柔性InGaZnO薄膜晶体管制备方法

文档序号:910626 发布日期:2021-02-26 浏览:1次 >En<

阅读说明:本技术 柔性InGaZnO薄膜晶体管制备方法 (Preparation method of flexible InGaZnO thin film transistor ) 是由 宋家琪 郑克丽 于 2020-10-29 设计创作,主要内容包括:本发明公开了一种柔性InGaZnO薄膜晶体管制备方法。包括:提供柔性PI衬底,在所述柔性PI衬底上依次形成缓冲层、ITO栅极、高K介质层,对所述高K介质层进行准分子激光退火,在所述高K介质层上形成InGaZnO有源层,通过光刻和显影工艺,在所述InGaZnO有源层上形成源极和漏极的光刻胶图形,对所述InGaZnO有源层进行准分子激光退火,在所述InGaZnO有源层上形成金属薄膜,通过光刻胶的剥离工艺形成源极和漏极。通过使用准分子激光退火,可实现纳米尺度下的局域性退火,对特定的薄膜区域实现温度提升,有效避免了全结构的热效应,降低柔性衬底材料玻璃化温度的限制。(The invention discloses a preparation method of a flexible InGaZnO thin film transistor. The method comprises the following steps: providing a flexible PI substrate, sequentially forming a buffer layer, an ITO grid electrode and a high-K dielectric layer on the flexible PI substrate, performing excimer laser annealing on the high-K dielectric layer, forming an InGaZnO active layer on the high-K dielectric layer, forming photoresist patterns of a source electrode and a drain electrode on the InGaZnO active layer through photoetching and developing processes, performing excimer laser annealing on the InGaZnO active layer, forming a metal film on the InGaZnO active layer, and forming the source electrode and the drain electrode through a photoresist stripping process. By using excimer laser annealing, the local annealing under the nanoscale can be realized, the temperature of a specific film region is increased, the heat effect of the whole structure is effectively avoided, and the limitation of the glass transition temperature of the flexible substrate material is reduced.)

柔性InGaZnO薄膜晶体管制备方法

技术领域

本发明涉及薄膜晶体管技术领域,尤其是涉及一种柔性InGaZnO薄膜晶体管及制备方法。

背景技术

薄膜晶体管作为三端电子器件,是众多现代电子设备的共同基础单元,包括:柔性显示、有机电致发光显示与照明、化学与生物传感器、柔性光伏、柔性逻辑与存储、柔性电池、可穿戴设备等。但是传统的晶体管沟道材料大多为单晶硅、多晶硅、非晶硅等,由于材料的本征属性而面临发展瓶颈,无法适应未来电子设备的多样化需求。InGaZnO作为新型的氧化物半导体材料,不仅具备高电子迁移率(>50cm2V-1s-1),同时也属于非晶结构(结晶温度>500℃),而且其在可见光波段的高透光率适用于多样化的应用场景。除此之外,InGaZnO在禁带中具有更低的缺陷态密度,并且在13μm的曲率半径下依然维持正常的TFT性能输出。最后,InGaZnO材料的制备流程兼容现有Si基工艺,可极大降低产业链的生产成本。

相关技术中的InGaZnO薄膜晶体管的高性能实现普遍依赖于高温退火优化工艺,例如:N2退火和NH3退火等。这是因为高温条件可以促进InGaZnO材料在分子层面的二次自组装,从而实现更高的薄膜致密度和更光滑的表面粗糙度,同时,气体原子通过渗透作用可有效降低沟道传输层的界面态密度,从而显著提升载流子迁移率。这种优化处理已经在基于刚性衬底的InGaZnO薄膜晶体管中得到广泛证实,并且退火温度集中在400至500℃。但是在柔性电子器件中,受限于柔性衬底材料较低的玻璃化温度,柔性InGaZnO薄膜晶体管的退火工艺的温度要小于300℃,大大降低了优化效果。

发明内容

本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种柔性InGaZnO薄膜晶体管制备方法,对特定区域实现局域性退火,提高优化效果的同时,避免对柔性衬底产生损伤。

根据本发明的第一方面实施例的柔性InGaZnO薄膜晶体管制备方法,包括:提供柔性PI衬底;在所述柔性PI衬底上依次形成缓冲层、ITO栅极、高K介质层;对所述高K介质层进行准分子激光退火;在所述高K介质层上形成InGaZnO有源层;通过光刻和显影工艺,在所述InGaZnO有源层上形成源极和漏极的光刻胶图形;对所述InGaZnO有源层进行准分子激光退火;在所述InGaZnO有源层上形成金属薄膜,通过光刻胶的剥离工艺形成源极和漏极。

根据本发明实施例的柔性InGaZnO薄膜晶体管,至少具有如下有益效果:通过使用准分子激光退火,可实现纳米尺度下的局域性退火,对特定的薄膜区域实现温度提升,有效避免了全结构的热效应,降低柔性衬底材料玻璃化温度的限制。

根据本发明的一些实施例,所述缓冲层为使用原子层沉积工艺制备的氧化铝薄膜,所述氧化铝薄膜的厚度为100nm。

根据本发明的一些实施例,所述ITO栅极为使用磁控溅射工艺制备的ITO薄膜,所述ITO薄膜的厚度为100nm。

根据本发明的一些实施例,所述高K介质层为使用磁控溅射工艺制备高K介质薄膜,所述高K介质薄膜的厚度为40nm至60nm。

根据本发明的一些实施例,所述InGaZnO有源层为使用磁控溅射工艺制备的InGaZnO薄膜,所述InGaZnO薄膜的厚度为50nm,所述InGaZnO薄膜的生长速率为1nm/min。

根据本发明的一些实施例,所述金属薄膜为使用热蒸发工艺形成的双金属层结构。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

下面结合附图和实施例对本发明做进一步的说明,其中:

图1为本发明实施例柔性InGaZnO薄膜晶体管结构的示意图;

图2为本发明实施例对高K介质层进行准分子激光退火的示意图;

图3为本发明实施例对InGaZnO有源层进行准分子激光退火的示意图。

附图标记:

柔性衬底110、缓冲层120、ITO栅极130、高K介质层140;

InGaZnO有源层150、源极160、漏极170、光刻胶180;

缓冲金属层161、数据金属层162。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。

在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。

术语解释:

InGaZnO(Indium Gallium Zinc Oxide),铟镓锌氧化物,是一种新型半导体材料,与非晶硅相比具有更高的电子迁移率,用于制备薄膜晶体管的有源层。

ITO(Indium Tin Oxide),氧化铟锡,与单一的金属材料相比具有较好的可见光透射率与柔韧性。

高K介质层140,高介电值的介质层,具有良好的绝缘性,一般由氮化物、金属氧化物或铁电材料制成。

柔性PI(Polyimide)衬底,聚酰亚胺衬底,为有机高分子材料,广泛用于柔性显示中作为衬底。

在本发明的一些实施例中,参照图1,提供了一种柔性InGaZnO薄膜晶体管制备方法,包括:提供柔性PI衬底,在柔性PI衬底上依次形成缓冲层120、ITO栅极130、高K介质层140,对高K介质层140进行准分子激光退火,在高K介质层140上形成InGaZnO有源层150,通过光刻和显影工艺,在InGaZnO有源层150上形成源极160和漏极170的光刻胶图形,对InGaZnO有源层150进行准分子激光退火,在InGaZnO有源层150上形成金属薄膜,通过光刻胶180的剥离工艺形成源极160和漏极170。

准分子激光退火是利用高能量密度的激光束辐照退火材料表面,从而引起被照区域的温度突然升高,达到对辐照区域退火的效果。参照图2,为对高K介质层140进行准分子激光退火的示意图,在非真空的室温条件下,采用超短脉冲的紫外(200nm-400nm)激光在固定时长区间(0.005μs-250μs)内对高k介质层表面进行能量密度(10-1000mJ/cm2)的退火处理,高K介质层140通过吸收激光束的能量,使自身温度升高,降低了高K介质层140的界面态数量以及减小界面层粗糙度,从而可以显著提升薄膜晶体管的传输特性,且温度升高先从高K介质层140开始,柔性PI衬底的温度与高K介质层140的温度相比较低,避免了对柔性PI衬底的高温损伤。

参照图3,为对InGaZnO有源层150进行准分子激光退火的示意图,其准分子激光的退火条件与对高K介质层的退火条件相同,此处不再一一赘述。InGaZnO有源层150上有形成图形的光刻胶180,可以吸收一部分准分子激光的能量,即可遮挡不需要退火的区域,达到区域性退火的效果,修复InGaZnO有源层150的晶格缺陷,优化柔性InGaZnO薄膜晶体管的性能和稳定性。

一些实施例,缓冲层120为使用原子层沉积工艺制备的氧化铝薄膜,氧化铝薄膜的厚度为100nm。制备完成后,依次使用乙醇、丙酮以及去离子水进行5min的超声清洗,最后用氮气吹干,以清除表面附着不牢固的物质。原子层沉积工艺可以将物质以单原子膜形式一层一层的镀在衬底表面,具有优异的沉积均匀性与一致性。在一些其他实施例中,可以采用磁控溅射工艺制备,其氧化铝薄膜的厚度可以根据器件制备要求任意设置。

一些实施例,ITO栅极130为使用磁控溅射工艺制备的ITO薄膜,ITO薄膜的厚度为100nm。磁控溅射工艺具有沉积速度快、基材温升低、对膜层的损伤小的优点。在一些其他实施例中,可以采用化学气相沉积、脉冲激光沉积等工艺制备ITO栅极130,ITO薄膜的厚度可以根据器件设计的要求任意设置。

一些实施例,高K介质层140为使用磁控溅射工艺制备高K介质薄膜,高K介质薄膜的厚度为40nm至60nm,高K介质薄膜在氮气氛围中进行退火。具体的,在氮气中退火的温度<300℃,时长为10至30min,气体流量为500mL/min。高K介质层140具有良好的绝缘性,一般由氮化物、金属氧化物或铁电材料制成,其制备工艺可以根据材料的选择灵活变化,如凝胶气相沉积制备氮化硅、分子束外延法制备铁电材料等。

一些实施例,InGaZnO有源层150为使用磁控溅射工艺制备的InGaZnO薄膜,InGaZnO薄膜的厚度为50nm,InGaZnO薄膜的生长速率为1nm/min。磁控溅射工艺中不同的溅射速度生成的InGaZnO薄膜质量不同,会影响InGaZnO薄膜的电阻率。在其它实施例中,可以根据实际需求,选择不同的薄膜生长速率。

一些实施例,金属薄膜为使用热蒸发工艺形成的双金属层结构。包括缓冲金属层161与数据金属层162,示例,源极160上缓冲金属层161材料为钛,数据金属层162材料为金。在其它实施例中,缓冲金属层161材料可以为钼,数据金属层162材料可以为铝、铜或其合金。漏极170的组成结构与源极160相同,此处不再一一赘述。

上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:氧化物薄膜晶体管及其制作方法、阵列基板

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!