陶瓷生片层叠助剂及陶瓷生片组合物

文档序号:90660 发布日期:2021-10-08 浏览:36次 >En<

阅读说明:本技术 陶瓷生片层叠助剂及陶瓷生片组合物 (Ceramic green sheet laminating aid and ceramic green sheet composition ) 是由 吉川文隆 松崎健太 砂田和辉 于 2020-03-05 设计创作,主要内容包括:本发明的技术问题在于不使片材强度下降,且抑制陶瓷生片间的剥离与层叠错位。作为解决手段,本发明提供一种陶瓷生片层叠助剂,其特征在于,其由式(1)所表示的化合物构成,Z-[O-(AO)n-H]x···(1)Z表示从碳原子数为1~22且具有1~6个羟基的化合物中去除了全部羟基的残基,x表示1~6的数,AO表示碳原子数为2~4的氧化烯基,n表示5~500的数,ⅹ×n为5~500的范围,碳原子数为2~4的所述氧化烯基AO中所包含的碳原子数为2的氧化乙烯基EO的重量比例为0~80重量%。(The invention aims to prevent the peeling and the stacking dislocation between ceramic green sheets without reducing the strength of a sheet. The invention provides a ceramic green sheet laminating auxiliary agent, which is characterized in that the laminating auxiliary agent is composed of a compound represented by a formula (1), Z- [ O- (AO) n-H ] x · (1) Z represents a residue obtained by removing all hydroxyl groups from a compound having 1-6 hydroxyl groups and 1-22 carbon atoms, x represents a number of 1-6, AO represents an oxyalkylene group having 2-4 carbon atoms, n represents a number of 5-500, x n is in a range of 5-500, and the weight proportion of an oxyethylene group EO having 2 carbon atoms contained in the oxyalkylene group having 2-4 carbon atoms is 0-80 wt%.)

陶瓷生片层叠助剂及陶瓷生片组合物

技术领域

本发明涉及一种在层叠陶瓷生片的工序中使用的层叠助剂、及含有该层叠助剂的陶瓷生片组合物。更详细而言,涉及一种能够以少量的添加量抑制陶瓷生片间的剥离及层叠错位,且同时能够抑制片材强度的下降及烧成时残渣的增加的层叠助剂、及含有该层叠助剂的陶瓷生片组合物。

背景技术

层叠陶瓷电容器(MLCC)或层叠片式电感器等电子部件主要通过层叠由钛酸钡或铁氧体等陶瓷及粘结剂树脂构成的生片的工法而进行制造。

近年来,伴随着电子设备的小型化、高性能化,开始要求MLCC的小型化及大容量化。小型化及大容量化可通过对作为其构成部件的陶瓷生片及导电层进行薄层化,并同时进行多层化而实现。

若生片的强度因薄膜化而下降,则在层叠时会产生生片破裂等不良情况。因此,选择高强度的粘结剂的情况较多,例如广泛地使用有聚乙烯醇缩丁醛。然而,高强度的粘结剂的硬度高于以往的粘结剂,与以往产品相比,有片材间的粘合性下降的倾向。若粘合性下降,则在生片的层叠工序或热压工序中有时会引起层间剥离,产生缺陷。

当生片的粘合性下降时,可通过大量添加增塑剂而使树脂软化,从而获得粘合性。然而,若因软化树脂而造成树脂强度下降,则在热压时会发生变形,尺寸精度会变差,因此需要兼顾粘合性与树脂的强度。针对这样的技术问题,专利文献1中公开了一种方法,该方法通过组合聚乙烯醇缩丁醛与特定的增塑剂而抑制层间剥离且不使树脂的强度下降。

现有技术文献

专利文献

专利文献1:日本特开2001-106580

发明内容

本发明要解决的技术问题

然而,随着近来的生片的薄层化与多层化的进展,越发容易引起生片间的不良状况。特别是在层叠工序或热压工序中施加载荷时,生片彼此打滑,由此产生层叠错位,成为产品质量不稳定的原因。对于这样的问题,仅防止以往的层间剥离是不充分的,谋求一种抑制层叠工序或热压工序中的层叠错位的方法。

如上所述,本发明的技术问题在于,不使片材强度下降且抑制陶瓷生片间的剥离与层叠错位。

解决技术问题的技术手段

本申请的发明人为了解决上述技术问题而进行了认真研究,结果发现,具有特定结构的聚醚化合物能够解决上述技术问题。

即,本发明为下述的[1]~[2]。

[1]一种陶瓷生片层叠助剂,其特征在于,其由式(1)所表示的化合物构成,

Z-[O-(AO)n-H]x ···(1)

式(1)中,Z表示从碳原子数为1~22且具有1~6个羟基的化合物中去除了全部羟基的残基,x表示1~6的数,AO表示碳原子数为2~4的氧化烯基,n表示5~500的数,ⅹ×n为5~500的范围,碳原子数为2~4的所述氧化烯基AO中所包含的氧化乙烯基EO的重量比例为0~80重量%。

[2]一种陶瓷生片组合物,其特征在于,其含有0.01~5质量%的下述成分(A)、1~25质量%的下述成分(B)及70~98质量%的下述成分(C),

成分(A):权利要求1所述的陶瓷生片层叠助剂,

成分(B):聚乙烯醇缩丁醛,

成分(C):陶瓷粉末。

发明效果

根据本发明,能够不引起片材强度的下降及烧成时残渣的增加,且抑制陶瓷生片间的剥离或层叠错位。

具体实施方式

以下,对本发明的层叠助剂及含有该层叠助剂的陶瓷生片组合物进行说明。

(层叠助剂)

本发明的层叠助剂为下述式(1)所示的聚醚化合物。

Z-[O-(AO)n-H]x ···(1)

式(1)中的Z为从碳原子数为1~22且具有1~6个羟基的醇化合物中去除了全部羟基的残基。即,醇化合物以(Z(OH)x)表示,从醇化合物中去除了全部(OH)的残基为Z。作为该醇化合物,可列举出甲醇、乙醇、正丁醇、正辛醇、2-乙基己醇、3,5,5-三甲基己醇、十二醇、十八醇、山嵛醇、乙二醇、丙二醇、丁二醇、戊二醇、己二醇、辛二醇、丙三醇、1,2,3-丁三醇、1,2,4-丁三醇、1,2,5-戊三醇、1,2,3-环己三醇、1,3,5-环己三醇、1,2,6-环己三醇、3-甲基戊烷-1,3,5-三醇、双甘油、1,2,3,4-丁四醇、赤藓糖醇、季戊四醇、脱水山梨醇、三甘油(triglycerin)、葡萄糖、核醣醇、木糖醇、甘露糖、山梨醇、甘露醇等。

z的碳原子数进一步优选为2以上,且进一步优选为10以下,特别优选为5以下。

式(1)中的ⅹ为与Z键合的AO链的数量,相当于上述醇(Z(OH)x)所具有的羟基的数量。ⅹ为1~6,优选为1~5,进一步优选为1~4,最优选为1~3。当ⅹ大于6时,层叠助剂为高粘度,操作性有时会变差。从这样的角度出发,作为醇,优选使用甲醇、乙醇、丁醇、2-乙基己醇、3,5,5-三甲基己醇、乙二醇、丙二醇、丙三醇,进一步优选甲醇、丁醇、乙二醇、丙三醇。

式(1)中的AO为碳原子数为2~4的氧化烯基,具体而言,通过对环氧乙烷、环氧丙烷、环氧丁烷进行加聚而得到。从抑制层叠错位的点出发,优选使用这些环氧烷烃中的环氧乙烷、环氧丙烷,最优选使用环氧丙烷。此外,可组合上述环氧烷烃中的一种或两种以上。加成两种以上的环氧烷烃时,顺序没有特别限定,可以为嵌段状,也可以为无规状,从陶瓷生片的强度不易下降的点出发,优选为无规状。

n表示AO的平均加成摩尔数,当AO为两种以上时,n为各AO的合计平均加成摩尔数,表示5~500的数。

式(1)中所包含的所有AO的平均加成摩尔数[ⅹ×n]为5~500。ⅹ×n优选为25~500,更优选为10~450,进一步优选为25~450,特别优选为30~450,特别优选为50~400,最优选为50~200。当ⅹ×n低于5时,有时无法充分地抑制陶瓷生片间的剥离与层叠错位,或有时片材强度会下降。当[ⅹ×n]大于500时,层叠助剂的粘度高,操作性变差。

从提高与树脂的溶解性的点出发,本发明的层叠助剂可含有氧化乙烯基(EO),AO中所包含的EO的重量比例[EO重量/AO重量×100]的上限为80重量%。AO中所包含的EO的重量比例优选为0~60重量%,进一步优选为0~50重量%。当AO中所包含的EO的重量比例大于80重量%时,在树脂中的溶解性虽变高,但有时会引起强度的下降。

本发明的层叠助剂的分子量可使用凝胶渗透色谱法测定,分子量优选为500~35,000,更优选为2,000~35,000,进一步优选为2,500~30,000,进一步优选为3,000~25,000,最优选为3,000~10,000。若分子量大于35,000,则式(1)所示的聚醚化合物为高粘度,有操作性变差或溶剂溶解性下降的倾向。另一方面,当分子量为500以下时,有时无法充分地抑制陶瓷生片间的剥离与层叠错位,或有时片材强度会下降。

(陶瓷生片组合物)

本发明的陶瓷生片组合物含有0.01~5质量%的层叠助剂(成分(A))、1~25质量%的聚乙烯醇缩丁醛(成分(B))及70~98质量%的陶瓷粉末(成分(C))。

其中,将成分(A)、成分(B)及成分(C)的合计量设定为100重量%。

本发明的层叠助剂的含量为0.01~5质量%,优选为0.05~3质量%,更优选为0.1~2质量%。当层叠助剂的含量小于0.01质量%时,无法充分地抑制生片的剥离或滑动。另一方面,当层叠助剂的含量大于5质量%时,生片的强度有时会变得不充分。

陶瓷生片组合物中的聚乙烯醇缩丁醛(成分(B))只要为通常用于生片的聚乙烯醇缩丁醛则没有特别限定,但分子量大的聚乙烯醇缩丁醛有粘合性容易不足的倾向。聚乙烯醇缩丁醛的重均分子量优选为500,000以下,进一步优选为300,000以下,特别优选为200,000以下。此外,由于可通过生片的薄膜化而谋求强度,因此优选将聚乙烯醇缩丁醛的重均分子量设为50,000以上,进一步优选设为100,000以上。

聚乙烯醇缩丁醛的含量为1~25质量%,优选为1~15质量%,特别优选为3~10质量%。

陶瓷生片组合物中的陶瓷粉末(成分(C))只要为通常用于生片的陶瓷粉末则没有限定,可列举出硅酸盐矿物、其他硅酸化合物、碳酸化合物、硫酸化合物、氢氧化物、氧化物、氮化物、碳化物、钛酸化合物等各粉体。例如可列举出高岭土、粘土、滑石、云母、膨润土、白云石、硅酸钙、硅酸铝、硅酸镁、碳酸钙、碳酸镁、碳酸钡、硫酸钙、硫酸钡、硫酸铝、氢氧化铝、氢氧化铁、氧化锆、氧化镁、氧化铝、氧化钛、氧化铁、氧化锌、三氧化二锑、氧化铟、氧化铟锡、碳化硅、碳化钨、氮化铝、氮化硅、氮化硼、钛酸钡、钛酸钙、钛酸锶、炭黑、玻璃纤维、碳纤维、碳纳米纤维、碳纳米管(单壁纳米管、双壁纳米管、多壁纳米管)等各粉体。

作为陶瓷粉末,优选氧化锆、氧化镁、氧化铝、氧化铁、氧化锌、氧化铟锡等氧化物的粉体,钛酸钡、钛酸钙、钛酸锶等钛酸化合物的粉体,更优选钛酸化合物的粉体,特别优选钛酸钡。

陶瓷粉末的平均粒径没有特别限定,但有伴随生片的薄膜化而使用平均粒径更小的陶瓷粉末的倾向。从该角度出发,优选与平均粒径为300nm以下的陶瓷粉末组合,更优选与平均粒径为50~200nm以下的陶瓷粉末组合。另外,分散体的平均粒径可通过使用SEM(扫描型电子显微镜)或TEM(透射式电子显微镜)的电子显微镜法或者Micro-track法(激光衍射/散射法)测定。

陶瓷粉末的含量为70~98质量%,优选为80~95质量%,更优选为85~95质量%。

除了上述掺合物以外,陶瓷生片组合物可含有其他陶瓷添加材料、增塑剂、分散剂、抗静电剂等作为共通成分。特别是通过将增塑剂与本发明的层叠助剂组合,能够有效地抑制层间剥离与层叠错位。此时,将成分(A)、(B)及(C)的合计量设为100质量份时,优选将增塑剂的量设为0.01~20质量份,进一步优选设为0.1~10质量份。

进一步,作为分散剂,通常可使用在侧链上具有羟基、羧基、聚醚基或氨基等极性基团的聚合物,优选同时具有聚醚基与羧基的聚合物。可例示出具有聚氧化烯基的乙烯醚与马来酸酐的聚合物。添加分散剂时,将成分(A)、(B)及(C)的合计量设为100质量份时,优选将分散剂的量设为0.01~20质量份,进一步优选设为0.1~10质量份。

可在组合物中加入溶剂。作为这样的溶剂,可例示出丙酮及甲基乙基酮等酮类;乙醇及异丙醇等醇类;甲苯及二甲苯等芳香族类的溶剂。这些溶剂可单独使用,也可组合使用两种以上,优选同时使用醇类与芳香族类。添加溶剂时,将成分(A)、(B)及(C)的合计量设为100质量份时,优选将溶剂的量设为20~500质量份,进一步优选设为50~300质量份。

实施例

以下,通过实施例对本发明进行进一步详细的说明,但本发明不受这些实施例的任何限定。

(层叠助剂)

作为层叠助剂,使用表1所示的组成的层叠助剂1~7及比较品1、2。表1中的层叠助剂3、4的EO与PO的加成方式为无规,层叠助剂6、7的EO与PO的加成方式为嵌段,其顺序为EO-PO。

(陶瓷生片的成型1)

向0.5升塑料钵中填充YTZ粒径为2mm的介质至钵容积的50%,并以表2、表3、表4所示的各组成向该钵中加入各材料。使用MASUDA UNIVERSAL BALL MILL MODEL UBM-2,以60rpm的转速搅拌5小时后,滤出介质,得到陶瓷组合物浆料。

使用刮刀涂布机,以1.5m/分钟的成型速度将所得到的浆料涂布在PET膜上。在该工序中,将刀片的槽设为140μm,并使用厚度为32μm的PET膜。进一步,将涂布的浆料在40℃、60℃、75℃、85℃、85℃下各干燥10分钟,得到目标陶瓷生片。

(片材物性及粘合性的评价)

通过下述方法评价片材强度、粘合强度及静摩擦系数。将结果示于表2、表3、表4。

(片材强度的测定方法)

使用表中记载的各生片,制成宽3cm×长10cm的试验片。针对各试验片,使用AikohEngineering Co.,Ltd.制造的MODEL9502B测定拉伸强度[N/mm2]。以下述为基准来评价结果。

◎:16.0[N/mm2]以上

○:15.0~16.0[N/mm2]

×:小于15.0[N/mm2]

(片材间的粘合强度的测定方法)

叠合表中记载的各生片,以500kg/cm2、60℃压接1分钟。将经过压接的生片裁切成宽2.5cm×长25cm,制成试验片。将JIS K-6854-1(剥离粘合强度试验方法)作为参考,将各试验片的一个面固定在工作台上,并使用Aikoh Engineering Co.,Ltd.制造的MODEL9502B,以500mm/分钟拉伸另一个面,由此剥离粘合面。以此时所需的力[N]除以试验片宽度,计算粘合强度(N/m)。以下述为基准来评价其结果。

◎:15.0[N/m]以上

○:10.0~15.0[N/m]

×:小于10.0[N/m]

(片材间的摩擦系数的测定方法)

使用表中记载的各生片,测定片材彼此的静摩擦系数与动摩擦系数。在摩擦系数的测定中,使用摩擦试验机(机型:TL201Tt,Trinity-Lab.inc.制造),在触头与样本接触的部位(正方形1cm×1cm)贴附生片,测定片材间的摩擦系数。将测定条件设定为温度为25℃、摩擦件移动速度为5mm/秒、载荷为25g/cm2。以下述为基准来评价其结果。

◎:10.0以上

○:5.0~10.0

×:小于5.0

(陶瓷生片的成型2)

将在陶瓷生片的成型1中使用的钛酸钡粉末变更为氧化铝粉末,除此之外以与陶瓷生片的成型1相同的方式进行片材物性与粘合性的评价。将结果示于表5。

[表5]

由表2、表3、表4、表5所示的结果可知,实施例1~13在片材强度、粘合强度、静摩擦系数上获得了良好的结果。

另一方面,由于比较例1、比较例5的AO中所包含的EO的重量比例不在本发明的范围内,因此未得到充分的静摩擦系数,片材强度也下降。

由于比较例2的AO中所包含的EO的重量比例不在本发明的范围内,因此未得到充分的粘合强度、静摩擦系数。

由于比较例3、比较例4不含有层叠助剂,因此粘合强度、静摩擦系数不充分。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于汽车安全气囊应用的气体发生剂制剂中的冷燃水合物燃料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!