耐高温耐老化聚氨酯材料及其制备方法

文档序号:824161 发布日期:2021-03-30 浏览:24次 >En<

阅读说明:本技术 耐高温耐老化聚氨酯材料及其制备方法 (High-temperature-resistant and aging-resistant polyurethane material and preparation method thereof ) 是由 施海云 董家鑫 姚嵩 于 2020-12-30 设计创作,主要内容包括:本发明涉及一种耐高温耐老化聚氨酯材料及其制备方法,主要解决了现有技术中用于汽车聚氨酯材料的耐老化性能差和耐高温性能差的技术问题。本发明通过采用一种耐高温耐老化聚氨酯材料,由组分A和组分B反应制备得到,组分A与组分B的重量份数为100:40~80份,其中组分A以重量份数计包括聚醚多元醇Ⅰ1~30份,聚醚多元醇Ⅱ50~90份,聚合物多元醇0~20份,交联剂1~5份,催化剂0.5~1份,泡沫稳定剂0.5~2份,水1.5~2.5份,抗氧剂0.1~2份;组分B以重量份数计包括异氰酸酯10~30份,改性异氰酸酯70~90份的技术方案较好的解决了该问题。(The invention relates to a high-temperature-resistant and aging-resistant polyurethane material and a preparation method thereof, and mainly solves the technical problems of poor aging resistance and poor high-temperature resistance of the polyurethane material for automobiles in the prior art. The high-temperature-resistant and aging-resistant polyurethane material is prepared by reacting a component A and a component B, wherein the component A and the component B are 100: 40-80 parts by weight, and the component A comprises 1-30 parts by weight of polyether polyol I, 50-90 parts by weight of polyether polyol II, 0-20 parts by weight of polymer polyol, 1-5 parts by weight of a cross-linking agent, 0.5-1 part by weight of a catalyst, 0.5-2 parts by weight of a foam stabilizer, 1.5-2.5 parts by weight of water and 0.1-2 parts by weight of an antioxidant; the component B comprises 10-30 parts of isocyanate and 70-90 parts of modified isocyanate in parts by weight, and the technical scheme better solves the problem.)

耐高温耐老化聚氨酯材料及其制备方法

技术领域

本发明涉及一种耐高温耐老化聚氨酯材料及其制备方法。

背景技术

聚氨酯材料在汽车工业中应用的越来越广泛,已经成为汽车上用量最大的塑料品种之一,当前汽车用聚氨酯材料正在朝着轻量化、安全环保、舒适的方向发展。在紧急情况下,车内人员与汽车内饰发生碰撞时,聚氨酯材料与改性聚丙烯硬质塑料与ABS硬质塑料相比,能够提供良好的弹性和缓冲性,从而降低伤害。

现有技术中以聚氨酯材料制备形成的汽车内饰常年受到按压、太阳的光照以及夏日的高温,其压缩强度、压缩形变、拉伸强度、断裂伸长率下降,不能保证汽车内饰的正常使用,因此急迫需要实现用于汽车内饰用耐高温耐老化性能的聚氨酯材料。

聚氨酯材料的耐老化性能和耐高温性能由聚氨酯材料在高温高湿的条件下其拉伸强度、断裂伸长率和压缩强度的性能变化表征。

中国专利CN201480047547中公开了一种耐水解的聚氨酯制品,由以下步骤进行:使得有机多异氰酸酯与具有至少两个异氰酸酯反应性氢原子且包含聚酯多元醇和至少一种可通过芳族启动分子的烷氧基化而获得的化合物与发泡剂、催化剂和其他助剂或添加剂混合得到反应混合物。

通常情况下,用于汽车内饰的聚氨酯材料,当聚氨酯材料的芯密度在50~80kg/m3之间时,一般要求聚氨酯材料的拉伸强度≥100kpa,断裂伸长率≥50%,压缩强度≥30kpa;当聚氨酯材料的拉伸强度、断裂伸长率和压缩强度满足上述要求时,采用该聚氨酯材料能够满足汽车内饰顶棚的成型条件。

发明内容

本发明所要解决的技术问题之一是用于汽车内饰中的聚氨酯材料的耐老化性能差和耐高温性能差的技术问题,提供一种新的耐高温耐老化聚氨酯材料。本发明提供的耐高温耐老化聚氨酯材料,具有耐老化性能好和耐高温性能好的优点。本发明所要解决的技术问题之二是提供一种与解决技术问题之一相对应的制备方法。本发明所要解决的技术问题之三是提供一种与解决技术问题之一相对应的用途。

为解决上述技术问题之一,本发明采用的技术方案如下:一种耐高温耐老化聚氨酯材料,由组分A和组分B反应制备得到,组分A与组分B的重量份数为100:40~80份,其中组分A以重量份数计包括聚醚多元醇Ⅰ1~30份,聚醚多元醇Ⅱ50~90份,聚合物多元醇0~20份,交联剂1~5份,催化剂0.5~1份,泡沫稳定剂0.5~2份,水1.5~2.5份,抗氧剂0.1~2份;组分B以重量份数计包括异氰酸酯10~30份,改性异氰酸酯70~90份;

其中聚醚多元醇Ⅰ的分子量为3000~8000,官能度为2~4,分子量分布离散系数为1.0~1.04,不饱和度≤0.03mmol/g,伯羟基含量为80~90%;

聚醚多元醇Ⅱ的分子量为300~500,官能度为2~4分子量分布离散系数为1.0~1.04,不饱和度≤0.03mmol/g,伯羟基含量为80~90%;

聚合物多元醇为苯乙烯或丙烯腈接枝共聚的聚醚多元醇,分子量为6000~8000,官能度为2~4,固含量为40~50%;

交联剂为含2官能度醇类化合物或醇胺类化合物;抗氧剂选自受阻酚类、芳香族仲胺类或苯并呋喃酮类中的至少一种。

上述技术方案中,优选地2官能度醇类化合物选自乙二醇、1,4丁二醇、丙二醇或一缩二乙二醇中的至少一种;醇胺类化合物选自二乙醇胺或三乙醇胺;催化剂选自TEDA、DMI、DT、ETS、MR、NP、RX5、TE或TRC中的至少一种;聚硅氧烷-氧化烯烃嵌段共聚物选自L-618、B-8715、B-8734、DC-193、L580或AK8805中的至少一种;异氰酸酯选自PM-200、M20S、MIPS或PAPI-135C中的至少一种;改性异氰酸酯选自Suprasec 2412、Suprasec 2424、Suprasec1075、WANNATE 8215或WANNATE 8122中的至少一种。

上述技术方案中,优选地受阻酚类抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸异辛醇酯或2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)中的至少一种;芳香族仲胺类选自二甲基-N-苯基苯胺、乙基-N-苯基苯胺、N,N′-二苯基对苯二胺、N-苯基-N-环已基对苯二胺或N-苯基-N′-异丙基对苯二胺中的至少一种;苯并呋喃酮类选自5-叔丁基-7-甲基-3-(3-甲基苯基)-3-氢-苯并呋喃-2-酮、5-叔丁基-7-甲基-3-(3-甲氧基苯基)-3-氢-苯并呋喃-2-酮、5,7-二叔丁基-7-甲基-3-(3-甲氧基苯基)-3-氢-苯并呋喃-2-酮或5,7-二-(2,2-二甲基乙基)-3-(3,4-二甲基苯基)-2-3氢-苯并呋喃酮中的至少一种。

上述技术方案中,优选地受阻酚类抗氧剂选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸异辛醇酯、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)中的至少一种;芳香族仲胺类选自二甲基-N-苯基苯胺、乙基-N-苯基苯胺、N,N′-二苯基对苯二胺、N-苯基-N-环已基对苯二胺或N-苯基-N′-异丙基对苯二胺中的至少一种;苯并呋喃酮类选自5-叔丁基-7-甲基-3-(3-甲基苯基)-3-氢-苯并呋喃-2-酮、5-叔丁基-7-甲基-3-(3-甲氧基苯基)-3-氢-苯并呋喃-2-酮、5,7-二叔丁基-7-甲基-3-(3-甲氧基苯基)-3-氢-苯并呋喃-2-酮或5,7-二-(2,2-二甲基乙基)-3-(3,4-二甲基苯基)-2-3氢-苯并呋喃酮中的至少一种。

为解决上述技术问题之二,本发明采用的技术方案如下:耐高温耐老化聚氨酯材料的制备方法,包括以下步骤:

(1)按照重量份数计算,聚醚多元醇Ⅰ1~30份,聚醚多元醇Ⅱ50~90份,聚合物多元醇0~20份,交联剂1~5份,催化剂0.5~1份,泡沫稳定剂0.5~2份,水1.5~2.5份,抗氧剂0.1~2份,搅拌混合均匀,混合搅拌温度为20~25℃,得到组分A;

(2)按照重量份数计算,加入异氰酸酯10~30份,改性异氰酸酯70~90份,得到组分B;

(3)将组分A与组分B按照重量份数为100:40~80的比例快速混合搅拌均匀后,得到耐高温耐老化聚氨酯材料。

本发明中,在聚氨酯组合料中采用聚醚多元醇Ⅰ与聚醚多元醇Ⅱ组合使用,同时采用阻酚类、芳香族仲胺类或苯并呋喃酮类中的中的至少一种在该组合料中配合使用,得到的耐高温耐老化聚氨酯材料在高温高湿条件下拉伸强度、断裂伸长率和压缩强度与常规条件下检测得到的拉伸强度、断裂伸长率和压缩强度变化不大,因此本发明中制备得到聚氨酯组合料应用于汽车顶棚中具备耐老化性能好,耐高温性能好的优点,取得了较好的技术效果。

具体实施方式

实施例中使用到的聚醚多元醇Ⅰ和聚醚多元醇Ⅱ的各项参数指标如表1所示:

表1聚醚多元醇Ⅰ和聚醚多元醇Ⅱ的各项参数

聚合物多元醇:

聚合物多元醇1:苯乙烯接枝共聚的聚醚多元醇,平均分子量为6000,官能度为3,固含量为45%;

聚合物多元醇2:苯乙烯共聚的聚醚多元醇,平均分子量为6000,官能度为3,固含量为45%

聚合物多元醇3:聚合物多元醇为苯乙烯接枝共聚的聚醚多元醇,平均分子量为6000,官能度为3,固含量为42%。

聚合物多元醇4:苯乙烯接枝共聚的聚醚多元醇,平均分子量为5000,官能度为3,固含量为50%。

聚合物多元醇5:聚合物多元醇为苯乙烯接枝共聚的聚醚多元醇,平均分子量为7000,官能度为3,固含量为45%。

表2原料清单

实施例1

(1)按照重量份数计算,聚醚多元醇Ⅰ1:10份,聚醚多元醇ⅡA:80份,聚合物多元醇:10份,交联剂乙二醇:2份,催化剂TEDA:0.5份,泡沫稳定剂L-618:1份,水2份,抗氧剂四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯:0.5份,搅拌混合均匀,混合搅拌温度为20℃,得到组分A;

(2)按照重量份数计算,加入异氰酸酯PM-200:20份,改性异氰酸酯Suprasec2412:80份,得到组分B;

(3)将组分A与组分B按照重量份数为100:50的比例快速混合搅拌均匀后,得到耐高温耐老化聚氨酯材料,制备得到的耐高温耐老化聚氨酯材料的常规物性检测数据如表5所示;制备得到的耐高温耐老化聚氨酯材料在高温高湿条件下得到的检测数据如表6所示。

实施例2至实施例5

实施例2至实施例5按照实施例1的各个步骤进行,唯一的区别为反应原料种类、催化剂种类、原料配比、反应时间和温度不同,具体见表3,制备得到的耐高温耐老化聚氨酯材料的常规物性检测数据如表5所示;制备得到的耐高温耐老化聚氨酯材料在高温高湿条件下得到的检测数据如表6所示。

表3实施例1至实施例5及比较例1至2中各组分的原料重量份数

实施例6至实施例10

实施例6至实施例10实验按照实施例1的各个步骤进行,唯一的区别为反应原料种类、催化剂种类、原料配比、反应时间和温度不同,具体见表4,制备得到的耐高温耐老化聚氨酯材料的常规物性检测数据如表5所示;制备得到的耐高温耐老化聚氨酯材料在高温高湿条件下得到的检测数据如表6所示。

表4实施例6至实施例10及比较例3至4中各组分的原料重量份数

比较例1按照实施例1的各个步骤进行,唯一的区别为比较例1中没有添加抗氧剂,具体见表3。

比较例2按照实施例2的各个步骤进行,唯一的区别为比较例2中没有添加抗氧剂,具体见表3。

比较例3按照实施例6的各个步骤进行,唯一的区别为比较例3中没有添加抗氧剂,具体见表4。

比较例4按照实施例7的各个步骤进行,唯一的区别为比较例4中没有添加抗氧剂,具体见表4。

表5实施例1至10及比较例1至4制备得到的耐高温耐老化聚氨酯材料的常规物性检测数据

备注:常规物性是指在常温25℃条件下检测得到的物理数据

表6实施例1至10及比较例1至4制备得到的耐高温耐老化聚氨酯材料在高温高湿条件下得到的检测数据

备注:高温高湿条件是指在90℃、95%湿度条件下处理后得到的检测数据。

从表中可以看出:实施例1至10和比较例1至4在常规条件下测得的拉伸强度、断裂伸长率和压缩强度相差不大;但是在经过高温高湿条件处理后,实施例1至10中的拉伸强度、断裂伸长率和压缩强度与常规条件下检测得到的拉伸强度、断裂伸长率和压缩强度变化不大,但是比较例1至4中的拉伸强度、断裂伸长率和压缩强度变化较大,聚氨酯材料配方中不添加本发明中的抗氧剂其材料性能在高温高湿条件下耐老化性能差,耐高温性能差。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种水性聚氨酯乳液及其制备方法、应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!