180c和一个或多个演进节点B 160a、160b、160c通信。在非独立配置中,演进节点B 160a、160b、160c可用作WTRU 102a、102b、102c的移动性锚点,并且gNB 180a、180b、180c可提供用于服务WTRU 102a、102b、102c的附加覆盖和/或吞吐量。

gNB 180a、180b、180c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度、网络切片的支持、DC、NR和E-UTRA之间的互通、用户平面数据朝向用户平面功能(UPF)184a、184b的路由、控制平面信息朝向接入和移动性管理功能(AMF)182a、182b的路由等。如图1D所示,gNB 180a、180b、180c可通过Xn接口彼此通信。

图1D所示的CN 106可包括至少一个AMF 182a、182b、至少一个UPF 184a、184b、至少一个会话管理功能(SMF)183a、183b以及可能的数据网络(DN)185a、185b。虽然前述元件被描绘为CN 106的一部分,但是应当理解,这些元件中的任何元件可由除CN运营商之外的实体拥有和/或运营。

AMF 182a、182b可在RAN 104中经由N2接口连接到gNB 180a、180b、180c中的一者或多者,并且可用作控制节点。例如,AMF 182a、182b可负责认证WTRU 102a、102b、102c的用户、网络切片的支持(例如,具有不同要求的不同协议数据单元(PDU)会话的处理)、选择特定SMF 183a、183b、注册区域的管理、非接入层(NAS)信令的终止、移动性管理等。AMF 182a、182b可使用网络切片,以便基于WTRU 102a、102b、102c所使用的服务的类型来为WTRU102a、102b、102c定制CN支持。例如,可针对不同的用例(诸如,依赖超高可靠低延迟(URLLC)接入的服务、依赖增强型移动宽带(eMBB)接入的服务、用于MTC接入的服务等)建立不同的网络切片。AMF 182a、182b可提供用于在RAN 104和采用其他无线电技术(诸如LTE、LTE-A、LTE-A Pro和/或非3GPP接入技术,诸如WiFi)的其他RAN(未示出)之间进行切换的控制平面功能。

SMF 183a、183b可经由N11接口连接到CN 106中的AMF 182a、182b。SMF 183a、183b还可经由N4接口连接到CN 106中的UPF 184a、184b。SMF 183a、183b可选择并控制UPF184a、184b,并且配置通过UPF 184a、184b进行的流量路由。SMF 183a、183b可执行其他功能,诸如管理和分配WTRU IP地址、管理PDU会话、控制策略实施和QoS、提供DL数据通知等。PDU会话类型可以是基于IP的、非基于IP的、基于以太网的等。

UPF 184a、184b可经由N3接口连接到RAN 104中的gNB 180a、180b、180c中的一者或多者,这些gNB可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、102c和启用IP的设备之间的通信。UPF 184、184b可执行其他功能,诸如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲DL分组、提供移动性锚定等。

CN 106可有利于与其他网络的通信。例如,CN 106可包括用作CN 106与PSTN 108之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN 106可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。在一个实施方案中,WTRU 102a、102b、102c可通过UPF 184a、184b经由至UPF 184a、184b的N3接口以及UPF 184a、184b与本地DN185a、185b之间的N6接口连接到DN 185a、185b。

鉴于图1A至图1D以及图1A至图1D的对应描述,本文参照以下中的一者或多者描述的功能中的一个或多个功能或全部功能可由一个或多个仿真设备(未示出)执行:WTRU102a-d、基站114a-b、演进节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或本文所述的任何其他设备。仿真设备可以是被配置为模仿本文所述的一个或多个或所有功能的一个或多个设备。例如,仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。

仿真设备可被设计为在实验室环境和/或运营商网络环境中实现其他设备的一个或多个测试。例如,该一个或多个仿真设备可执行一个或多个或所有功能,同时被完全或部分地实现和/或部署为有线和/或无线通信网络的一部分,以便测试通信网络内的其他设备。该一个或多个仿真设备可执行一个或多个功能或所有功能,同时临时被实现/部署为有线和/或无线通信网络的一部分。仿真设备可直接耦合到另一个设备以用于测试目的和/或使用空中无线通信来执行测试。

该一个或多个仿真设备可执行一个或多个(包括所有)功能,同时不被实现/部署为有线和/或无线通信网络的一部分。例如,仿真设备可在测试实验室和/或非部署(例如,测试)有线和/或无线通信网络中的测试场景中使用,以便实现一个或多个部件的测试。该一个或多个仿真设备可为测试设备。经由RF电路(例如,其可包括一个或多个天线)进行的直接RF耦合和/或无线通信可由仿真设备用于传输和/或接收数据。

以下描述是出于示例性目的,并非旨在以任何方式限制本文进一步描述的方法对其他无线技术和/或在适用情况下使用不同原理的无线技术的适用性。

如本文所用,参考信号(RS)可指可由WTRU接收和/或发射以用于一个或多个目的的任何信号、前导码或系统签名。例如,可针对DL和UL中的波束管理定义各种参考信号。例如,下行链路波束管理可使用信道状态信息参考信号(CSI-RS)、解调参考信号(DMRS)、同步信号或其他信号。在另一个示例中,上行链路波束管理可使用探测参考信号(SRS)、DMRS、随机访问信道(RACH)或其他信号。在一些情况下,网络可指可与一个或多个发射/接收点(TRP)相关联的一个或多个gNB(基站),或者可指无线电接入网络中的任何其他节点。

采用空中或太空载具(诸如卫星)进行通信的非陆地网络(NTN)可促进在陆地5G网络可能未覆盖的未服务地区(例如,孤立的偏远地区、农村地区、海洋中的船舶)中推出5G服务。在一些情况下,NTN可用于以具成本效率的方式升级欠服务地区中的陆地网络的性能。NTN可用于增强5G服务可靠性、确保服务可用性并为5G部署提供可扩展性。可基于地面单元(陆基网络)和卫星(NTN)之间的RAN功能拆分来设想不同类型的架构。

图2示出了具有弯管有效载荷的NTN无线电接入网络204中的示例性分离式下一代(NG)RAN架构200的框图。太偏远而不能陆地连接到数据网络208的WTRU 202可经由NTN RAN204来接入数据网络208,该NTN RAN包括与NTN远程无线电单元212通信的空中或太空站210(例如,卫星)。非陆地站210通过处理信号而使用弯管原理在WTRU 202与NTN远程无线电单元212之间(例如,通过NR-Uu空中接口)中继信息,以便通过仅改变放大和/或射频频移来进行重传。位于陆地上的NTN远程无线电单元212与gNB 214(例如,位于同一位置)通信以经由核心网络(CN)206接入数据网络208。

图3示出了具有gNB分布式单元(gNB-DU)310处理的有效载荷的NTN无线电接入网络304中的另一示例性分离式NG RAN架构300的框图。WTRU 302经由NTN RAN 304接入数据网络308,该NTN RAN包括空中或太空gNB-DU 310和位于陆地上的gNB-CU 314。在一个示例中,gNB-DU 310托管与WTRU 302的无线电链路控制(RLC)、介质访问控制(MAC)和物理(PHY)层协议交互。gNB-CU 314托管与WTRU 302的无线电资源控制(RRC)、服务数据自适应协议(SDAP)和分组数据汇聚协议(PDCP)层协议交互。gNB-CU 314可经由F1信令来控制一个或多个gNB-DU 310,该F1信令用NTN远程无线电单元312通过卫星无线电接口(SRI)进行传输。位于陆地上的NTN远程无线电单元312与gNB-CU 314(例如,位于同一位置)通信以经由核心网络(CN)306接入数据网络308。

图4示出了具有gNB 410处理的有效载荷的NTN无线电接入网络404中的另一示例性分离式NG RAN架构400的框图。WTRU 402经由NTN RAN 404接入数据网络408,该NTN RAN包括通过SRI与NTN远程无线电单元412通信的空中或太空gNB 410。位于陆地上的NTN远程无线电单元412经由位于陆地上的核心网络(CN)406将来自太空gNB 410的通信中继到数据网络408。

在本文所述的示例性过程和系统中,根据网络配置,由网络向WTRU发射的消息可源自非陆地网络节点(例如,卫星)或陆地节点(例如,gNB、eNB、基站)。例如,RRC配置消息源自RRC层,因此发送和接收RRC消息的网络节点取决于该RRC层在网络中的位置。在图2和图3所示的示例性配置中,RRC层位于陆地,因此RRC激活命令可由陆地网络节点发送。在图4所示的示例性配置中,RRC层位于卫星中,因此RRC消息将源自卫星。在另一个示例中,在图2的配置中,MAC控制元素(CE)可由陆地节点发射,而在图3和图4的配置中,由卫星发射。因此,在本文所述的示例性过程中,从网络(网络节点)接收到的消息通常可指非陆地网络节点或陆地节点,并且由网络配置确定。

卫星可生成若干波束(被称为波束、点波束或波束点)以覆盖由卫星的视场或覆盖区界定的卫星服务区域。NTN小区可由一个或多个点波束构成,并且NTN中的每个卫星可具有多个小区。点波束到小区的映射取决于网络具体实施。基于点波束、同步信号块(SSB)和物理小区标识符(PCI)之间的关系,点波束可能有不同的配置。以下示例性配置可用于点波束:每个卫星可使用多个PCI,使得每个点波束可对应于一个SSB/PCI对;每个卫星可使用多个PCI,使得每个点波束可对应于一个PCI;和/或每个卫星可使用单个PCI,使得每个点波束可对应于一个SSB。

图5示出了包括每个卫星520多个PCI的示例性点波束配置500。根据示例性点波束配置500,如图所示,每个点波束对应于一个PCI/SSB对(例如,PCI 501/SSB 511、PCI 501/SSB 512、PCI 502/SSB 511...PCI 503/SSB 514)。图6示出了包括每个卫星620多个PCI的示例性点波束配置600,其中如图所示,每个点波束对应于一个PCI(例如,PCI 601、PCI602...PCI 612)。图7示出了分别包括每个卫星720/722单个PCI 701/702的示例性点波束配置700,其中如图所示,每个点波束对应于一个SSB(例如,SSB 711、SSB 712、SSB 713、SSB714)。

在本文所述的示例中,测量对象可包括WTRU对其执行测量的时间/频率资源。测量配置可包括一个或多个测量对象的列表,并且还可包括以下信息中的任一者:报告标准、将对象链接到报告配置的测量标识、测量过滤配置和/或WTRU可执行测量的时间段。在本文所述的示例中,用于测量对象的过程可类似地应用于测量配置,反之亦然。

作为测量配置的一部分,网络可配置RRC_CONNECTED WTRU以根据测量配置来执行并报告测量。该测量配置可由网络使用专用信令(诸如RRCReconfiguration消息提供给WTRU。测量配置可包括以下示例性参数中的一者或多者。示例性参数可包括WTRU应对其执行测量的测量对象的列表。在一个示例中,每个测量对象可使用一个或多个报告配置。另一个示例性参数可包括报告配置列表,该报告配置列表可包括触发WTRU发送测量报告的报告标准、用于测量的RS类型(例如,CSI-RS SS/PBCH块)和/或报告格式。另一个示例性参数可包括将一个测量对象与报告配置链接的测量标识。另一个示例性参数可包括定义用于所有事件评估和相关报告的测量过滤配置的数量配置。另一个示例性参数可包括测量间隙,该测量间隙可包括WTRU可执行测量的时间段。

测量配置信令和过程可使得处于RRC_CONNECTED状态的WTRU能够维持测量对象列表、报告配置列表和/或测量标识列表。对于NR测量对象,WTRU可测量并报告服务小区(例如,主小区(SpCell)和/或一个或多个辅小区(Scell))、测量对象内列出的小区和/或测量对象内未列出的由WTRU以测量对象所指示的一个或多个SSB频率和一个或多个子载波间距检测到的小区。处于RRC_CONNECTED状态的WTRU可通过测量由网络配置的每个小区相关联的一个或多个波束来得出小区测量。对于所有小区测量结果,在将测量的结果用于评估报告标准和测量报告之前,WTRU可应用过滤(例如,层3(L3)过滤)。

与具有物理地固定的网络节点(例如,固定的eNB/gNB)的网络相比,至少部分由于小区的位置因网络节点的移动而随时间改变,移动网络节点(诸如卫星或其他空中/太空节点)的部署对资源测量和配置引入额外的复杂性。在这些部署场景中,测量配置可能不会随时间而保持有效,并且可能因WTRU的额外移动而变得更复杂。

可能存在许多不同的卫星轨道类别,每一者相对于WTRU具有不同的定向、速度和距离。例如,用于诸如对地静止(GEO)卫星(例如,在约35000km的高度处)的缓慢移动卫星的测量对象可在长时间内保持有效。被分类为近地轨道(LEO)卫星(例如,在从600km至1500km不等的高度处)的卫星可以约7.5km/s的速度行进。在这种情况下,对于大约100km的点波束覆盖区直径,点波束可为任何特定位置服务大约2分钟。连接到LEO卫星(其具有在静止至速度高达1000km/hr的范围内的运动)的WTRU可具有很快变得无效的测量配置,从而需要连续或频繁的测量报告重新配置。使用LEO卫星,网络可能还需要针对传播延迟和频移的差异来连续补偿测量对象。另外,可存在与NTN相关联的显著传播延迟,例如对于对地静止卫星而言单程大约250ms。考虑到如此大的延迟,可能难以评估测量的准确性,尤其是对于更精细的测量,诸如跟踪信道条件的快速变化。

图8示出了示例性NTN 800的时序图,包括为WTRU 830服务的服务波束和卫星820、822、824的离散运动。假定WTRU 830从时间T1到T2到T3是相对静止的(例如,与卫星速度和时标相比,位置未改变或移动非常慢)。在时间T1处,WTRU可被服务并从具有来自卫星820的PCI 805/SSB 813的点波束接收测量配置。网络800可通过调整天线和/或波束方向来补偿其移动,以从T1到T2保持对WTRU 830的给定覆盖区的覆盖。然而,在时间T3处达到断点,其中WTRU 830被具有由不同卫星824处理的PCI 804/SSB 813的不同波束(或类似地,同一卫星820的不同波束)覆盖。在这种情况下,从时间T2到时间T3,PCI从PCI 805变为PCI 804。在示例性NTN 800中,卫星820、822、824的覆盖区可与除服务波束/卫星的标识之外(或者对于给定时间窗口)的其他事物相关联,从而能够区分由于WTRU的运动引起的移动性与由于卫星运动引起的移动性。

图9示出了示例性NTN 900的时序图,包括服务波束和卫星924随时间的连续运动。在这种情况下,地球上的覆盖区不是静态的,而是随时间而与卫星924的方向一起移动。在这种情况下,PCI和/或SSB可链接到卫星924波束,并且因此在地球表面上连续移动。

图8中的示例与图9中的示例之间的区别在于,在图8中的示例中,服务波束内的静态WTRU的相对位置是恒定的,而在图9中,服务波束内的静态WTRU的相对位置随时间而变化。因此,在图8的示例中,在时间T1位于卫星/波束的小区中心的WTRU 830在时间T2仍位于卫星波束的小区中心(对于缓慢移动的卫星)。在图9的示例中,在第一时间处于小区的小区中心的静态WTRU在稍后的第二时间可能处于同一小区的边缘。

本文公开了用于无线电资源管理和测量配置的方法,以管理网络配置的准确性和有效性持续时间,以便解决由非陆地移动网络中的网络节点的显著传播延迟和高速引起的复杂性。本文所公开的方法可与任何类型的移动网络(例如,NTN、高空平台(HAP)、无人机、移动集成接入与回传(IAB)网络)以及与任何类型的移动节点(例如,卫星、空中载具、太空载具、陆地载具)一起使用。移动网络可包括具有任何移动节点的网络,该移动节点包括移动WTRU和/或移动网络节点。在一些情况下,移动节点具有可预测的移动路径(例如,在轨卫星的星历)。

在一个示例中,用于管理移动网络(例如,NTN)中的测量配置的方法可以随时间实例和/或WTRU的位置而变。在一个示例中,WTRU可被配置为报告相邻波束点和/或小区以及服务波束点/小区的测量结果。WTRU可被预先配置有基于WTRU的位置和/或时间而有条件地添加到测量配置或从中移除或者被激活或停用的一组测量配置。当WTRU进入感兴趣区和/或被网络(例如,卫星节点或陆地节点,取决于网络配置)动态或半静态地(例如,使用DCI、广播消息诸如主信息块(MIB)或系统信息块(SIB)、RRC消息或MAC控制元素(CE))用信号通知时,WTRU可自主地发起激活/停用。WTRU可接收链接到特定波束点并且对应于卫星的覆盖区或包括多个波束点/卫星覆盖区域的特定地理区域的一组测量对象或测量配置。覆盖区可对应于给定的时间实例中的一个或多个SSB、PCI或SSB/PCI的组合。

在一个示例中,WTRU可执行自主激活/停用或选择测量配置或对象。例如,WTRU可在进入给定的区域时自主地激活与当前时间实例相关联的感兴趣测量配置。覆盖区或波束点可例如具有专用标识。当小区覆盖给定的感兴趣覆盖区时,其可与所覆盖的覆盖区标识相关联。例如,当卫星和波束覆盖该区域时,覆盖区标识(ID)可由网络广播(例如,在MIB或SIB中),和/或该覆盖区标识可在从网络接收到的服务小区配置信息元素(IE)中。在一个示例中,参考图8,在时间T1由PCI 805服务的覆盖区可具有与在时间T3由PCI 804服务的覆盖区相同的覆盖区标识,因为它在稍后的时间覆盖重叠的地理区域(假定WTRU 830从时间T1到T2到T3相对静止)。

在一个示例中,为减少从网络(例如,卫星或陆地节点,取决于网络配置)接收到的RRC重新配置的数量,并且避免用于接收RRC重新配置消息的长时间延迟,WTRU可被预先配置有覆盖区ID与测量配置之间的关联,使得覆盖区ID可与时间实例和地理位置相关联。例如,当WTRU进入连接模式(RRC_CONNECTED)时和/或当WTRU接收到RRC重新配置消息时,WTRU可接收关联信息(例如,以关联表的形式)。WTRU可被配置有位置坐标(例如,纬度和经度)与覆盖区ID之间的关联,WTRU可使用该关联来执行测量配置/对象激活。WTRU可独立地评估其位置,或者可接收包括对应于WTRU的当前地理位置(在当前时间)的覆盖区的标识的指示(例如,在DCI和/或MIB/SIB中)的消息。

在一个示例中,WTRU可被预先配置有多个测量配置(对象)实例,每一者与有效性定时器相关联。WTRU可基于有效性定时器来停用和激活感兴趣的测量配置(对象)。WTRU还可被配置有基于有效性定时器的测量配置的适用性条件。例如,如果WTRU的速度或位置已改变可一定的偏移量,或者当WTRU已评估到确定服务小区和相邻小区已明显移动(例如,基于卫星星历信息)而测量配置尚未更新时,WTRU可中断已配置的测量以潜在地激活不同的测量配置。

当WTRU从第一位置(例如,用于测量配置的有效区域)移动到第二位置并进入新的波束点时,WTRU可使用与该新波束点相关联的测量配置。可使用以下方法中的任何一种或多种来应用新的网络测量配置:网络可将新的测量配置(Measconfig)重新配置到WTRU;可将一组测量对象添加WTRU的测量配置中的测量对象列表或从中移除;可将一组测量标识(ID)添加到将测量对象链接到报告配置的测量ID列表或从中移除。

在一个示例中,网络辅助的动态或半静态测量配置可通过网络提供到WTRU。测量配置可链接到特定覆盖区域(例如,波束点和/或覆盖区ID)和有效性定时器或时间范围。在一个示例中,网络可知道WTRU的位置,并且网络可向WTRU发信号以根据WTRU的位置激活和/或添加测量配置。例如,进入某一区(特定位置或区域)的WTRU可通过(知道WTRU的位置)的网络来触发RRC配置。如果WTRU评估了其新位置但尚未接收到RRC重新配置,则WTRU可发送测量配置请求。在另一个示例中,测量配置可由网络进行广播,例如在MIB或SIB中。在一个示例中,在WTRU处接收到的信号(例如,PBCH或SSB的DMRS)高于阈值可触发测量配置更新(例如,网络在MIB或SIB中广播测量配置更新)。即使在网络不具有WTRU的当前位置信息的情况下,该方法也可确保WTRU在对应于当前测量配置的波束点的覆盖范围内。

在一个示例中,波束管理可在RRC级进行(基于RRC的波束管理)。在一个示例中,卫星的不同波束可与频域中的不同SSB相关联(例如,每个波束具有定义具有相同PCI或不同PCI的SSB(CD-SSB)的不同小区)。在一个示例中,每个波束可与特定带宽部分(BWP)相关联。与每个波束相关联的不同BWP的频率可重叠或可不重叠。在一个示例中,每个SSB可与携带关于控制资源集(CORESET)0和搜索空间0的信息的不同MIB相关联,该控制资源集和搜索空间被限制在与用于接收SIB1的波束点相关联的频带中。

当WTRU在卫星的覆盖区域中移动时,可在L1级处理波束管理。例如,WTRU可报告来自不同CD-SSB的L1波束测量,并且可基于L1波束测量报告而被配置有服务波束。当WTRU改变其服务波束时,RRC重新配置可从网络发射到WTRU,以用新的服务CD-SSB来更新servingcellconfig IE。当WTRU在卫星的覆盖范围内移动时,可通过3层(L3)RRC信令来处理波束管理。例如,WTRU可报告不同波束的L3测量,并且可接收切换命令或RRC消息以用于重新配置服务小区。

在一个示例中,WTRU(处于连接模式)可被配置为执行自主小区搜索和/或自主测量报告。如果WTRU已经移动到新的覆盖区域但尚未接收到新的测量配置,则WTRU可在处于连接模式时执行小区搜索。例如,在服务卫星覆盖区域包括在频域中具有相同PCI和不同SSB的多个波束点的情况下,可能发生这种情况。如果在L1处理波束管理,则WTRU尚未执行切换,并且因此在由新的波束点服务之前可能未接收到包括新测量配置的任何新RRC配置。

在一个示例中,WTRU可确定其新的(当前)位置,并且如果满足以下条件中的任何一个或多个,则WTRU可发起小区搜索并报告检测到的小区。例如,在依照配置的条件下,在测量配置中指示WTRU,以在服务波束点改变时在一组频率载波中执行小区搜索以进行测量报告。在另一个示例性条件下,与一个或多个最佳小区(例如,n最佳列出的小区)或列出的波束点相关联的测量低于阈值,从而指示所配置的相邻小区(所列出的小区列表)都不在WTRU的覆盖范围内。在另一个示例性条件下,与服务小区和/或服务波束点相关联的测量结果低于阈值。在另一个示例性条件下,定时器在WTRU已经改变其服务波束时启动,并且在WTRU接收到用于测量配置更新的RRC消息时停止。在定时器到期时,WTRU可开始小区搜索。在任一上述示例中,WTRU可被配置有在WTRU发起连接模式小区搜索时启动的定时器。当定时器到期时,在测量高于某个阈值的情况下,WTRU报告与所有检测到的小区相关联的测量。

如上所解释,利用移动网络节点进行部署会使无线电资源管理(包括测量和配置)变复杂。小区地理位置不断地改变,并且尽管WTRU可由(相对静态的)GEO卫星小区服务,但相邻小区的配置可因连续移动的LEO卫星小区(例如,类似地,移动的中地球轨道(MEO)卫星和/或移动的HAP)而连续改变。在一个示例中,WTRU可预期每7秒进行的频繁新小区配置。图10示出了示例性NTN 1000的时序图,其中GEO卫星1001和1002以及LEO卫星1011和1012经由点波束向WTRU 1030提供网络覆盖。覆盖WTRU 1030的小区随时间而改变。在图10的示例中,WTRU 1030在时间T1处于GEO卫星1001和LEO卫星1011的覆盖范围内,并且在稍后的时间T2,随着卫星1011、1012(以及可能地WTRU 1030)移动,WTRU 1030具有来自GEO卫星1001、1002和LEO卫星1011、1012的不同波束覆盖(具有可能不同的波束)。在对WTRU 1030的波束覆盖因卫星移动而改变时,需要更新测量配置。如用于具有静态小区(静态网络节点)的网络的用于配置移动性相关测量的频繁RRC信令可能不适合于移动网络,因为它需要大量的控制信令(例如,RRC),这对于卫星运营商来说是昂贵的。

图11示出了另一个示例性NTN 1100的时序图,其中GEO卫星1105以及LEO卫星1101、1102和1103经由点波束向WTRU 1130提供网络覆盖。低移动性WTRU 1130由来自GEO卫星1104的静态GEO小区服务,然而,由于LEO小区的移动以及移动的LEO卫星1101、1102、1103,因此为WTRU 1130设定的相邻小区以确定方式不断改变,因为LEO卫星1101、1102、1103的移动也是确定的,如由它们的轨道路径决定。根据示例性测量配置更新过程,在时间T1,WTRU 1130可接收(被预先配置有)用于多个卫星的多个测量配置和相关联的激活/停用标准,该多个卫星包括WTRU 1130当前正处于其覆盖区域内的当前LEO卫星(例如,LEO卫星1101)和WTRU 1130在将来时间将处于其覆盖区域内的即将到来的卫星(例如,LEO卫星1102和1103)。测量配置可由GEO卫星1105和/或当前LEO卫星1101提供给WTRU 1130。即将到来的卫星是已知的,因为LEO卫星1101、1102、1103随时间的轨迹是已知的(这些卫星具有可预测的移动路径),并且WTRU 1130的相对位置可被视为是固定的(至少在较长的时间段内)。表1列出了当前卫星和即将到来的卫星的示例性测量配置,以及位于其当前地理位置处的WTRU1130的对应激活/停用标准。激活/停用标准包括适用时间(例如,离散时间实例和/或时间范围),并且被WTRU 1130用来确定何时激活/停用对应的测量配置。

测量配置 激活/停用标准(适用时间)
SAT 1101 T1&T2
SAT 1102 T2&T3&T4
SAT1103 T4&...
... ...
SAT Bn Tn-1&Tn&...

表1:用于LEO卫星的第一位置处的WTRU 1130的测量配置和对应的激活/停用标准(适用时间)

在图11的示例中,SAT 1101的测量配置在时间T1和T2被激活并且在时间T3被停用,SAT 1102的测量配置在时间T2和T3被激活并且在时间T1被停用,并且SAT 1103的测量配置在时间T1、T2和T3被停用但在稍后的时间(例如,T4等)被激活。

在一个示例中,WTRU 1130可基于相关联的激活(停用)标准而自主地激活/停用相邻小区测量配置。在另一个示例中,相邻小区测量配置的激活/停用可由网络发信号通知(例如,经由来自网络节点(诸如服务GEO卫星、服务LEO卫星和/或地面网络节点)的DCI)。激活/停用标准包括适用时间(即,对应卫星具有覆盖WTRU 1130的地理位置的小区的时间),并且因此是基于卫星星历和WTRU 1130的地理位置。

图12示出了可由NTN所服务的WTRU执行的测量配置管理过程1200的流程图。在1202处,WTRU可(基于来自网络节点的信令)被预先配置有与多个卫星相关联的多个测量配置(对象)以及用于测量配置的对应激活/停用标准。在1204处,WTRU可自主地或基于网络信令来确定哪组测量配置是活动的/不活动的。在第一示例中,在1208处,WTRU通过确定WTRU的当前地理位置和当前时间来进行自主确定,然后在1210处,根据激活/停用标准而基于当前地理位置和当前时间来激活/停用测量配置。在一个另选示例中,在1212处,WTRU接收包括测量配置激活/停用指令的网络信令,并且在1214处,WTRU基于网络信令来激活/停用测量配置。

以下示例性测量机制和条件中的任一者均可由NTN所服务的WTRU使用,以执行小区测量。在一个示例中,可基于WTRU在波束点内的位置来执行测量。每个波束点或卫星覆盖区可包括边缘和中心区。图13示出了为WTRU 1310服务的示例性NTN网络1300的网络图,并且示出了服务和相邻波束的示例性边缘区1320和中心区1315。

在一个示例中,WTRU可基于服务小区的质量测量阈值(例如,信号与干扰加噪声比(SINR)、参考信号接收质量(RSRQ)、参考信号接收功率(RSRP))来确定边缘区和中心区的界定。在一个示例中,WTRU可接收具有界定波束点/卫星覆盖区的边缘区和中心区的坐标的信令(例如,RRC消息)。当WTRU进入波束点的边缘区(例如,边缘区可为波束点的最后x km)时,WTRU可开始测量相邻波束点和卫星或任何列出/检测到的小区。WTRU可报告对满足预定义条件的任何列出/检测到的小区的测量。

在一个示例中,WTRU可被配置有用于确定相邻小区测量开始的标准。该标准可包括以下条件中的任何一个或多个:测量结果质量(例如,RSRP、RSRQ、SINR);和/或WTRU的位置。例如,如果服务小区SINR大于阈值并且WTRU位于中心区,则WTRU可不执行任何相邻测量。该条件还可基于WTRU的移动性。例如,如果位于中心区并且具有缓慢或中等的移动性状态,则WTRU可不执行任何相邻测量。

以下示例性测量报告触发和触发条件中的任一者均可由NTN所服务的WTRU使用。WTRU可被配置为基于条件或每个事件来报告测量。报告条件可基于对测量结果的不同条件或附加条件。例如,报告事件的进入和离开条件可基于以下示例性条件中的任何一个或多个。示例性条件可基于测量结果和WTRU的位置(例如,绝对位置或波束点中的位置)。另一个示例性条件可基于发射的参考时间延迟。另一个示例性条件可基于测量到的RS的到达角。另一个示例性条件可基于不同SSB的观察到达时间差(例如,服务小区和相邻小区之间的观察到达时间差(OTDA)。

另一个示例性条件可基于来自两个以上小区的测量结果。例如,当服务小区和N最佳相邻小区测量结果低于阈值时,WTRU可报告测量。在移动波束的情况下,当网络无法准确地确定WTRU的位置时,这可帮助网络配置切换(HO)。另一个示例性条件可基于WTRU在给定的时间窗口期间报告观察到的测量结果。例如,当服务小区测量已减少一定量(例如,初始值的预定百分比)并且相邻小区或一组相邻小区的测量结果已增加另一个量时。

测量报告可发信号通知计划的目标小区的质量。在移动网络中,WTRU可被配置有服务波束点的周期性改变或周期性切换,以应对卫星移动。然而,由于在执行切换命令或波束改变之前,WTRU可能无法评估计划的目标小区的质量,因此WTRU可能需要在改变之后或在切换期间快速评估新服务小区的质量。

在一个示例中,具有相同PCI的多个CD-SSB(即,来自共用卫星的多个波束)与物理随机接入信道(PRACH)资源和/或前导码索引的子集之间的关联可由系统信息中的一组参数配置。WTRU可通过使用最佳测量到的CD-SSB的对应PRACH资源来向卫星通知与该CD-SSB相关联的最佳波束。由于来自同一卫星的不同波束的不同SSB是来自不同频率位置(即,用于相同PCI的多个CD-SSB),因此该关联可要求同一卫星(即,一个PCI)的CD-SSB具有不同的波束索引,所述波束索引可在切换命令和/或系统信息传输中用信号通知给WTRU。

在一个示例中,如果计划的目标小区质量不合适而相邻波束/小区的质量合适,则WTRU可在消息(例如,消息3(MSG3))中报告波束的质量和标识和/或卫星的PCI。适合性标准可基于测量阈值,诸如RSRP、RSRQ、SINR或接收信号强度指示(RSSI)。

在一个示例中,如果卫星包括具有不同PCI的多个波束,则WTRU可接收朝向一组PCI(与目标卫星相关联)的切换命令。切换命令可包括PRACH资源和/或前导码与不同PCI之间的关联,并且可使得WTRU能够基于测量来指示波束/PCI具有最佳质量。WTRU可接收消息(例如,消息2(MSG2)),并且后续消息可由WTRU在WTRU所指示的最佳DL波束中接收。在一个示例中,WTRU可被配置有与计划的目标波束/小区相关联的测量报告事件。在这种情况下,一旦WTRU正由目标波束/小区和服务波束服务,WTRU就可报告计划的目标波束/小区和服务波束的质量(例如,不基于应用触发的时间或满足报告事件条件)。

测量报告的减少可用于移动波束。在一个示例中,WTRU可因波束/卫星的运动而频繁地位于小区的边缘区中。因此,测量报告触发可导致不必要或乒乓切换。WTRU可能需要区分因服务小区移动而引起的移动以及因其自身经历的SINR/RSRQ和移动而引起的移动。例如,WTRU可仅考虑未被配置为用于基于事件的测量报告的计划目标小区的小区。在另一个示例中,如果WTRU知道卫星的星历,则WTRU可能不会响应一些事件(例如,服务变得比阈值差的事件)的触发条件而触发测量事件。如果WTRU在下一时间实例中知道计划的目标小区,则WTRU可能不会响应于计划的目标小区中的相邻小区的一些事件(例如,相邻小区变为比阈值更好的偏移的事件或相邻小区变得比阈值更好的事件)的触发条件而触发测量事件。

测量参数可为可变的,并且可应用测量配置参数的缩放。在一个示例中,用于测量的触发时间参数可被缩放。缩放值可用于基于以下示例性标准中的任何一个或多个来增加触发时间值。示例性标准可包括所测量的小区的类型,例如,小区是因卫星移动性所导致的计划小区还是如果不被网络视为目标小区则应迅速报告的检测到的小区。另一个示例性标准可包括WTRU在服务波束点/卫星覆盖区域内的位置(例如,中心区或边缘区)。例如,在移动主要归于卫星移动情况下,与位于中心区相比,当WTRU在边缘区中时,可使用更积极的触发快速切换命令传输的时间。

作为WTRU测量报告的一部分,测量报告数量可包括覆盖区ID和/或地理坐标的报告。例如,当测量报告被发送到网络时,WTRU可携带附加测量和/或指示,诸如覆盖区ID、位置坐标或其他信息。例如,WTRU可报告已检测或测量到小区高于某个阈值多长时间。这可有助于网络评估WTRU的位置和/或为WTRU配置下一服务小区。WTRU可在测量报告中包括多个小区之间的发射延迟或差分延迟。

WTRU可被配置为基于周期性和/或基于事件的触发来报告位置信息。例如,位置信息报告的周期性可随WTRU速度而变。用于位置报告的基于事件的触发的示例性标准可包括WTRU已从触发前一位置报告的位置移动一定距离(例如,x米)的情况。用于位置报告的基于事件的触发的另一个示例可包括服务小区的参考信号测量量低于阈值的情况和/或相邻小区的参考信号测量量高于阈值的情况。基于位置的事件触发的另一示例可包括波束点的WTRU参考信号测量量高于或低于阈值的情况。

WTRU可基于对在移动卫星的情况下可能不适用的时间段内执行的切换数量的计数来执行移动状态估计。对于移动网络,WTRU可通过例如对WTRU在给定的时间段内已越过的卫星覆盖区数量进行计数和/或计算实际切换数量与计划的小区数量之间的差值来确定WTRU的移动状态。

尽管上文以特定组合描述了特征和元件,但是本领域的普通技术人员将理解,每个特征或元件可单独使用或以与其他特征和元件的任何组合来使用。另外,本文所述的方法可在结合于计算机可读介质中以供计算机或处理器执行的计算机程序、软件或固件中实现。计算机可读介质的示例包括电子信号(通过有线或无线连接传输)和计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓存存储器、半导体存储器设备、磁介质(诸如内置硬盘和可移动磁盘)、磁光介质和光介质(诸如CD-ROM磁盘和数字通用光盘(DVD))。与软件相关联的处理器可用于实施用于WTRU、终端、基站、RNC或任何主机计算机的射频收发器。

36页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:光学传送系统、光学发射器和光学通信方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!