Process for improving catalyst activity and saving steam by adjusting steam drum pressure

文档序号:870474 发布日期:2021-03-19 浏览:10次 中文

阅读说明:本技术 一种调整汽包压力提高催化剂活性节约蒸汽的工艺 (Process for improving catalyst activity and saving steam by adjusting steam drum pressure ) 是由 甘世杰 李观辉 侯留成 魏志刚 李丰阳 邓占听 殷科旭 袁天啸 王路延 袁辉耀 于 2020-12-14 设计创作,主要内容包括:本发明提供一种调整汽包压力提高催化剂活性节约蒸汽的工艺,涉及催化剂反应技术领域。包括以下步骤:步骤一:变换二号汽包提压前操作压力1.5Mpa,供水由P2002泵提供,P02泵出口设计压力2.0Mpa。换炉催化剂在装填到炉体后需进行硫化才具有较高的反应活性,目前二号变换炉催化剂已经使用2.5年,床层内部催化剂活性变差,导致变换炉出口CO含量上涨,为维持工艺指标需补加过量中压蒸汽,技改前二变炉蒸汽加入量达到41.6t/h,附件汽包的操作压力1.5Mpa,此操作方法已不再适用当前炉况,造成蒸汽的大量浪费。本次技改利用提高炉体附件汽包的压力达到提高床层温度的方式,技改后汽包操作压力升至2.3Mpa,催化剂活性得到提升,炉体补加蒸汽量下降为17.4t/h,降低了合成氨系统的蒸汽消耗。(The invention provides a process for improving catalyst activity and saving steam by adjusting steam drum pressure, and relates to the technical field of catalyst reaction. The method comprises the following steps: the method comprises the following steps: the operation pressure before the pressure of the second steam pocket is converted is 1.5Mpa, the water supply is provided by a P2002 pump, and the design pressure of the pump outlet of P02 is 2.0 Mpa. The catalyst for changing the converter has high reaction activity only by vulcanizing after being filled into a converter body, the activity of the catalyst in the bed layer is deteriorated to cause the CO content at the outlet of the converter to rise after the catalyst for changing the converter is used for 2.5 years at present, excessive medium-pressure steam needs to be supplemented to maintain process indexes, the steam addition amount of the second converter reaches 41.6t/h and the operating pressure of an accessory steam pocket is 1.5MPa, and the operating method is not suitable for the current furnace condition any more, so that the steam is greatly wasted. The technical improvement utilizes a mode of increasing the pressure of a steam drum attached to the furnace body to increase the temperature of a bed layer, the operating pressure of the steam drum is increased to 2.3Mpa after the technical improvement, the activity of a catalyst is improved, the steam supplementing quantity of the furnace body is reduced to 17.4t/h, and the steam consumption of an ammonia synthesis system is reduced.)

1. A process for adjusting drum pressure to improve catalyst activity and save steam is characterized by comprising the following steps:

the method comprises the following steps: the operation pressure before the pressure of the second steam drum is changed to be 1.5Mpa, water supply is provided by a P2002 pump, the design pressure of a pump outlet of P02 is 2.0Mpa, the pressure of the steam drum after pressure lifting is increased to be 2.3Mpa and is higher than the design pressure of a P02 pump, and the P03 pump is changed to supply water to the second steam drum;

step two: the ammonia nitrogen of the condensate of the S03 separator is the highest, and part of the condensate is sent to a boiler for desulfurization to prepare ammonium sulfate through a pressurizing, conveying and gasifying part;

step three: the condensate is conveyed to gasification by utilizing the pressure difference between S04 and a gasification deoxidizing tank, the condensate S04 can be sent out only by pressurizing the condensate by a P05 pump after steam stripping before modification, the condensate is conveyed by utilizing the pressure difference of the equipment after modification, and the P05 pump is in a shutdown state.

2. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: according to the operation steps in the first step, the P03 pump supplies water to the steam drum II and the E2501 simultaneously, and the P02 pump is in a stop state.

3. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: according to the operation steps in the first step, the P03 pump separately supplies water to the synthesis E2501 waste boiler.

4. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: according to the operating step in step one, the P02 pump design power is 30 KW.

5. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: according to the operation steps in the step two, the steam addition amount of the second converter before transformation is large, and the condensate amount separated by subsequent separation equipment is large.

6. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: and according to the operation steps in the second step, the ammonia nitrogen content in the condensate is pressurized by a transformation P04 pump and then is sent to a gasification washing tower to be used as a coal gas washing liquid.

7. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: and according to the operation steps in the second step, the coal gas is brought into conversion again to finally improve the ammonia nitrogen content of the whole system.

8. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: according to the operation steps in the third step, in the stripping unit after the step S04, the pressure of the stripped concentrated solution high ammonia nitrogen for terminal sewage treatment is high, and when the pressure is high, the stripping process is canceled by closing.

9. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: according to the operating procedure in step three, the P05 pump is designed for 22KW of power.

10. The process of claim 1, wherein the step of adjusting the drum pressure to increase the activity of the catalyst to conserve steam comprises the steps of: and according to the operation steps in the third step, when the ammonia nitrogen of the condensate at the bottom of the separator of the transformation S04 is low, the stripping is closed or cancelled as a judgment condition.

Technical Field

The invention relates to the technical field of catalyst reaction, in particular to a process for adjusting the pressure of a steam drum, improving the activity of a catalyst and saving steam.

Background

At present, the shift converter adjusts the inlet temperature of the controllable heat-transfer shift converter through a main heat exchanger cold secondary line, controls the temperature of a catalyst bed layer of the controllable heat-transfer shift converter through the pressure of a steam drum, and can keep the temperature of the catalyst bed layer stable when the steam pressure of the steam drum is fixed. When the production load changes, the steam output is adjusted in time to ensure that the steam pressure is in a stable range. When the production load is reduced, the CO reaction amount is less, the bed reaction heat is reduced, the byproduct steam amount is reduced, the steam drum steam pressure is reduced, and the catalyst bed temperature is reduced. At the moment, the steam valve outside the small steam drum is closed, the steam pressure of the steam drum is increased, so that the water temperature in the bed heat exchange pipe is increased, and the stability of the bed temperature is maintained. On the contrary, when the production load is increased, the reaction heat in the bed is increased, the amount of byproduct steam is increased, the steam pressure of a steam drum is increased, and the temperature of the catalyst bed is increased. At the moment, an external steam supply valve of the large steam drum is opened to reduce the steam pressure of the steam drum, so that the temperature of the bed layer is kept stable. The method is most widely and generally used at present, the activity of the catalyst is reduced after the isothermal shift converter in the three-division factory is put into use for 2.5 years, and steam is supplemented to reduce the content of CO at an outlet and consume a great amount of steam, so that the waste of the steam is not beneficial to the long-term stable operation of the system. The conversion rate of CO is adjusted by adjusting the temperature of the shift converter, and the technology is improved and utilized.

Disclosure of Invention

The invention aims to provide a process for adjusting the pressure of a steam drum, improving the activity of a catalyst and saving steam. The even shrink of application regular body cushion sintering in-process draws the deformation process of four supporting legs through the inter-metal atom effect, makes it tend to evenly to guarantee that the deflection is minimum, through adhering to of conduction oil and bentonite, can guarantee that the heat conduction of part outer wall is even, guarantees structural strength's stable improvement.

In order to solve the problems of poor reflection reducing effect and high manufacturing cost, the invention provides the following technical scheme: a process for adjusting drum pressure to improve catalyst activity and save steam comprises the following steps:

the method comprises the following steps: the operation pressure before the pressure of the second steam drum is changed to be 1.5Mpa, water supply is provided by a P2002 pump, the design pressure of a pump outlet of P02 is 2.0Mpa, the pressure of the steam drum after pressure lifting is increased to be 2.3Mpa and is higher than the design pressure of a P02 pump, and the P03 pump is changed to supply water for the second steam drum.

Step two: the S03 separator has the highest ammonia nitrogen content, and part of the ammonia nitrogen content is sent to the boiler for desulfurization to prepare ammonium sulfate through the pressurizing, conveying and gasifying part.

Step three: the condensate is conveyed to gasification by utilizing the pressure difference between S04 and a gasification deoxidizing tank, the condensate S04 can be sent out only by pressurizing the condensate by a P05 pump after steam stripping before modification, the condensate is conveyed by utilizing the pressure difference of the equipment after modification, and the P05 pump is in a shutdown state.

Further, the method comprises the following steps: according to the operation steps in the first step, the P03 pump supplies water to the steam drum II and the E2501 simultaneously, and the P02 pump is in a stop state.

Further, the method comprises the following steps: according to the operation steps in the first step, the P03 pump separately supplies water to the synthesis E2501 waste boiler.

Further, the method comprises the following steps: according to the operating step in step one, the P02 pump design power is 30 KW.

Further, the method comprises the following steps: according to the operation steps in the step two, the steam addition amount of the second converter before transformation is large, and the condensate amount separated by subsequent separation equipment is large.

Further, the method comprises the following steps: and according to the operation steps in the second step, the ammonia nitrogen content in the condensate is pressurized by a transformation P04 pump and then is sent to a gasification washing tower to be used as a coal gas washing liquid.

Further, the method comprises the following steps: and according to the operation steps in the second step, the coal gas is brought into conversion again to finally improve the ammonia nitrogen content of the whole system.

Further, the method comprises the following steps: according to the operation steps in the third step, in the stripping unit after the step S04, the pressure of the stripped concentrated solution high ammonia nitrogen for terminal sewage treatment is high, and when the pressure is high, the stripping process is canceled by closing.

Further, the method comprises the following steps: according to the operating procedure in step three, the P05 pump is designed for 22KW of power.

Further, the method comprises the following steps: and according to the operation steps in the third step, when the ammonia nitrogen of the condensate at the bottom of the separator of the transformation S04 is low, the stripping is closed or cancelled as a judgment condition.

The invention provides a process for adjusting steam drum pressure, improving catalyst activity and saving steam, which has the following beneficial effects: the catalyst for changing the converter has high reaction activity only by vulcanizing after being filled into a converter body, the activity of the catalyst in the bed layer is deteriorated to cause the CO content at the outlet of the converter to rise after the catalyst for changing the converter is used for 2.5 years at present, excessive medium-pressure steam needs to be supplemented to maintain process indexes, the steam addition amount of the second converter reaches 41.6t/h and the operating pressure of an accessory steam pocket is 1.5MPa, and the operating method is not suitable for the current furnace condition any more, so that the steam is greatly wasted. The technical improvement utilizes a mode of increasing the pressure of a steam drum attached to the furnace body to increase the temperature of a bed layer, the operating pressure of the steam drum is increased to 2.3Mpa after the technical improvement, the activity of a catalyst is improved, the steam supplementing quantity of the furnace body is reduced to 17.4t/h, and the steam consumption of an ammonia synthesis system is reduced.

Drawings

FIG. 1 is a flow chart of the process of the invention before the water feeding technique of the steam drum II for adjusting the pressure of the steam drum to improve the activity of the catalyst and save steam

FIG. 2 is a schematic diagram of a process of the present invention in which the pressure of a steam drum is adjusted to increase the activity of a catalyst and to save steam after the water feeding technique of the second steam drum is modified;

FIG. 3 is a schematic diagram of a steam-saving process S03 according to the present invention, wherein the steam-saving process comprises adjusting the pressure of the steam drum to increase the activity of the catalyst;

FIG. 4 is a schematic diagram of a steam drum pressure adjustment process to increase catalyst activity and save steam according to the present invention after a modified separator condensate removal process S03;

FIG. 5 is a schematic diagram of a steam-saving process S04 for increasing catalyst activity by adjusting drum pressure before removal of a subsequent stripping unit according to the present invention;

FIG. 6 is a schematic diagram of a steam-saving process S04 with steam stripping unit removed according to the present invention with drum pressure adjusted to increase catalyst activity;

FIG. 7 is a schematic diagram of a steam-saving process for increasing catalyst activity by adjusting drum pressure according to the present invention.

Detailed Description

Referring to fig. 1-7, the present invention provides a technical solution: a process for adjusting drum pressure to improve catalyst activity and save steam comprises the following steps:

the method comprises the following steps: the operation pressure before the pressure of the second steam drum is changed to be 1.5Mpa, water supply is provided by a P2002 pump, the design pressure of a pump outlet of P02 is 2.0Mpa, the pressure of the steam drum after pressure lifting is increased to be 2.3Mpa and is higher than the design pressure of a P02 pump, and the P03 pump is changed to supply water for the second steam drum.

Step two: the S03 separator has the highest ammonia nitrogen content, and part of the ammonia nitrogen content is sent to the boiler for desulfurization to prepare ammonium sulfate through the pressurizing, conveying and gasifying part.

Step three: the condensate is conveyed to gasification by utilizing the pressure difference between S04 and a gasification deoxidizing tank, the condensate S04 can be sent out only by pressurizing the condensate by a P05 pump after steam stripping before modification, the condensate is conveyed by utilizing the pressure difference of the equipment after modification, and the P05 pump is in a shutdown state.

Specifically, the method comprises the following steps: according to the operation steps in the step one, the P03 pump supplies water to the steam pocket II and the E2501 simultaneously, and the P02 pump is in a stop state.

Specifically, the method comprises the following steps: according to the operation steps in the first step, a P03 pump separately supplies water to the synthesis E2501 waste boiler.

Specifically, the method comprises the following steps: according to the operating step in step one, the P02 pump design power is 30 KW.

Specifically, the method comprises the following steps: according to the operation steps in the step two, the steam addition amount before the transformation furnace II is transformed is large, and the condensate amount separated by subsequent separation equipment is large.

Specifically, the method comprises the following steps: and according to the operation steps in the second step, the ammonia nitrogen content in the condensate is pressurized by a transformation P04 pump and then is sent to a gasification washing tower to be used as a coal gas washing liquid.

Specifically, the method comprises the following steps: and according to the operation steps in the step two, the coal gas is brought into the conversion again, and finally the ammonia nitrogen content of the whole system is improved.

Specifically, the method comprises the following steps: according to the operation steps in the third step, in the steam stripping unit after S04, the pressure of the stripped concentrated solution with high ammonia nitrogen for the terminal sewage treatment is high, and when the pressure is high, the steam stripping process is stopped.

Specifically, the method comprises the following steps: according to the operating procedure in step three, the P05 pump is designed for 22KW of power.

Specifically, the method comprises the following steps: and according to the operation steps in the third step, when the ammonia nitrogen of the condensate at the bottom of the S04 separator is changed to be lower, the judgment condition is used for closing or canceling the steam stripping.

The method of the examples was performed for detection analysis and compared to the prior art to yield the following data:

amount of steam introduced Catalyst activity
Examples Is lower than Is higher than
Prior Art Is higher than Is lower than

From the above table data, it can be concluded that, when the examples are used, the yield per unit material is further improved and the strength of the strand is improved by the method of improving the strength of the strand.

The invention provides a process for adjusting steam drum pressure, improving catalyst activity and saving steam, which comprises the following steps: the method comprises the following steps: the operating pressure is 1.5Mpa before the pressure of the second steam pocket is changed, water supply is provided by a P2002 pump, the design pressure of the pump outlet of P02 is 2.0Mpa, the pressure of the steam pocket rises to 2.3Mpa after pressure is increased, the design pressure is higher than that of a P02 pump, the P03 pump is changed into water supply for the second steam pocket, the P03 pump alone supplies water for a synthetic E2501 waste boiler, the design power of the P02 pump is 30KW, and the step two: the ammonia nitrogen content of the condensate of the S03 separator is highest, part of the condensate is sent to a boiler for desulfurization to prepare ammonium sulfate through a pressurizing, conveying and gasifying part instead, the steam adding amount before the second shift converter is transformed is large, the condensate separated by subsequent separation equipment is large, the ammonia nitrogen content in the condensate is pressurized through a transformation P04 pump and then sent to a gasification washing tower to be used as a coal gas washing liquid, and the coal gas is brought into the transformation to finally improve the ammonia nitrogen content of the whole system. Step three: the condensate is delivered to the gasification by the pressure difference between S04 and the gasification deoxygenation tank. The method comprises the steps that S04 condensate can be sent out after being stripped and pressurized by a P05 pump, the condensate is sent out by utilizing the pressure difference of equipment after being modified, a P05 pump is in a stop state, a stripping unit in the subsequent S04 step is adopted, the stripped concentrated solution with high ammonia nitrogen has large pressure for terminal sewage treatment, when the pressure is large, a stripping process is closed and cancelled, the P05 pump is designed with power of 22KW, when the ammonia nitrogen of the condensate at the bottom of an S04 separator is changed to be low, the stripping is closed or cancelled as a judgment condition, through the graphs 1-7, the P2002 and the P2003 are communicated and arranged at the output end of the V2003, the output end of the P2002 is communicated and arranged at the V2002, the output end of the P2003 is communicated and arranged at the synthesis E2501, the output end of the S2003 is communicated and arranged at the LV2005 through a pipeline, the methanol washing is analyzed, the.

Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种生物质制氢用的分离纯化装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类