一种多功能性抗菌复合薄膜及其制备方法

文档序号:99474 发布日期:2021-10-15 浏览:17次 >En<

阅读说明:本技术 一种多功能性抗菌复合薄膜及其制备方法 (Multifunctional antibacterial composite film and preparation method thereof ) 是由 蔡芳昌 叶琴 马宁 章雅 阮波 张鑫珂 张逸捷 蒋涛 于 2021-04-30 设计创作,主要内容包括:本发明公开了一种多功能性抗菌复合薄膜及其制备方法,包括:将壳聚糖和聚乙烯醇溶解于酸溶液中,搅拌反应;加入月桂酰胺丙基甜菜碱,降低温度至40~60℃,继续反应,接着加入氢键有机框架,搅拌混合反应;放置至室温后,去除气泡后烘干揭膜;然后用NaHCO-(3)溶液洗涤至中性并烘干,得到所述多功能性抗菌复合薄膜。本发明通过选取壳聚糖和聚乙烯醇、月桂酰胺丙基甜菜碱和氢键有机框架作为原材料,使其相互作用形成致密的聚合物网络,并利用材料内在的增韧机制,从微观结构上显著增强了该复合薄膜的机械性能,同时该复合薄膜还具有透气、吸湿、抗菌和高负载药物等特性,并且制备方法简单、材料无毒无污染,具有广泛的应用前景和应用价值。(The invention discloses a multifunctional antibacterial composite film and a preparation method thereof, wherein the preparation method comprises the following steps: dissolving chitosan and polyvinyl alcohol in an acid solution, and stirring for reaction; adding lauramidopropyl betaine, reducing the temperature to 40-60 ℃, continuing to react, then adding a hydrogen bond organic frame, and stirring and mixing for reaction; after the mixture is placed to room temperature, air bubbles are removed, and then the film is dried and uncovered; then with NaHCO 3 Washing the solution to be neutral and drying to obtain the multifunctional antibacterial composite film. Book (I)The invention selects chitosan, polyvinyl alcohol, lauramide propyl betaine and hydrogen bond organic framework as raw materials, so that the chitosan, the polyvinyl alcohol, the lauramide propyl betaine and the hydrogen bond organic framework interact to form a compact polymer network, and utilizes the inherent toughening mechanism of the materials to obviously enhance the mechanical property of the composite film from the microstructure.)

一种多功能性抗菌复合薄膜及其制备方法

技术领域

本发明涉及生物医用敷料

技术领域

,具体涉及一种多功能性抗菌复合薄膜及其制备方法。

背景技术

医用敷料,是包扎伤口的用品,用以覆盖疮、伤口或其他损害的医用材料。随着对创面愈合过程的病理生理的深入研究,人们对创面愈合过程的理解也越来越深刻,因此医用创面敷料也在不断改进和发展。传统的医用敷料对伤口只有简单的保护功能,如早期的亚麻和棉类的敷料,其无法提供湿润环境,容易粘附在伤口处,不易更换,无法达到较好的治疗效果。目前,能够保持皮肤伤口润湿并抗菌的聚合物敷料已经成为医用伤口敷料的发展主流。而抗菌敷料在渗液较多时,如果没有及时更换,可能会引起伤口周围皮肤浸渍,易感染和溃烂,因此理想的伤口医用敷料应该具有渗出液吸收能力;并具备为伤口提供湿润的环境,足够的氧气透过率,良好的生物相容性,合适的溶胀率和优异的抗菌活性等性能。

目前应用较为广泛的敷料为水凝胶敷料,其具有较高的渗出液吸收能力和生物相容性,如专利CN103480034A公开了辐照交联壳聚糖/明胶/聚乙烯醇水凝胶敷料及其制备方法和应用,该专利制备得到的水凝胶敷料具有消炎、舒缓伤口疼痛、减小疤痕、促进伤口愈合、吸收伤口渗液和生物相容性等优异特性,然而其表现出较差的抗菌性能和机械稳定性,不仅易造成伤口感染,而且由于反复摩擦,敷料边缘容易卷边,易脱落,使用效果不好。因此迫切需要设计出一种具有优异机械性能和抗菌效果,并且具有高溶胀率、氧气透过率和生物相容性的新型多功能复合薄膜医用敷料。

发明内容

本发明针对现有技术存在的缺陷,提供了一种多功能性抗菌复合薄膜及其制备方法,本发明通过选取壳聚糖和聚乙烯醇、月桂酰胺丙基甜菜碱和氢键有机框架作为原材料,使其相互作用,形成了致密的聚合物网络,并利用材料内在的增韧机制,从微观结构上显著增强了该复合薄膜的机械性能,同时该复合薄膜还具有透气、吸湿、抗菌和高负载药物等特性,并且制备方法简单、材料无毒无污染,具有广泛的应用前景和应用价值。

为实现上述目的,本发明采用的技术方案是:

本发明提供了一种多功能性抗菌复合薄膜的制备方法,所述制备方法包括以下步骤:

步骤1、将壳聚糖和聚乙烯醇溶解于酸溶液中,70~90℃搅拌反应;

步骤2、加入月桂酰胺丙基甜菜碱,降低温度至40~60℃,继续反应1-3hour,接着加入氢键有机框架,搅拌混合反应8-12hour;

步骤3、放置至室温后,去除气泡后烘干,揭膜;

步骤4、将揭下的膜用NaHCO3溶液洗涤至中性,然后于35-40℃条件下烘干8-12hour,得到所述多功能性抗菌复合薄膜。

进一步的,其中所述壳聚糖、聚乙烯醇和月桂酰胺丙基甜菜碱的质量比w/w为1:1~3:1~3。

进一步的,所述壳聚糖、聚乙烯醇和月桂酰胺丙基甜菜碱的质量比w/w为1:2:2。

进一步的,所述氢键有机框架的加入量为总质量的3wt%。

进一步的,所述氢键有机框架为2维-氢键有机框架,所述2维-氢键有机框架的制备方法包括:

称量三聚氰胺、均苯四甲酸二酐和氯化锌,混合研磨后封闭于耐高温管中,于200~400℃反应,接着用HCl和H2O洗涤,然后用四氢呋喃活化,再用甲醇索氏提取,最后烘干即得所述2维-氢键有机框架。

进一步的,所述2维-氢键有机框架的制备方法中三聚氰胺、均苯四甲酸二酐和氯化锌的w/w为1:2.59:13.53。

进一步的,步骤1中所述酸溶液选自盐酸、硫酸、甲酸、乙酸中的任意一种或多种。

进一步的,步骤1中所述酸溶液为浓度2wt%的乙酸溶液。

进一步的,步骤1中将壳聚糖和聚乙烯醇溶解于体积比v/v 1:50的2wt%乙酸溶液中。

本发明还提供了一种多功能性抗菌复合薄膜,其是采用上述制备方法制备得到的。

与现有技术相比,本发明的有益效果是:

(1)本发明在传统的壳聚糖/聚乙烯醇水凝胶膜的基础上,加入了月桂酰胺丙基甜菜碱和氢键有机框架,使各组分的官能团相互作用,形成致密的聚合物网络,增强了复合膜的机械性能,同时氢键有机框架导致的增韧机理也增强了复合膜的韧性,其最大拉伸强度可达29MPa,最大负载量可达3700g,即该复合膜的机械性能显著提高;

(2)该复合薄膜中的壳聚糖和月桂酰胺丙基甜菜碱都是聚阳离子化合物,而细菌是聚阴离子,因此壳聚糖、月桂酰胺丙基甜菜碱与聚乙烯醇和氢键有机框架形成的氢键作用使复合薄膜具有较强的抗菌活性;

(3)该复合薄膜还具有优良的亲水性、溶胀率、氧气透过率和生物相容性,即本发明所述的多功能性抗菌复合薄膜兼具多种优异性能,同时制备方法简单,材料成本低,无毒无污染无公害,具有广泛的应用前景。

附图说明

图1为本发明实施例1中制备得到的CS/PVA/LPB/2D-HOF复合膜;

图2为本发明实施例1中CS/PVA/LPB/2D-HOF复合膜的抑菌效果测定;

图3为本发明实施例1和对比例1-4中不同薄膜的抗菌性能测定结果;

图4为本发明实施例1和对比例1-4中不同薄膜的生物相容性测定结果;

图5为本发明实施例1和对比例1-4中不同薄膜的拉伸强度和断裂伸长率测定结果;

图6为本发明的CS/PVA/LPB/2D-HOF复合膜拉伸前后的FESEM图;

图7为本发明的CS/PVA/LPB/2D-HOF复合膜的最大负载量测定结果;

图8为本发明实施例1和对比例1-4中不同薄膜的氧气透过率测定结果;

图9为本发明实施例1和对比例1-4中不同薄膜的溶胀率测定结果;

图10为本发明的CS/PVA/LPB/2D-HOF复合膜的亲水接触角测定结果。

具体实施方式

下面将结合本发明中的实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保护的范围。

实施例1

本实施例提供了一种多功能性抗菌复合薄膜及其制备方法,具体如下:

步骤1、2维-氢键有机框架(2D-HOF)的合成:在手套箱里称量0.0723g三聚氰胺(MA),0.1869g均苯四甲酸二酐(PMDA)和0.978g氯化锌(ZnCl2),混合研磨后加入到石英管中,封管,在炉子里300℃反应72hour。反应结束后,依次用1M HCl和H2O进行洗涤,然后用四氢呋喃(THF)活化,再用甲醇索氏提取,最后85℃在烘箱干燥过夜,得到所述2D-HOF;

步骤2、在三口烧瓶里面加入1g壳聚糖(CS),2g聚乙烯醇(PVA)和150mL浓度为2wt%的乙酸(HAc)溶液,80℃搅拌2hour,然后再加入2g月桂酰胺丙基甜菜碱(LPB),降低温度至55℃,继续反应2hour,再加入总质量3%的2D-HOF,搅拌8-12hour;

步骤3、将混合溶液放置室温后,把反应液抽真空30min,去除其中的气泡,然后通过自然流涎的方法,把溶液倒入到聚四氟乙烯盘中,烘箱50℃烘20hour,然后揭膜;

步骤4、将揭下的混合膜用NaHCO3溶液洗涤至中性,以去除膜表面残留的乙酸,最后在37℃下烘干8-12hour,最终制备得到了CS/PVA/LPB/2D-HOF复合膜,即本发明所述的多功能性抗菌复合薄膜,如附图1所示。

该复合膜的具体作用机理如下:CS的胺基和PVA的羟基之间形成一个氢键网络,LPB含有酰胺基和-COO-,与CS和PVA的羟基之间通过氢键作用又形成了一个聚合物网络,再加上镶嵌在聚合物网络中二维层状结构的2D-HOF,通过聚合物之间的相互作用,形成了致密的聚合物网络,增强了复合膜的机械性能。进一步的,该复合膜在拉伸过程中,2D-HOF在聚合物链之间滑动,氢键开始断裂并吸收断裂能,而有些未断裂的HOF和聚合物链之间会引起裂纹桥接,从而进一步增强了能量的消耗和载荷传递。因此2D-HOF导致的增韧机理与聚合物间的氢键的共同作用,显著提高了复合膜的机械性能,进而有效解决了传统敷料由于反复摩擦导致的卷边问题。

CS和LPB都是聚阳离子化合物,而细菌是聚阴离子,他们与PVA和2D-HOF之间形成的氢键作用使得复合膜具有强的抗菌活性。进一步的,CS和PVA含有较多的亲水基团(-OH、-NH2),加入LPB之后,由于LPB的酰胺基和-COO-的存在,更多基团之间相互作用(-OH,-NH2,-COOH,酰胺基),分子间作用力加强,多种聚合物形成的多网络结构增强了水分子的吸收进而增强了复合膜的亲水性,增大了人类皮肤纤维细胞在敷料薄膜表面的附着力,并能快速吸收人体产生的热量和汗水并扩散到外部;同时2D-HOF是一种多孔材料,会增加该复合膜的透氧气率,因此该复合膜还具备优异的氧气透过率。

进一步的,本实施例还对制备得到的CS/PVA/LPB/2D-HOF复合膜的抗菌性能进行了验证,具体如下:将复合膜灭菌后加入到金黄色葡萄球菌(S.aureus)(1x107CFU/mL)细菌悬液中,并以不加复合膜作为空白对照,于37℃下培养48hour,然后将细菌悬浮液稀释100万倍,并分别涂布于LB培养基中,37℃培养48hour,统计两个培养基中的细菌菌落的数量,结果如图2所示。结果显示,加入了复合膜菌液经涂布后几乎没有细菌生长,即证明本发明制备得到的CS/PVA/LPB/2D-HOF复合膜具有优异的杀菌抑菌活性。

对比例1

本对比例与实施例1的不同之处在于:本对比例仅以CS作为原料制备得到CS膜,其制备方法为:在三口烧瓶里面加入1g CS和150mL的2wt%HAc溶液,80℃搅拌2hour,然后降低温度至55℃,搅拌8-12hour;后续步骤与实施例1中的步骤3和步骤4相同,合成得到CS膜。

对比例2

本对比例与实施例1的不同之处在于:本对比例仅以PVA作为原料制备得到PVA膜,其制备方法为:在三口烧瓶里面加入2g PVA和150mL的2wt%HAc溶液,80℃搅拌2hour,然后降低温度至55℃,搅拌8-12hour;后续步骤与实施例1中的步骤3和步骤4相同,合成得到PVA膜。

对比例3

本对比例与实施例1的不同之处在于:本对比例仅以CS和PVA作为原料制备得到CS/PVA膜,其制备方法为:在三口烧瓶里面加入1g CS,2g PVA和150mL的2wt%HAc溶液,80℃搅拌2hour,然后降低温度至55℃,搅拌8-12hour;后续步骤与实施例1中的步骤3和步骤4相同,合成得到CS/PVA膜。

对比例4

本对比例与实施例1的不同之处在于:本对比例仅以CS、PVA和LPB作为原料制备得到CS/PVA/LPB膜,其制备方法为:在三口烧瓶里面加入1g CS,2g PVA和150mL的2wt%HAc溶液,80℃搅拌2hour,然后再加入2g LPB,降低温度至55℃,搅拌8-12hour;后续步骤与实施例1中的步骤3和步骤4相同,合成得到CS/PVA/LPB膜。

评价方案

1、抗菌性能

取实施例1和对比例1、3、4的共4种膜,剪切成直径1cm的圆形,将4个样品先用无水乙醇灭菌,然后浸泡在PBS溶液中12hour,最后再将所用的实验设备和薄膜样品在紫外灯下灭菌30min。取20μL细菌(金黄色葡萄球菌(S.aureus)(1x107CFU/mL))悬浮液加180μL PBS溶液进行稀释,然后加至96孔板中,将灭完菌的薄膜样品放到含有细菌悬浮液的96孔板中,将不含薄膜样品的PBS细菌悬浮液作为对照组。于37℃下培养48hour,然后将细菌悬浮液稀释100万倍,涂布于LB培养基中,37℃培养48hour,记录含有CS/PVA/LPB/HOF薄膜样品的细菌菌落的数量;同时在570nm波长下,使用酶标仪(Bio Tek,ELX800,美国)测量对照组和实验组的光密度值(OD),一个样品六组平行实验。使用以下公式计算抗菌率:

测定结果如图3所示。结果显示,4种薄膜均具有优异的抗菌活性,抗菌率大于90%,CS/PVA膜和CS/PVA/LPB/2D-HOF复合膜的抑菌率相对较高,高达95%,其中CS/PVA/LPB/2D-HOF复合膜的抑菌率可以达到95.76%

2、生物相容性

为检测不同薄膜的生物相容性,采用MTT法进行了细胞毒性实验。用3-[4,5-220二甲基噻唑-2-基]-2,5-二苯基溴化四氮唑(MTT,Alad-221din试剂公司,中国)来测定MC3T3-E1细胞的细胞相容性(武汉联合医院)。

薄膜样品是直径为1cm的圆形,提前浸泡在PBS(PH=7.4)溶液中,用浓度为1×104细胞/cm2的200μL细胞悬浮液和膜样品(CS膜、PVA膜、CS/PVA膜、CS/PVA/LPB膜、CS/PVA/LPB/HOF膜)一起在96孔板上培养3天(37℃的恒温箱),不加样品的细胞悬浮液为对照组。去除细胞培养基,每孔加入200μLMTT溶液(0.5mg mL-1),在细胞培养箱中37℃培养4hour,用移液枪吸出MTT溶液,再往每个组里面加入200μL的二甲基亚砜(DMSO),离心15min,获得上清液,最后在570nm波长下,使用酶标仪(Bio Tek,ELX800,美国)来测量光密度(OD)。一个样品六组平行试验。使用以下式来计算细胞活性:

检测结果如图4所示,结果显示,不同薄膜对于细胞存活率有影响,其中CS膜、PVA膜和CS/PVA膜的细胞存活率显著低于CS/PVA/LPB膜和CS/PVA/LPB/2D-HOF复合膜,即证明本发明的复合薄膜具有优异的生物相容性,对于细胞无毒性,可直接用于伤口。

3、拉伸强度、断裂伸长率和最大负载量

取实施例1和对比例1-4的共5个薄膜样品,制备成哑铃状,通过电子万能(拉力)试验机(CMT4104)来表征不同高分子薄膜样品的力学性能,原始标距为20mm,速率为2mm/min。

测定结果如图5所示,其中5-(a)为拉伸强度,5-(b)为断裂伸长率,结果显示,本发明的CS/PVA/LPB/2D-HOF复合膜的拉伸强度相较于其他薄膜样品显著提高,其最大拉伸强度可达29MPa,同时其断裂伸长率也显著高于其他薄膜,高达450%,说明本发明的CS/PVA/LPB/2D-HOF复合膜的韧性也显著提高。

在拉伸过程中使用场发射扫描电子显微镜(FESEM)(Zeiss Sigma 500)来分析本发明的CS/PVA/LPB/2D-HOF复合膜的表面形貌特征,先把混合膜喷铂金120sec,在电压为15KV的条件下,使用场发射扫描电子显微镜观察混合膜在拉伸前的表面形貌和在用拉力机拉伸后薄膜断裂处的形貌,观察结果如图6所示。图6中上图为拉伸前,下图为拉伸后,在图中可以观察到裂纹,即证实了实施例1中原理部分描述的裂纹增韧机理。

测定CS/PVA/LPB/2D-HOF复合膜的最大负载量,结果如图7所示,结果显示,该复合膜的最大负载量可达3700g,即该复合膜具有优异的机械性能。

4、氧气透过率

取实施例1和对比例1-4的共5个薄膜样品,制备成直径为4cm的圆形状,用压差法气体渗透仪(VAC-V2)来测试各薄膜样品的氧气透过率(cm3/m2·24hour·0.1MPa),每组实验测6次,测定结果如图8所示。

结果显示,相比于对比例1-4中的4种薄膜样品,本发明所述的CS/PVA/LPB/2D-HOF复合膜的氧气透过率显著提高了,其氧气透过率为:800cm3/m2·24hour·0.1MPa。因此作为敷料用于伤口时,透气性更好,更利于伤口愈合。

5、溶胀度和亲水性测定

取实施例1和对比例1-4的共5个薄膜样品,切成1cm×1cm大小,将其浸泡在PBS缓冲溶液中(pH=7.4,37℃),每隔1d取出薄膜样品,用定量滤纸慢慢吸干膜表面上的水,然后称重。一个样品六组平行试验,使用以下公式来计算溶胀率:(其中Wd是指浸泡在PBS溶液之前,Ww是浸泡之后称重)

结果如图9所示,结果显示,相比于其他薄膜,正是由于LPB和HOF的加入,亲水性官能团增加,提高了氢键作用力,使得本发明的CS/PVA/LPB/2D-HOF复合膜在缓冲液中浸泡7天后仍保持较高的溶胀率,从而有利于吸收伤口渗出的组织液并为伤口提供润湿环境,促进伤口愈合,并未创面提供干净清洁的环境,同时高溶胀率也可容纳更多的药物或抗菌剂,利于伤口的治疗。

进一步的,取本发明实施例1制备得到的CS/PVA/LPB/2D-HOF复合膜样品,制备成2×2cm的正方形,通过接触角测量仪(POWEREACH JC2000D1)来表征复合膜的亲水性,检测结果如图10所示,结果显示,该复合膜的亲水接触角为6°,即该复合膜的具有较强的亲水性,具有较好的吸液保液能力,不仅可有效吸收伤口过多的渗液,还可为创面提供润湿环境,促进伤口愈合。

综合上述测定结果,本发明通过选取壳聚糖和聚乙烯醇、月桂酰胺丙基甜菜碱和氢键有机框架作为原材料,使其相互作用,形成了致密的聚合物网络,并利用材料内在的增韧机制,从微观结构上显著增强了该复合薄膜的机械性能,同时该复合薄膜还兼具透气、吸湿、抗菌和高负载药物等特性,具有广泛的应用前景和较高的应用价值。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种可视化抗菌导电敷料的制备方法及应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!