一种CuIP2S型配合物VOC荧光传感材料

文档序号:112067 发布日期:2021-10-19 浏览:41次 >En<

阅读说明:本技术 一种CuIP2S型配合物VOC荧光传感材料 (CuIP2S type complex VOC fluorescent sensing material ) 是由 柴文祥 王友裕 宋莉 于 2021-04-30 设计创作,主要内容包括:本发明公开了一种CuIP2S型碘化亚铜配合物发光材料及其制备方法,以及该材料对吡啶类VOC的传感应用;本发明的发光材料结构式为CuI(TPP)-(2)(MBI),式中TPP为三苯基膦,MBI为2-巯基苯并咪唑;由CuI与配体依次发生配位反应制得;材料本身的发光强度很弱,但是将其置于吡啶或对甲基吡啶气氛中后,很快呈现点亮的荧光传感响应特性;该材料易于制备且溶解性和稳定性都很好,也易于制备成纸基负载或聚合物掺杂荧光传感薄膜,薄膜在含吡啶或对甲基吡啶气氛中也迅速表现出可肉眼观察的荧光点亮响应,表现出可重复使用的快速选择性响应和灵敏识别的荧光传感性能,且可将试纸灵活制造成各种所需规格,可作为便携式荧光传感试纸器件应用于吡啶类VOC的检测。(The invention discloses a CuIP2S cuprous iodide complex luminescent material, a preparation method thereof and a sensing application of the material to pyridine VOC; book (I)The structural formula of the luminescent material is CuI (TPP) 2 (MBI), wherein TPP is triphenylphosphine, and MBI is 2-mercaptobenzimidazole; prepared by sequentially carrying out coordination reaction on CuI and a ligand; the material has weak luminous intensity, but after being placed in pyridine or picoline atmosphere, the material quickly shows a lighted fluorescence sensing response characteristic; the material is easy to prepare, has good solubility and stability, is also easy to prepare into a paper-based loaded or polymer-doped fluorescent sensing film, can rapidly show fluorescence lighting response which can be observed by naked eyes in the atmosphere containing pyridine or picoline, can show reusable fluorescence sensing performance of rapid selective response and sensitive identification, can flexibly manufacture the test paper into various required specifications, and can be used as a portable fluorescent sensing test paper device for detecting pyridine VOC.)

一种CuIP2S型配合物VOC荧光传感材料

技术领域

本发明涉及发光材料技术领域,涉及光致发光材料领域,特别是涉及荧光传感材料领域。

背景技术

可挥发性有机物(Volatile Organic Compound)简称VOC。可挥发性有机物品类是众多的,不稳定的,无处不在的。他们包括人为的化学化合物和自然产生。大多数挥发性有机化合物(VOC)是以蒸气的形式传播。在我国以及世界上很多国家,人为排放VOC是要受到法律制裁的。虽然有害的VOC通常没有急性毒性,但在一个较长的时期内,不同浓度的VOC暴露还是会不同程度地对健康产生影响的。但是,由于环境中的VOC浓度通常是低的,症状发展也通常很缓慢而难以觉察,因此目前对VOC及其影响的研究还有诸多困难和不便。

不过随着国民经济的快速发展,各行各业涉及VOC利用或排放的情景普遍存在,比如石化工业、装修行业等等,这就带来很多的空气污染问题。比如,在房地产业中大量使用的各种有机/高分子建筑和装修材料,就带来了室内空气污染的问题,这些问题也广受关注。实际上,VOC是室内空气污染的主要因素,其具体成分包括苯系物,有机氯化物,氟利昂系列,吡啶类化合物等,其来源主要是室内装修材料和家具方面的涂料、墙纸、地砖、绝热材料、粘结剂等。为了解空气中的VOC状况,对其进行检测/检测就显得非常重要。现在已有的方法有:气相色谱法(GC),高效液相色谱法(HPLC),膜技术处理挥发性有机物,仪器法测定VOC,化学法分析挥发性有机物等。然而,这几种方法存在一定的短处,比如仪器小型化困难、不易携带、检测手续复杂、花费太高、检测时间过长、检测消耗样品、产生二次排放污染等问题。

相对于传统的检测方法,荧光传感检测方法正日益受到重视,并已有研发力量在不断投入。因为荧光传感器具有灵敏度高、可采集信号丰富、仪器易于小型化、不损耗样品、以及使用方便等优点,其发展也正在往全面实用化的方向稳步推进。荧光传感器主要分为两类:易于重复使用且能对气相物质传感响应的薄膜荧光传感器,以及在溶液中使用的均相荧光传感器。荧光传感器的主体结构通常情况下是由以下三个部分组成:外来物质的接受器、报告器、以及连接体。在整个荧光传感器结构中,接收器的作用是显而易见的,它负责外来分子的接收,信号的转化。所以接受器材料(也就是敏感材料)的选取和制备工艺是至关重要的,它直接决定了传感器的性能和应用范围。

而现有的发光材料有生物,无机材料,有机材料几大类,各自都存在优缺点。生物材料在生物监测领域具有极高的地位,但是在其他领域就比较大的局限性。无机材料因为本身的物理特性,在压力,温度传感方面等都有比较好的发挥空间,但是在气体,水源检测时存在问题。可能原因是,无机粉体虽然稳定性好,但由于其内部结构过于致密,发光中心很难受外部气氛影响,因此仅有对氧气等少数小分子传感的报道(Sensors And Actuators B-Chemical 2018,254, 578-587.),而对于VOC的荧光传感则尚未见。而有机分子(纯有机材料)的结构、性质多样,便于设计和优化,目前也已经有一些VOC荧光传感的报道。比如基于分子间电荷转移(CT)的荧光猝灭机制,犹他大学Zhang L.等于2007年报道了对于缺电子的硝基苯类爆炸物的传感检测,利用的荧光材料是p型有机半导体(Journal of the American Chemical Society 2007,129 (22), 6978-6979.)。然而,有机材料的荧光受到分子堆积的影响非常大,聚集诱导荧光猝灭(ACQ)现象就是最突出的表现。总体而言,有机材料的稳定性和可靠性等问题的存在,仍然限制其发展。

根据现有的大量研究报道可以发现,配合物能通过无机和有机材料的配位杂化,形成稳定性较好的杂化型材料,并且能展现荧光传感的功能,因此是一种较好的有机结合无机材料和有机材料优点的解决方案。Wenger 曾综述了配合物的蒸气致变色现象及其VOC传感应用前景,预测这是一种简便又廉价的方案(Chemical Reviews 2013,113 (5),3686-3733)。但是就如文中提到的,目前该方面的研究者通常仅研究该现象的分子机制,而忽略了实际传感检测的定量、廉价等应用要求。特别需要提出的,目前报道的配合物所用铂和金都价格昂贵,要符合应用的廉价要求还得从普通金属入手。与其它金属相比,铜具有廉价、环保、无毒等优势,而且我国铜资源储量丰富,居世界第三位。而从目前已有的研究报道可见,亚铜配合物不仅基于廉价的金属,其发光性能也很好,而且可以通过结构调控发光性能(比如发光波长和量子产率等的调控),因此可以猜测亚铜配合物是一个极有前景的VOC荧光传感检测的分子开发平台。当前的关键问题是,寻找/开发具有VOC荧光响应性能的亚铜配合物传感材料,从而促进VOC荧光传感技术的广泛应用。

发明内容

本发明内容的目的是提供一种新的CuIP2S型碘化亚铜配合物发光材料及其制备方法以及它对吡啶类VOC的传感应用。通过碘化亚铜与两种配体的溶液发生分步配位反应,方便且廉价地制备获得了热稳定性能良好的CuIP2S型碘化亚铜配合物发光材料,并且发现其能在多种对吡啶和对甲基吡啶VOC气氛中有选择性地进行荧光响应,由原本的微弱发光变成发出强烈的荧光,而且这种荧光传感响应性能是可逆的,即相应的材料和器件可以重复使用。

本发明的技术方案之一,是提供一种新的CuIP2S型碘化亚铜配合物发光材料,由CuI与配体三苯基膦和2-巯基苯并咪唑依次发生配位反应得到,其分子结构为CuI(TPP)2(MBI),式中TPP为电中性单膦配体三苯基膦,MBI为含硫配体2-巯基苯并咪唑。

所述CuIP2S型碘化亚铜配合物发光材料为三斜晶系,P-1空间群,晶胞参数为a=10.9718(3) Å,b=15.9975(4) Å,c=44.0539(12) Å,α=90°,β=95.2989(9)°,γ=90°,V=7699.4(4) Å3 , Z=4,DC=1.493 g/cm3 , 材料的晶体颜色为浅黄近无色;该材料结构表现为单核中性配合物,其中亚铜离子采用CuIP2S四面体型配位模式,其中一个I是碘离子,两个P分别来自于两个个膦配体三苯基膦,一个S来自于一个含硫配体2-巯基苯并咪唑;其分子结构如式(I):

(I);

所述CuIP2S型碘化亚铜配合物发光材料在紫外光激发下发出较弱荧光,肉眼基本观察不到发光;而将其置于含吡啶或对甲基吡啶蒸气环境后,会迅速呈现出点亮型的发光效果,因此可作为检测吡啶类VOC的传感材料。而且将检测后的材料或器件在空气中放置或加热后,发光又会消退恢复到初始状态,呈现很好的可逆性和可重复使用的性能。

本发明的技术方案之二,是提供一种CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)的制备方法。该制备方法是由CuI与配体TPP和MBI的乙腈溶液混合发生配位反应,最后析出得到晶体粉末的产物而实现。其具体实施方案分为五步骤:

(1)室温下将CuI粉末溶解在乙腈中;

(2)室温下将TPP粉末溶解在乙腈中;

(3)将上述两种溶液混合,并搅拌使之充分反应,得到澄清溶液A;

(4)室温下将MBI粉末溶解在乙腈中,再加入溶液A中混合搅拌,使之充分发生配位反应得溶液B;

(5)将所得溶液B过滤后在室温下进行减压旋蒸,干燥后得到晶体粉末即为目标产物;上述三种反应物的摩尔比CuI : TPP: MBI为1: 2: 1。

本发明的技术方案之三,是提供一种基于CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)的纸基荧光传感薄膜的制备方法。该制备方法是将碘化亚铜配合物CuI(TPP)2(MBI)溶解后,将溶液涂覆于纤维素薄膜而实现。其具体实施方案分为四步骤:

(1)室温下将碘化亚铜配合物CuI(TPP)2(MBI)粉末溶解在乙腈中;

(2)将纤维素薄膜制作成所需要方便应用的形状,成为试纸原纸;

(3)室温下将上述配合物CuI(TPP)2(MBI)溶液涂覆于试纸原纸上;

(4)最后将涂覆好的试纸在真空条件下干燥,干燥完成后即得传感薄膜。

本发明的技术方案之四,是提供一种聚合物基碘化亚铜配合物发光材料CuI(TPP)2(MBI)掺杂荧光传感薄膜的制备方法。将碘化亚铜配合物CuI(TPP)2(MBI)包埋于PMMA(聚甲基丙烯酸甲酯)、PVP(聚乙烯基吡咯烷酮)、PEG(聚乙二醇)等聚合物中实现,其具体实施方案分为四步骤(以PMMA为例):

(1)室温下将PMMA固体溶解在二氯甲烷中;

(2)室温下将碘化亚铜配合物CuI(TPP)2(MBI)粉末溶解在乙腈中;

(3)将上述两种溶液混合,并搅拌使之充分反应,得到澄清溶液A;

(4)室温下将澄清溶液A旋涂在石英片上,干燥即得传感薄膜。

本发明的技术方案之五,是提供一种CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)制成的基纸传感薄膜对吡啶类VOC蒸气的选择性荧光传感性能。原本发光很弱的负载碘化亚铜配合物CuI(TPP)2(MBI)的试纸在吡啶和4-甲基吡啶的气氛中响应后,能迅速观察到非常亮的蓝绿色发光(发射峰值位置大约为λem = 485 nm和500 nm )。除此之外,在其他的VOC气氛中,它仍然发光很弱以致肉眼难以辨别。其它多种VOC蒸气的存在,于其对吡啶和对甲基吡啶蒸气的荧光传感性能不产生可观测影响。这些现象表明该碘化亚铜配合物发光材料对特定VOC(吡啶和对甲基吡啶蒸气)具有选择性响应的荧光传感性能。

本发明的技术方案之六,是提供一种CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)制成的聚合物掺杂传感薄膜对吡啶类VOC蒸气的选择性荧光传感性能。原本发光很弱的聚合物掺杂碘化亚铜配合物CuI(TPP)2(MBI)的薄膜在吡啶和4-甲基吡啶的气氛中响应后,能迅速观察到非常亮的蓝绿色发光(发射峰值位置大约为λem=505nm和515nm)。除此之外,在其他的VOC气氛中,它仍然发光很弱以致肉眼难以辨别。其它多种VOC蒸气的存在,于其对吡啶和对甲基吡啶蒸气的荧光传感性能不产生可观测影响。这些现象表明该碘化亚铜配合物发光材料对特定VOC(吡啶和对甲基吡啶蒸气)具有选择性响应的荧光传感性能。

本发明的有益效果,首先是所提供的CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2 (MBI),该配合物材料既具备廉价和易于纯化的优点,而且具有很好的溶解性和热稳定性,为材料的进一步应用提供了技术支持,端基配体膦配体TPP和含硫配体MBI的存在,使得该分子结构内部有合适的空间和分子间相互作用模式,也为后续的传感性能研究提供了基础。

本发明的有益效果,其次是CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)对吡啶和4-甲基吡啶有选择性响应的荧光传感应用,这种响应能在短时间内迅速完成,该配合物材料响应后的荧光性能很好,极少量的材料粉末都能发出强烈的荧光,因此实际应用时只需少量荧光粉,便于降低应用成本,而且易于操作的掺杂途径也为应用的成本控制提供方便;而将相同工艺制备的材料置于吡啶或对甲基吡啶气氛中后,都能很快观察到荧光点亮的传感响应特性;且其溶解性和稳定性都很好,便于作为荧光传感材料使用。而且将检测后的材料在时间空气中放置或加热后,发光又会消退恢复到初始状态,呈现很好的可逆重复使用性能。

本发明的有益效果,再次是所提供的基于CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)的纸基荧光薄膜的吡啶类VOC传感应用,该纸基荧光薄膜的使用类似于一般的气体检测试纸一样简便,具体应用时,将纸基荧光薄膜在吡啶或对甲基吡啶气氛中存在的环境中短时放置后,用紫外光源照射薄膜,可观察到其迅速有荧光点亮出现,且VOC浓度增高表现出强度增强的荧光响应效果,表现出快速响应和灵敏识别的荧光传感性能,因此可作为便携式荧光传感试纸器件应用吡啶类VOC的检测;该荧光传感薄膜可灵活制造成各种所需形状,质量很轻,非常便于携带,且也易于制备,为发光材料的进一步应用提供了技术支持。而且将检测后的器件在空气中放置或加热后,发光又会消退恢复到初始状态,呈现很好的可逆使用性能。

本发明的有益效果,最后是制备CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)及其传感膜的方法,具有工艺简便,所用设备简单,原材料简单易得,生产成本低,材料制备产率高,可以在很短的时间内得到大量产品易于推广等优点。

附图说明

图1. CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)分子的单晶结构图。

图2. 碘化亚铜配合物发光材料CuI(TPP)2(MBI)分子在单胞内及其周边空间的堆积图。

图3. 碘化亚铜配合物发光材料CuI(TPP)2(MBI)的X-射线粉末衍射图谱:(a)为根据实施例2中单晶结构数据计算模拟获得的谱图;(b)为本发明实施例1中所得粉末的图谱。

图4. CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)的红外吸收(FTIR)光谱图。

图5. 碘化亚铜配合物发光材料CuI(TPP)2(MBI)的紫外-可见吸收(UV-Vis)光谱图。

图6. CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)的荧光(PL)光谱图,左侧曲线为激发谱,右侧曲线为发射谱。

图7. 负载CuIP2S型碘化亚铜配合物发光材料CuI(TPP)2(MBI)的纸基薄膜在4 -氰基吡啶气氛中响应前和响应后的荧光发射光谱图。

图8. 负载CuI(TPP)2(MBI)的纸基薄膜在吡啶气氛中响应前和响应一定时间后的荧光发射光谱图。

图9. 负载CuI(TPP)2(MBI)的纸基薄膜在4 -甲基吡啶气氛中响应前和响应一定时间后的荧光发射光谱图。

图10. 聚合物基掺杂CuI(TPP)2(MBI) 的荧光传感薄膜在吡啶气氛中响应前和响应一定时间后的荧光发射光谱图。

具体实施方式

本发明的实现过程和材料的性能由实施例说明:

实施例1

大量的碘化亚铜配合物发光材料CuI(TPP)2(MBI)晶体粉末样品的制备:称量0.038g(0.2mmol)的CuI,0.105g(0.4mmol)的三苯基膦(TPP), 0.030g(0.2mmol)的2-巯基苯并咪唑(MBI);分别用15mL的乙腈溶解后依次混合,充分搅拌使之充分发生配位反应,得到淡黄色澄清溶液;过滤后,将上述溶液在减压条件下旋蒸除去所有溶剂,干燥,最终得到浅色晶体粉末产物,产率为92%(以Cu计算)。将该配合物发光材料置于吡啶和4-甲基吡啶的气氛中响应后,能迅速观察到非常亮的荧光发射。

实施例2

合成碘化亚铜配合物发光材料CuI(TPP)2(MBI)的单晶:称量0.038g(0.2mmol)的CuI,0.105g(0.4mmol)的三苯基膦(TPP), 0.030g(0.2mmol)的2-巯基苯并咪唑(MBI);分别用8mL的乙腈溶解后依次混合,充分搅拌使之充分发生配位反应,得到淡黄色稍浑浊溶液;过滤后,将滤液在室温下静置,静置数日后即有大量几乎无色块状晶体析出。挑选一颗0.43mm*0.29mm*0.22mm尺寸的无色块状晶体用于X-射线单晶结构测试。该化合物的分子结构图示于附图1,其晶胞堆积结构图示于附图2。

实施例3

负载CuI(TPP)2(MBI)的荧光传感薄膜的制备及其气氛响应:称取0.025g碘化亚铜配合物发光材料CuI(TPP)2(MBI),使其完全溶解在10 mL乙腈中,溶液淡黄色澄清透明,过滤。将纤维素薄膜利用裁剪等方法制作成适合应用的大小和形状,作为后续工序中所用的试纸原纸;取适量滤液,将滤液用打印、浸涂或刷涂的方法涂覆在试纸原纸上;将涂覆好的试纸在真空条件下干燥(60℃,30min),干燥完成后即得荧光传感薄膜(荧光试纸);然后将传感薄膜放入VOC中响应,测试荧光光谱。结果发现,在吡啶和4-甲基吡啶的气氛中响应后,能迅速观察到非常亮的蓝绿色发光(发射峰值位置大约为λem = 485 nm和500 nm )。除此之外,在其他的VOC气氛中,它仍然发光很弱以致肉眼难以辨别。其它多种VOC蒸气的存在,于其对吡啶和对甲基吡啶蒸气的荧光传感性能不产生可观测影响。这些现象表明该碘化亚铜配合物材料对特定VOC(吡啶和对甲基吡啶蒸气)具有选择性响应传感性能(见图7、图8)。

实施例4

负载CuI(TPP)2(MBI)的荧光传感薄膜的制备及其气氛响应:称取0.080g碘化亚铜配合物发光材料CuI(TPP)2(MBI),使其完全溶解在10 mL四氢呋喃中,溶液淡黄色澄清透明,过滤。将纤维素薄膜利用裁剪等方法制作成适合应用的大小和形状,作为后续工序中所用的试纸原纸;取适量滤液,将滤液用微喷涂、浸涂或点涂的方法涂覆在试纸原纸上;将涂覆好的试纸在真空条件下干燥(50℃,30min),干燥完成后即得荧光传感薄膜(荧光试纸);然后将传感薄膜放入VOC中响应,测试荧光光谱。结果发现,在吡啶和4-甲基吡啶的气氛中响应后,能迅速观察到非常亮的蓝绿色发光(发射峰值位置大约为λem=485nm和500nm)。除此之外,在其他的VOC气氛中,它仍然发光很弱以致肉眼难以辨别。其它多种VOC蒸气的存在,于其对吡啶和对甲基吡啶蒸气的荧光传感性能不产生可观测影响。这些现象表明该碘化亚铜配合物材料对特定VOC(吡啶和对甲基吡啶蒸气)具有选择性响应传感性能(见图8、图9)。

实施例5

聚合物基掺杂CuI(TPP)2(MBI)的荧光传感薄膜的制备及其气氛响应:称取0.6g的PMMA(聚甲基丙烯酸甲酯,玻璃化温度:105℃)使其完全溶解在12 mL二氯甲烷中,溶液无色澄清透明。0.020g碘化亚铜配合物发光材料CuI(TPP)2(MBI),使其完全溶解在8 mL乙腈中,溶液淡黄色澄清透明。将配合物溶液缓慢导入PMMA溶液中,溶液浅色澄清透明。在处理干净的石英片上旋涂(1200rad/min),干燥(70℃,30min),然后放入VOC中响应,测试荧光光谱。结果发现,在吡啶和4-甲基吡啶的气氛中响应后,能观察到非常亮的发光(发射峰值位置大约为λem = 505 nm和515 nm )。除此之外,在其他的VOC气氛中,它仍然发光很弱,肉眼难以辨别。其它多种VOC蒸气的存在,于其对吡啶和对甲基吡啶蒸气的荧光传感性能不产生明显影响。这些现象表明该碘化亚铜配合物材料对特定VOC(吡啶和对甲基吡啶蒸气)具有选择性响应传感性能(见图10)。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种甲基二氯化磷的制备系统及方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!