一种抗静电防爆聚脲材料及其制备方法和应用

文档序号:998040 发布日期:2020-10-23 浏览:1次 >En<

阅读说明:本技术 一种抗静电防爆聚脲材料及其制备方法和应用 (Antistatic and explosion-proof polyurea material and preparation method and application thereof ) 是由 王宝柱 李灿刚 王伟 邵春妍 温喜梅 于 2020-06-29 设计创作,主要内容包括:本发明提出了一种抗静电防爆聚脲材料及其制备方法和应用,包括A组分和B组分,A组分包括以下原料:二异氰酸酯、聚酯多元醇和碳纳米管;B组分包括以下原料:聚酯多元醇、端氨基扩链剂以及助剂;本发明的抗静电防爆聚脲材料,包括碳纳米管,碳纳米管具有优异的力学性能、电学性能、光学性能、吸附性能等,在聚脲材料中添加少量的碳纳米管,可以提高聚脲材料的拉伸强度和撕裂强度进而提高材料力学性能以达到防爆抗冲击的作用,还可以明显降低聚脲材料的表面电阻率以达到抗静电的效果。(The invention provides an antistatic explosion-proof polyurea material and a preparation method and application thereof, wherein the antistatic explosion-proof polyurea material comprises a component A and a component B, wherein the component A comprises the following raw materials: diisocyanate, polyester polyol and carbon nanotubes; the component B comprises the following raw materials: polyester polyol, an amino-terminated chain extender and an auxiliary agent; the anti-static and anti-explosion polyurea material comprises the carbon nano tubes, the carbon nano tubes have excellent mechanical property, electrical property, optical property, adsorption property and the like, a small amount of carbon nano tubes are added into the polyurea material, the tensile strength and the tearing strength of the polyurea material can be improved, the mechanical property of the material is further improved, the anti-explosion and anti-impact effects are achieved, and the surface resistivity of the polyurea material can be obviously reduced, so that the anti-static effect is achieved.)

一种抗静电防爆聚脲材料及其制备方法和应用

技术领域

本发明涉及喷涂聚脲材料技术领域,尤其涉及一种抗静电防爆聚脲材料及其制备方法和应用。

背景技术

随着我国石油储备战略的推进,我国已进入大型石化设备建设的高速增长期。原油特别是轻质油在运输、混合、过滤、加注、抽提过程中,由于摩擦而产生电荷。当电荷的导出速度小于电荷的产生速度时,就会产生电荷的积聚。当挥发油品的浓度达到***极限时,积聚的电荷容易产生静电火花引起***,造成巨大的经济财产损失。通过在设备表面涂装抗静电材料可以有效消除电荷的积聚,从而避免事故的发生。

聚脲材料具有快速固化、施工效率高、防腐耐磨、抗腐蚀、抗冲击等特点,在防水防腐、矿山耐磨、军事防护等领域具有广泛的应用。为使聚脲材料具有优异的绝缘性能,需要在聚脲材料中添加大量液体抗静电剂或粉体抗静电剂以达到抗静电的效果。现有技术报道了在聚脲材料中添加液体抗静电剂及粉体抗静电剂制备柔性抗静电材料的方法。但是在聚脲材料中,大量添加抗静电材料会造成聚脲材料强度的下降。

基于上述缺陷,有必要对现有的抗静电聚脲材料进行改进,以满足抗静电防爆的要求。

发明内容

有鉴于此,本发明提出了一种拉伸强度高、撕裂强度高、表面电阻率低的抗静电防爆聚脲材料。

本发明的技术方案是这样实现的:本发明提供了一种抗静电防爆聚脲材料:包括A组分和B组分,所述A组分包括以下原料:二异氰酸酯、聚酯多元醇和碳纳米管;所述B组分包括以下原料:聚酯多元醇、端氨基扩链剂以及助剂。

在以上技术方案的基础上,优选的,所述碳纳米管包括单壁端氨基碳纳米管或多壁端氨基碳纳米管。

在以上技术方案的基础上,优选的,所述碳纳米管的直径为6~12nm,长度为20~50μm。

在以上技术方案的基础上,优选的,所述二异氰酸酯包括甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、1,6-六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、苯二亚甲基二异氰酸酯、三甲基六亚甲基二异氰酸酯、甲基环己基二异氰酸酯、二环己基甲烷二异氰酸酯和四甲基苯二亚甲基二异氰酸酯中的一种或几种;所述聚酯多元醇包括聚己内酯二醇、聚己二酸乙二醇酯二醇、聚己二酸己二醇酯二醇和聚碳酸酯二醇中的一种或几种;所述端氨基扩链剂包括3,5二乙基甲苯二胺、3,5-二甲硫基甲苯二胺、2,4-二氨基-3,5-二甲硫基氯苯、4,4′-双仲丁氨基二苯基甲烷、N,N,-二烷基苯二胺、2,4-二氨基-3-甲硫基-5-丙基甲苯、3,3′-二甲基-4,4′-二氨基二环己基甲烷、4,4′-双仲丁氨基二环己基甲烷、3,3′-二甲基-4,4′-双仲丁氨基-二环己基甲烷中的一种或几种。

在以上技术方案的基础上,优选的,所述助剂包括催化剂、紫外线吸收剂、光稳定剂、附着力促进剂和除水剂中的至少一种。

进一步优选的,所述催化剂包括叔胺类催化剂和有机金属化合物类催化剂中的至少一种;

所述叔胺类催化剂包括N,N-二甲基环己胺、双(2-二甲氨基乙基)醚、N,N,N',N'-四甲基亚烷基二胺、三乙胺、N,N-二甲基苄胺、N-乙基吗啉、N,N'-二乙基哌嗪、三乙醇胺、N,N'-二甲基乙醇胺和N,N'-二甲基吡啶中的一种;

所述有机金属化合物类催化剂包括二月桂酸二丁基锡类、辛酸亚锡、异辛酸铅、异辛酸锌、异辛酸铋、钛酸四丁酯和钛酸四异丙酯中的一种;

所述紫外线吸收剂包括2,4-二羟基二苯甲酮、2-羟基-4-甲氧基二苯甲酮、2-羟基-4-正辛氧基二苯甲酮、2-(2-羟基-3,5双(a,a-二甲基苄基)苯基)苯并***、2-(2-羟基-3-特丁基-5-甲基苯基)-5-氯苯并***、2-(2′-羟基-3′,5′-二叔苯基)-5-氯化苯并***、2-(2-羟基-3,5-二叔戊基苯基)苯并***中的一种或几种;

所述光稳定剂包括癸二酸双(1,2,2,6,6-五甲基-4-哌啶基)酯、聚丁二酸(4-羟基-2,2,6,6-四甲基-1-哌啶乙醇)酯、双(2,2,6,6-四甲基哌啶基)癸二酸酯中的一种或几种;

所述附着力促进剂包括硅烷偶联剂,所述硅烷偶联剂包括γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷、苯胺三乙氧基硅烷、苯胺丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、β-(3,4环氧环己基)乙基三甲氧基硅烷、γ-巯基丙基三甲氧基硅烷、γ-巯基丙基三乙氧基硅烷、γ-异氰酸酯丙基三甲氧基硅烷、γ-异氰酸酯丙基三乙氧基硅烷中一种或几种;

所述除水剂为分子筛。

在以上技术方案的基础上,优选的,所述A组分和B组分的体积比为1:1;A组分中二异氰酸酯、聚酯多元醇和碳纳米管的质量比为40~60:38~55:0.5~2;B组分中聚酯多元醇、端氨基扩链剂和助剂的质量比为50~60:30~45:6~10。

本发明还提供了一种抗静电防爆聚脲材料的制备方法,包括A组分的制备和B组分的制备;

其中,A组分的制备包括以下步骤:

S1、将二异氰酸酯搅拌后加入碳纳米管、聚酯多元醇,升温,反应至NCO含量为16~22%,即得A组分;

B组分的制备包括以下步骤:

S2、将聚酯多元醇加热熔化后,再依次加入端氨基扩链剂、助剂,搅拌均匀即得B组分。

在以上技术方案的基础上,优选的,S1中二异氰酸酯搅拌后升温至50~60℃,然后加入碳纳米管、聚酯多元醇再升温至85~95℃,反应至NCO含量为16~22%,即得A组分。

本发明还提供了所述的抗静电防爆聚脲材料在石化储运设备、雷达罩表面的应用。

本发明的抗静电防爆聚脲材料相对于现有技术具有以下有益效果:

(1)本发明的抗静电防爆聚脲材料,包括碳纳米管,碳纳米管具有优异的力学性能、电学性能、光学性能、吸附性能等,在聚脲材料中添加少量的碳纳米管,可以提高聚脲材料的拉伸强度和撕裂强度进而提高材料力学性能以达到防爆抗冲击的作用,还可以明显降低聚脲材料的表面电阻率以达到抗静电的效果;

(2)本发明的抗静电防爆聚脲材料,进一步采用单壁端氨基碳纳米管或多壁端氨基碳纳米管,氨基化碳纳米管可以提高其在聚脲材料中的分散性及储存稳定性,有利于制备高力学性能、低电阻抗静电性能优异的聚脲材料;同时,氨基化碳纳米管表面的氨基基团在与异氰酸酯反应形成结构稳定的脲基,在受力过程中可以承受更大载荷的冲击,有利于提高聚脲材料的力学性能;碳纳米管的长径比对聚脲材料的力学性能、抗静电性能影响较大,高的长径比(如直径为6~12nm,长度>50μm)可以提高聚脲材料的抗静电性能,但是会降低聚脲材料的力学性能,同时会提高A组分预聚物的粘度,导致施工工艺性能下降;低长径比(如直径为6~12nm,长度<20μm)虽然可以提高聚脲材料的力学性能,但是会降低碳纳米管之间在聚脲材料中的接触导致难以形成导电网络通路造成聚脲材料高电阻、抗静电性能差,因此,为平衡力学性能、抗静电性能,选用的氨基化碳纳米管的直径为6~12nm,长度为20~50μm;

(3)本发明的抗静电防爆聚脲材料,可广泛应用于石化储运设备、雷达罩防护等领域,该材料具有强度高、防腐、防爆、电阻率低、抗静电性能优异等特点。

具体实施方式

下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。

实施例1

一种抗静电防爆聚脲材料,包括A组分和B组分,所述A组分包括以下重量份

原料:474份的甲苯二异氰酸酯、521份的聚己二酸己二醇酯二醇(PHA-1000)和5份的单壁端氨基碳纳米管。单壁端氨基碳纳米管的平均直径为6nm,平均长度为20μm,氨基化碳纳米管是以羧基化碳纳米管为起始物,经过酰胺化反应将羧基转化为酰胺基,然后再在高温下脱羰获得。

所述B组分包括聚酯多元醇、端氨基扩链剂以及助剂;其中,聚酯多元醇的相对分子量为2000,平均官能度为2.0;具体的,聚酯多元醇包括重量份为305份的聚己二酸己二醇酯二醇(PHA-2000)和280份的聚己二酸乙二醇酯二醇(PEA-2000);端氨基扩链剂包括重量份为320份的3,5二乙基甲苯二胺;助剂包括3份的三乙胺催化剂、2份的异辛酸铋催化剂、10份的2-(2-羟基-3,5-二叔戊基苯基)苯并***紫外线吸收剂、5份的癸二酸双(1,2,2,6,6-五甲基-4-哌啶基)酯光稳定剂、5份的γ-氨丙基三乙氧基硅烷附着力促进剂和60份的3A分子筛除水剂。

上述抗静电防爆聚脲材料的制备方法包括:包括A组分的制备和B组分的制备;

其中,A组分的制备包括以下步骤:

S1、按比例将甲苯二异氰酸酯加入至四口烧瓶中,搅拌,加热升温至50~60℃,然后再将单壁端氨基碳纳米管分次加入四口烧瓶中,分散均匀后,再将分子量为1000的聚己二酸己二醇酯二醇滴加到四口烧瓶中,控制反应温度至85~95℃,反应1.5~2.5h,取样测定NCO含量达到18.5%±0.3%后,降至室温出料,即得A组分;

B组分的制备包括以下步骤:

S2、按比例将聚己二酸己二醇酯二醇、聚己二酸乙二醇酯二醇加入至搅拌罐中,加热至60~80℃,并保持4h,搅拌均匀后,再依次加入3,5二乙基甲苯二胺、三乙胺、异辛酸铋、2-(2-羟基-3,5-二叔戊基苯基)苯并***、癸二酸双(1,2,2,6,6-五甲基-4-哌啶基)酯、γ-氨丙基三乙氧基硅烷、3A分子筛,继续搅拌分散20~40min,使用120目的滤网过滤即得B组分;

上述抗静电防爆聚脲材料在使用时,将制备得到的A组分与B组分按照体积比1:1的比例使用喷涂设备喷涂在石化储运设备或雷达罩表面。

实施例2

一种抗静电防爆聚脲材料,包括A组分和B组分,所述A组分包括以下重量份

原料:483份的异佛尔酮二异氰酸酯、505份的聚己内酯多元醇(PCL-2000)和12份的多壁端氨基碳纳米管;多壁端氨基碳纳米管的平均直径为8nm,平均长度为30μm;

所述B组分包括聚酯多元醇、端氨基扩链剂以及助剂;具体的,聚酯多元醇包括重量份为577份的聚己内酯多元醇(PCL-1000)和和10份的聚己内酯多元醇(PCL-3031);端氨基扩链剂包括重量份为107份的3,5二乙基甲苯二胺、197份的4,4′-双仲丁氨基二苯基甲烷;助剂包括4份的N,N-二甲基环己胺催化剂、1份的辛酸亚锡、12份的2-羟基-4-正辛氧基二苯甲酮紫外线吸收剂、4份的双(2,2,6,6-四甲基哌啶基)癸二酸酯光稳定剂、3份的N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷附着力促进剂和49份的3A分子筛除水剂。

上述抗静电防爆聚脲材料的制备方法包括:包括A组分的制备和B组分的制备;

其中,A组分的制备包括以下步骤:

S1、按比例将异佛尔酮二异氰酸酯加入至四口烧瓶中,搅拌,加热升温至50~60℃,然后再将多壁端氨基碳纳米管分次加入四口烧瓶中,分散均匀后,再将聚己内酯多元醇滴加到四口烧瓶中,控制反应温度至85~95℃,反应1.5~2.5h,取样测定NCO含量达到16.2%±0.3%后,降至室温出料,即得A组分;

B组分的制备包括以下步骤:

S2、按比例将上述聚己内酯多元醇(PCL-1000)、聚己内酯多元醇(PCL-3031),加热至60~80℃,并保持4h,搅拌均匀后,再依次加入3,5二乙基甲苯二胺、4,4′-双仲丁氨基二苯基甲烷、N,N-二甲基环己胺、辛酸亚锡、2-羟基-4-正辛氧基二苯甲酮、双(2,2,6,6-四甲基哌啶基)癸二酸酯、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷、3A分子筛,继续搅拌分散20~40min,使用120目的滤网过滤即得B组分;

上述抗静电防爆聚脲材料在使用时,将制备得到的A组分与B组分按照体积比1:1的比例使用喷涂设备喷涂在石化储运设备或雷达罩表面。

即制备得到抗静电防爆聚脲材料。

实施例3

一种抗静电防爆聚脲材料,包括A组分和B组分,所述A组分包括以下重量份

原料:599份的二苯基甲烷二异氰酸酯、381份的聚己二酸己二醇酯二醇(PHA-3000)和20份的单壁端氨基碳纳米管;单壁端氨基碳纳米管的平均直径为10nm,平均长度为40μm;

所述B组分包括聚酯多元醇、端氨基扩链剂以及助剂;具体的,聚酯多元醇包括重量份为316份的聚己二酸己二醇酯二醇(PHA-2000)、227份的聚己内酯多元醇(PCDL-2000);端氨基扩链剂包括重量份为213份的3,5-二甲硫基甲苯二胺、161份的4,4′-双仲丁氨基二苯基甲烷;助剂包括重量份为3份的三乙醇胺、3份的异辛酸铅催化剂、8份的2-(2-羟基-3,5双(a,a-二甲基苄基)苯基)苯并***、7份的2-羟基-4-正辛氧基二苯甲酮紫外线吸收剂、6份的聚丁二酸(4-羟基-2,2,6,6-四甲基-1-哌啶乙醇)酯光稳定剂、3份的γ-氨丙基三甲氧基硅烷附着力促进剂和53份的4A分子筛除水剂。

上述抗静电防爆聚脲材料的制备方法包括:包括A组分的制备和B组分的制备;

其中,A组分的制备包括以下步骤:

S1、按比例将二苯基甲烷二异氰酸酯加入至四口烧瓶中,搅拌,加热升温至50~60℃,然后再将单壁端氨基碳纳米管分次加入四口烧瓶中,分散均匀后,再将聚己二酸己二醇酯二醇滴加到四口烧瓶中,控制反应温度至85~95℃,反应1.5~2.5h,取样测定NCO含量达到19.1%±0.3%后,降至室温出料,即得A组分;

B组分的制备包括以下步骤:

S2、按比例将上述聚己二酸己二醇酯二醇、聚己内酯多元醇,加热至60~80℃,并保持4h,搅拌均匀后,再依次加入3,5-二甲硫基甲苯二胺、4,4′-双仲丁氨基二苯基甲烷,三乙醇胺、异辛酸铅、2-(2-羟基-3,5双(a,a-二甲基苄基)苯基)苯并***、2-羟基-4-正辛氧基二苯甲酮、聚丁二酸(4-羟基-2,2,6,6-四甲基-1-哌啶乙醇)酯、γ-氨丙基三甲氧基硅烷、4A分子筛,继续搅拌分散20~40min,使用120目的滤网过滤即得B组分;

上述抗静电防爆聚脲材料在使用时,将制备得到的A组分与B组分按照体积比1:1的比例使用喷涂设备喷涂在石化储运设备或雷达罩表面。

实施例4

一种抗静电防爆聚脲材料,包括A组分和B组分,所述A组分包括以下重量份

原料:577份的异佛尔酮二异氰酸酯、408份的聚己内酯多元醇(PCL-4000)和15份的单壁端氨基碳纳米管;单壁端氨基碳纳米管的平均直径为12nm,平均长度为50μm;

所述B组分包括聚酯多元醇、端氨基扩链剂以及助剂;具体的,聚酯多元醇包括重量份为281份的聚己内酯多元醇(PCL-1000)和242份的聚己内酯多元醇(PCDL-1000);端氨基扩链剂包括重量份为251份的3,5二乙基甲苯二胺和162份的N,N,-二烷基苯二胺;助剂包括1份的三乙醇胺和3份的异辛酸铋催化剂,3份的2-(2-羟基-3,5双(a,a-二甲基苄基)苯基)苯并***和8份的2-(2-羟基-3,5-二叔戊基苯基)苯并***紫外线吸收剂、3份的聚丁二酸(4-羟基-2,2,6,6-四甲基-1-哌啶乙醇)酯和2份的癸二酸双(1,2,2,6,6-五甲基-4-哌啶基)酯光稳定剂、5份的γ-氨丙基三乙氧基硅烷附着力促进剂和39份的4A分子筛除水剂。

上述抗静电防爆聚脲材料的制备方法包括:包括A组分的制备和B组分的制备;

其中,A组分的制备包括以下步骤:

S1、按比例将异佛尔酮二异氰酸酯加入至四口烧瓶中,搅拌,加热升温至50~60℃,然后再将单壁端氨基碳纳米管分次加入四口烧瓶中,分散均匀后,再将聚己内酯多元醇滴加到四口烧瓶中,控制反应温度至85~95℃,反应1.5~2.5h,取样测定NCO含量达到21.0%±0.3%后,降至室温出料,即得A组分;

B组分的制备包括以下步骤:

S2、按比例将聚己内酯多元醇(PCL-1000)、聚己内酯多元醇(PCDL-1000)加入至搅拌罐中,加热至60~80℃,并保持4h,搅拌均匀后,再依次加入3,5二乙基甲苯二胺、N,N,-二烷基苯二胺、三乙醇胺、异辛酸铋、2-(2-羟基-3,5双(a,a-二甲基苄基)苯基)苯并***、2-(2-羟基-3,5-二叔戊基苯基)苯并***、3份聚丁二酸(4-羟基-2,2,6,6-四甲基-1-哌啶乙醇)酯、癸二酸双(1,2,2,6,6-五甲基-4-哌啶基)酯、γ-氨丙基三乙氧基硅烷、4A分子筛,继续搅拌分散20~40min,使用120目的滤网过滤即得B组分;

上述抗静电防爆聚脲材料在使用时,将制备得到的A组分与B组分按照体积比1:1的比例使用喷涂设备喷涂在石化储运设备或雷达罩表面。

对比例1

一种聚脲材料,包括A组分和B组分,所述A组分包括以下重量份原料:589份的二苯基甲烷二异氰酸酯、411份的聚己二酸己二醇酯二醇(PHA-3000);

所述B组分包括聚酯多元醇、端氨基扩链剂以及助剂;具体的,聚酯多元醇包括重量份为312份的聚己二酸己二醇酯二醇(PHA-2000)、227份的聚己内酯多元醇(PCDL-2000);端氨基扩链剂包括重量份为217份的3,5-二甲硫基甲苯二胺、161份的4,4′-双仲丁氨基二苯基甲烷;助剂包括重量份为3份的三乙醇胺、3份的异辛酸铅催化剂、8份的2-(2-羟基-3,5双(a,a-二甲基苄基)苯基)苯并***、7份的2-羟基-4-正辛氧基二苯甲酮紫外线吸收剂、6份的聚丁二酸(4-羟基-2,2,6,6-四甲基-1-哌啶乙醇)酯光稳定剂、3份的γ-氨丙基三甲氧基硅烷附着力促进剂和53份的4A分子筛除水剂。

上述聚脲材料的制备方法包括:包括A组分的制备和B组分的制备;

其中,A组分的制备包括以下步骤:

S1、按比例将二苯基甲烷二异氰酸酯加入至四口烧瓶中,搅拌,加热升温至50~60℃,将聚己二酸己二醇酯二醇滴加到四口烧瓶中,控制反应温度至85~95℃,反应1.5~2.5h,取样测定NCO含量达到18.6%±0.3%后,降至室温出料,即得A组分;

B组分的制备包括以下步骤:

S2、按比例将上述聚己二酸己二醇酯二醇、聚己内酯多元醇,加热至60~80℃,并保持4h,搅拌均匀后,再依次加入3,5-二甲硫基甲苯二胺、4,4′-双仲丁氨基二苯基甲烷,三乙醇胺、异辛酸铅、2-(2-羟基-3,5双(a,a-二甲基苄基)苯基)苯并***、2-羟基-4-正辛氧基二苯甲酮、聚丁二酸(4-羟基-2,2,6,6-四甲基-1-哌啶乙醇)酯、γ-氨丙基三甲氧基硅烷、4A分子筛,继续搅拌分散20~40min,使用120目的滤网过滤即得B组分;

上述聚脲材料在使用时,将制备得到的A组分与B组分按照体积比1:1的比例使用喷涂设备喷涂在石化储运设备或雷达罩表面。

将上述实施例1~4和对比例1制备得到的抗静电防爆聚脲材料分别进行性能测试,试验结果如下表1所示。

表1实施例1-4所制备的抗静电防爆聚脲材料的性能指标

从表1中可知,本发明制备的抗静电防爆聚脲材料拉伸强度在36.5Mpa以上,撕裂强度在112kN/m以上,具有良好的拉伸强度以及撕裂强度,同时制备得到的抗静电防爆聚脲材料的表面电阻率低能够起到良好的抗静电效果;而且制备得到的抗静电防爆聚脲材料硬度在52以上,并且该抗静电防爆聚脲材料与钢或砼表面之间的附着力好;同时,该抗静电防爆聚脲材料在质量浓度为5%的H2SO4中浸泡7d、在质量浓度为5%的NaOH中浸泡7d、在质量浓度为3%的NaCl中浸泡7d、在95#汽油中浸泡7d以及在清水中浸泡30d后该材料的拉伸强度保持率、撕裂强度保持率均在90%以上,说明本发明制备得到的抗静电防爆聚脲材料具有良好的耐酸碱、耐盐的腐蚀;同时,该抗静电防爆聚脲材料可耐2000h盐雾;该抗静电防爆聚脲材料形成的3mm涂层在1.2kgTNT的冲击下不脱落、不损坏,具有良好的防***性能。而对比例1中制备得到的聚脲材料其拉伸性能、抗静电性能以及防***性能均低于本发明制备得到的聚脲材料。

以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种生物基交联可回收聚氨酯组合料及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!