有机磷降解酶基多功能催化剂的制备方法和有机磷降解酶基多功能催化剂及其应用

文档序号:1180416 发布日期:2020-09-22 浏览:23次 >En<

阅读说明:本技术 有机磷降解酶基多功能催化剂的制备方法和有机磷降解酶基多功能催化剂及其应用 (Preparation method of organophosphorus degrading enzyme-based multifunctional catalyst, organophosphorus degrading enzyme-based multifunctional catalyst and application thereof ) 是由 姜艳军 周丽亚 薛赛光 高静 于 2020-05-11 设计创作,主要内容包括:本发明提供了一种有机磷降解酶基多功能催化剂的制备方法和有机磷降解酶基多功能催化剂及其应用,本发明的制备方法包括将复合型蛋黄壳结构纳米材料直接加入到具有亲和标签的有机磷降解酶的粗酶液中,经混合,分离后得到有机磷降解酶基多功能催化剂。本发明的有机磷降解酶基多功能催化剂制备方法操作简单,对酶纯度要求低,载体能够定向的与酶进行结合,制备的有机磷降解酶基多功能催化剂成本低,并且能够检测有机磷农药,还可级联降解有机磷农药,终产物对氨基苯酚具有重要的应用价值。(The invention provides a preparation method of an organophosphorus degrading enzyme-based multifunctional catalyst, the organophosphorus degrading enzyme-based multifunctional catalyst and application thereof. The preparation method of the organophosphorus degrading enzyme-based multifunctional catalyst is simple to operate, has low requirement on enzyme purity, can directionally combine the carrier with the enzyme, has low cost, can detect organophosphorus pesticide, can cascade degrade the organophosphorus pesticide, and has important application value on p-aminophenol as a final product.)

有机磷降解酶基多功能催化剂的制备方法和有机磷降解酶基 多功能催化剂及其应用

技术领域

本发明涉及生物催化剂制备技术领域,特别涉及一种有机磷降解酶基多功能催化剂的制备方法。同时,本发明还涉及由该制备方法制备的有机磷降解酶基多功能催化剂,以及该有机磷降解酶基多功能催化剂在有机磷农药检测和降解中的应用。

背景技术

有机磷农药是广泛应用于农业杀虫的一种农药,有机磷农药中存在有大量的有机磷化合物,然而有机磷化合物是目前已知毒性较大的物质之一,大量应用有机磷农药对环境造成了很大的污染,对人类健康造成了严重的危害,所以对它进行检测和降解是十分重要的。

近年来,应用生物技术对有机磷农药进行生物降解的研究已经取得了重大进展。与传统方法的潜在缺点相比,生物方法更具吸引力。因为生物法破坏性更小,成本更低,但是其稳定性差,不能回收再利用,提纯步骤复杂及降解不彻底等弊端限制了它的应用。

众所周知,酶的固定化是解决酶催化不稳定和不能回收利用的一种有效方法,但是传统的固定化方法都需要酶在固定化之前经过提纯这一步骤。为了解决复杂的酶提纯步骤,往往对酶基因与组氨酸亲和标签的基因进行重组后再进行纯化。于是近年来基于固定化金属亲和色谱(IMAC)功能化的纳米粒子的蛋白分离提纯体系越来越受到重视。但是这种方法的步骤仍然是繁琐的,而且在使用螯合剂的时候金属酶活性中心的金属离子可能与螯合剂相互作用,会影响金属酶(比如有机磷降解酶)的活性。

发明内容

有鉴于此,本发明旨在提出一种有机磷降解酶基多功能催化剂的制备方法,使制备的有机磷降解酶基多功能催化剂可克服现有有机磷降解酶降解有机磷农药稳定性差以及降解产物不彻底的问题。

为达到上述目的,本发明的技术方案是这样实现的:

一种有机磷降解酶基多功能催化剂的制备方法,该制备方法包括将复合型蛋黄壳结构纳米材料直接加入到具有亲和标签的有机磷降解酶的粗酶液中,经混合,分离后得到有机磷降解酶基多功能催化剂。

进一步的,所述复合型蛋黄壳结构纳米材料为Co/[email protected]2@Ni/C。

进一步的,所述亲和标签包括组氨酸标签、半胱氨酸标签和色氨酸标签中的一种。

进一步的,所述有机磷降解酶的基因序列来自于土壤假单胞杆菌、黄杆菌或放射性农杆菌中的一种。

进一步的,混合采用摇床混合或搅拌混合,混合的时间为0.5-6h;分离采用离心分离或过滤分离。

相对于现有技术,本发明具有以下优势:

本发明所述的有机磷降解酶基多功能催化剂的制备方法,利用自身富含过渡金属离子的复合型蛋黄壳结构纳米材料一步纯化固定化亲和标签标记的有机磷降解酶,将会有效解决酶催化中的稳定性差,不能回收利用及提纯复杂等缺点,如上制备方法操作简单,对酶纯度要求低,不需要对酶进行高成本的分离纯化,且载体能够定向的与酶进行结合,制备的有机磷降解酶基多功能催化剂可以用于检测有机磷农药,并且可对有机磷农药级联降解。

同时,本发明还提出了一种由如上的有机磷降解酶基多功能催化剂的制备方法制备的有机磷降解酶基多功能催化剂。

此外,本发明还提出了如上有机磷降解酶基多功能催化剂用于检测或降解有机磷农药的应用。

进一步的,检测有机磷农药的方法采用光学法检测。

进一步的,所述有机磷降解酶基多功能催化剂与供氢体配合降解有机磷农药。

进一步的,所述供氢体为硼氢化钠。

本发明的有机磷降解酶基多功能催化剂,可以用于检测或降解有机磷农药,降解的终产物无毒且终产物应用范围广泛,具有较好的应用效果。

附图说明

构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明实施例1的Co/[email protected]2@Ni/C的扫描电镜图;

图2为本发明实施例1的Co/[email protected]2@Ni/C的透射电镜图;

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。同时,本发明中未注明具体条件者,按照常规条件或所用设备的制造商建议的条件进行便可,所用试剂或仪器未注明生产厂商者,均为采用通过市售购买获得的常规产品即可,而所涉及的技术手段或工艺方法,若未写明具体条件,则按照所属领域的现有方式方法进行。

下面将参考附图并结合实施例来详细说明本发明。

本实施例涉及一种有机磷降解酶基多功能催化剂的制备方法,以复合型蛋黄壳结构纳米材料为载体,以具有亲和标签的有机磷降解酶作为目的酶,将载体直接加入到含有目的酶的粗酶液中,充分反应混合,分离后,即得到有机磷降解酶基多功能催化剂。

其中,复合型蛋黄壳结构纳米材料是由含氧、氮等的有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装后,经二氧化硅包裹、多巴胺和过渡金属离子涂覆,而后煅烧而形成的一类具有明显核壳介孔结构的材料。复合型蛋黄壳结构纳米材料具有密度低、表面积大、化学和机械稳定性好、电荷和分子输运渗透性高等优点。在本发明中,将复合型蛋黄壳结构纳米材料作为载体制备有机磷降解酶基多功能催化剂。

亲和标签是一类对特定生物或化学配体具有高度亲和力的一段氨基酸序列。亲和标签与蛋白融合后不仅便于对融合蛋白的检测和纯化,而且会对目标蛋白的物理化学性质产生影响,一般要求不能产生影响,否则影响酶的活性。在本发明中,利用复合型蛋黄壳结构纳米材料载体上的过渡金属离子(Cu2+、 Ni2+、Co2+、Zn2+等)与氨基酸残基(如组氨酸、半胱氨酸和色氨酸等的咪唑基、巯基和吲哚基)存在的相互作用,将具有亲和标签的有机磷降解酶与载体进行选择性的结合。

有机磷降解酶是一种能催化有机磷物质中的P-O键、P-F键、P-S键等断裂的蛋白质,但其用于有机磷农药降解时,具有催化效率高、底物适用范围广的特点,可催化甲基对硫磷、对氧磷、对硫磷、蝇毒磷、二嗪磷及丙氟磷等多种有机磷化合物的降解。因此,为保护环境和人类健康,减少有机磷化合物在自然界中的残留,采用有机磷降解酶对其进行降解具有巨大的应用前景。在本发明中,选择有机磷降解酶与载体结合制备固定化酶,进而用于环境中有机磷化合物的降解。

有机磷降解酶虽然可以降解有机磷化合物,但只是将其降解为对硝基苯酚。对硝基苯酚虽然比有机磷化合物的毒性小了很多倍,但仍然是一种对环境造成污染的毒性物质,因此并不能彻底解决有机磷化合物对环境的污染问题。为了更好的修复有机磷农药带来的生态问题,本发明在有机磷降解酶的基础上,利用固定化所采用的复合型蛋黄壳结构纳米材料在氢供体存在条件下催化其进一步降解,将对硝基苯酚进一步降解为对氨基苯酚。且对氨基苯酚是一种重要的医药中间体,这将不仅彻底降解了有机磷化合物,还提供了广阔的应用价值。

粗酶液是指微生物发酵结束后,去除细胞壁或细胞器等大分子物质之后得到的含有目的酶的混合液。现有生物催化剂的制备过程对目的酶纯度要求很高,需要对发酵得到的粗酶液进行复杂的分离纯化工艺,成本高昂。在本发明中,将载体直接与粗酶液进行结合,省去了粗酶液的纯化分离步骤,从而可大大降低生产成本。

在本发明中,以复合型蛋黄壳结构纳米材料为载体,以具有亲和标签的有机磷降解酶作为目的酶,将载体加入到含有目的酶的粗酶液中,充分反应混合,分离后,即得到有机磷降解酶基多功能催化剂。

由于复合型蛋黄壳结构纳米材料中的有机配体与金属离子可以选择,因此,不同类型的有机连接配体与不同的过渡金属元素相结合,可以合成不同种类的蛋黄壳结构纳米材料。

本发明通过对复合型蛋黄壳结构纳米材料的种类进行限定,可选择性能更好的材料作为载体,以使得制备得到的有机磷降解酶基多功能催化剂对酶的利用率更高,酶活性更好。而通过对蛋黄壳结构纳米材料进行进一步的选择,能够进一步的提高有机磷降解酶的利用率和有机磷降解酶基多功能催化剂的酶活性。

其中,对于优选采用的复合型蛋黄壳结构纳米材料,其制备一般包括如下的步骤。

将2-甲基咪唑溶液和Co(NO3)2·6H2O溶液混合,充分震荡并超声处理10 min,在室温下搅拌6h,离心分离,沉淀物(即为ZIF67)依次用超纯水和乙醇各洗涤3次,并将其超声分散至无水乙醇中,加入2-甲基咪唑溶液,充分震荡并超声5min使其均匀混合。接着加入十六烷基三甲基氯化铵(5wt%)溶液,室温下搅拌5min。其后将正硅酸乙酯(TEOS)缓慢滴加到上述混合溶液中,室温下搅拌1.5h。离心分离,沉淀物([email protected]2)用超纯水洗涤3次、乙醇洗涤3次。将该沉淀物重新超声分散于乙醇溶液,并与tris溶液混合,然后依次加入多巴胺和NiCl2·6H2O,待其完全溶解后,在室温下搅拌15h。离心分离 (9000rpm,5min),用超纯水和乙醇洗涤沉淀多次,干燥。然后将该材料置于石英坩埚中,在氮气保护下,500℃,煅烧2h,升温速率2℃·min-1,得到复合型蛋黄壳结构纳米材料Co/[email protected]2@Ni/C。

其中,对于优选采用的有机磷降解酶基多功能催化剂,其制备一般包括如下的步骤。

将该复合型蛋黄壳结构纳米材料加入到Tris-HCl缓冲液中,超声处理2min 使其均匀分散,并将其加入到粗酶液中,均匀混合,室温下在摇床上震荡3h,离心,沉淀用咪唑缓冲溶液(40mM)洗涤3次,所得物质即为有机磷降解酶基多功能催化剂[email protected]/[email protected]2@Ni/C。

本实施例中,亲和标签包括组氨酸标签(His-tag)、半胱氨酸标签(Cys-tag) 和色氨酸标签(Trp-tag)中的一种,并优选为组氨酸标签,主要是由于组氨酸标签分子量小,一般不会对目标蛋白产生影响。而通过对亲和标签的种类进行进一步的选择,可使得带有亲和标签的目的酶能够与载体结合的更加牢固,从而能够提高酶的利用率和有机磷降解酶基多功能催化剂的酶活性。不过,除了以上几种,亲和标签采用本领域技术人员所熟知的其他能够与过渡金属离子相结合的亲和标签亦是可以的。

本实施例的具有亲和标签的有机磷降解酶中有机磷降解酶的基因序列是来自于土壤假单胞杆菌、黄杆菌或放射性农杆菌中的一种,且其优选为来自于放射性农杆菌的有机磷降解酶基因序列。通过现有基因工程的方法,在有机磷降解酶基因的N端引入亲和标签,再通过转化质粒以及由表达菌的表达,即可得到带亲和标签的有机磷降解酶。有机磷降解酶的种类多样,不同类型的有机磷降解酶其催化效率和底物范围有所区别,其中,本发明选自土壤假单胞杆菌、黄杆菌和放射性农杆菌中的有机磷降解酶,能够使得有机磷降解酶的催化效率更高,底物范围更广。

本实施例的土壤假单胞杆菌、黄杆菌和放射性农杆菌可以由市场上购买到,或者也可以自行分离到,而上述三种菌的有机磷降解酶的基因序列均从网站上可以查到(网址:https://www.ncbi.nlm.nih.gov/,其中,土壤假单胞杆菌:名称 opd、Genbank:AER10490.1;黄杆菌:名称opd、Genbank:AAV39527.1;放射形农杆菌:名称opdA、Genbank:AAK85308.1)。通过将上述三种菌之一的有机磷降解酶基因序列引入亲和标签并转化到质粒中,再将质粒转到表达菌、也即宿主菌(例如大肠杆菌)中进行表达,表达的结果就是本实施例所需的有机磷降解酶。

将可以表达亲和标签的重组菌株(即上述大肠杆菌),先进行发酵,发酵结束后对发酵液中的细胞进行裂解,然后再经过离心便可得到所需的具有亲和标签的有机磷降解酶的粗酶液。

在本发明中,将载体加入到粗酶液后,需要经过混合操作以将载体与目的酶充分结合,混合方式可采用摇床混合或搅拌混合,并优选采用摇床混合,或者,也可采用本领域技术人员所熟知的其他类型的混合方式进行混合。而对于摇床混合与搅拌混合,一般的,可根据载体的性能选择混合方式,比如对于结构强度较小的载体宜采用摇床混合,避免混合过程对载体的破坏,而对于结构强度较高的载体则可以适当地选择搅拌混合。

载体与目的酶进行结合需要一定的时间,载体与目的酶的混合时间影响载体与目的酶的结合程度,一般来说,在一定时间内,混合的时间越长,载体与目的酶结合的越好。本发明中的混合时间具体为0.5-6h,且其例如可为0.5h、1 h、2h、3h、4h、5h或6h,并优选的为3h。而通过对混合时间进行进一步的优化和调整,本发明可使得载体与目的酶能够更好的结合,以能够提高酶的利用率。

本发明中载体与目的酶经过混合充分结合后,还要经过分离,去除发酵液后才能得到有机磷降解酶基多功能催化剂。本发明的分离方式可采用离心分离或过滤分离,或者,也可采用本领域技术人员所熟知的其他分离方法。

本发明的制备方法操作简单,对酶纯度要求低,不需要对酶进行高成本的分离纯化,且载体能够定向的与酶进行结合,避免了结合过程中破坏酶活性位点情况的发生,酶利用率高,可克服现有生物催化剂制备中酶利用率低及酶纯度要求高等不足,能够有效的用于有机磷农药的降解。

此外,本发明的实施例还涉及有通过如上的制备方法所制备得到有机磷降解酶基多功能催化剂,以及利用该制备的有机磷降解酶基多功能催化剂进行有机磷农药的降解。

本发明制备的有机磷降解酶基多功能催化剂,成本低,酶活性高,是一种可对有机磷农药进行有效降解的有机磷生物纳米催化剂。

下面将通过具体的制备实例来对本发明的制备方法进行进一步的说明。

在有机磷降解酶基多功能催化剂的制备过程中,以复合型蛋黄壳结构纳米材料为载体,具有亲和标签的有机磷降解酶的基因序列来自于放射性农杆菌,且由大肠杆菌作为表达菌,制得能够表达亲和标签标记的有机磷降解酶。

具体的制备步骤包括:

将20mL 2-甲基咪唑溶液(浓度为0.275g/ml)和3mL Co(NO3)2·6H2O(浓度为0.15g/ml)溶液混合,超声处理10min,在室温下搅拌6h。离心分离,沉淀用超纯水洗涤3次、乙醇洗涤3次;将0.2g的沉淀重新分散于60mL的无水乙醇中,并加入64mL的2-甲基咪唑溶液(0.0625g/ml),混合均匀,超声处理 5min后,在混合溶液中加入4mL十六烷基三甲基氯化铵(5wt%)溶液,室温下搅拌5min。接着将1.5mL的正硅酸乙酯(TEOS)缓慢滴加到上述混合溶液中,室温下搅拌1.5h。离心分离(9000rpm,5min),沉淀分别用超纯水和乙醇各洗涤3次,得到[email protected]2

将0.1g的[email protected]2均匀分散在40mL的乙醇水(5:3)溶液中,超声 10min,加入5mL tris溶液(0.04g/ml),混合后依次加入30mg的多巴胺和75.2mg 的NiCl2·6H2O,待其完全溶解后,在室温下搅拌15h,离心分离(9000rpm, 5min),最后用超纯水洗涤3次、乙醇洗涤3次,将沉淀物置于烘箱中60℃下干燥。12h后,将该复合材料置于石英坩埚中间,在氮气保护下,500℃,升温速率2℃min-1,煅烧2h,得到黑色的复合型蛋黄壳结构纳米材料 Co/[email protected]2@Ni/C。该Co/[email protected]2@Ni/C的扫描电镜图和透射电镜图如图1和图2所示。

将有机磷降解酶基因序列引入亲和标签并转化到质粒中,再将质粒转到宿主大肠杆菌中,然后将大肠杆菌进行发酵,发酵结束后对发酵液中的细胞进行裂解,再经过离心即得到能够表达亲和标签标记的有机磷降解酶的粗酶液。

将一定量的复合型蛋黄壳结构纳米材料加入到Tris-HCl缓冲液中(50mM, pH8.0),超声处理2min使其均匀分散,并将其加入到粗酶液中,均匀混合,室温下在摇床上震荡3h,离心分离,沉淀用咪唑缓冲溶液(40mM)洗涤3次,所得物质即为有机磷降解酶基多功能催化剂[email protected]/[email protected]2@Ni/C,具体制备例可参见以下表1。

为验证本发明所制备的有机磷固定化酶催化剂的性能,以示出其具有对有机磷农药的降解能力,发明人采用自市场上购买的现有有机磷降解酶作为对比,该市购的现有有机磷降解酶具体为天津市张大科技发展有限公司生产的商品名为有机磷降解酶生化洗消剂,型号PG-OPH-D1,主要成分为有机磷降解酶。

分别称取各制备例制备的有机磷降解酶基多功能催化剂及对比例产品9mg 分散到1.97ml Tris-HCl缓冲溶液(50mM,pH 9.0)中,加入20mg NaBH4和 30μl甲基对硫磷(10mg/ml),在40℃条件下,反应10min,离心分离,取1 mL上清液与1mL苯酚溶液(5%(w/w))和1mL NaOH溶液(0.5%(w/w)) 混合,60℃下水浴反应30min,在分光光度计630nm下测定产物对氨基苯酚的含量,检测结果见表1。

表1:

Figure BDA0002485847780000091

Figure BDA0002485847780000101

有机磷降解酶可以将有机磷农药催化降解为对硝基苯酚,对硝基苯酚相对于有机磷农药毒性会降低很多,但是依然存在较大毒性,仍会对对环境造成污染。在供氢体存在时,复合型蛋黄壳结构纳米材料可催化对硝基苯酚生成对氨基苯酚,对氨基苯酚是一种常见的医药中间体,具有广泛的应用价值。

因此经由表1的检测结果可以看出,通过本发明的制备方法所制备的有机磷降解酶基多功能催化剂,其对有机磷农药有着较好的降解作用,酶利用率较高,可获得较好的降解效果,从而利于在有机磷农业降解中的应用。

在本发明中,复合型蛋黄壳结构纳米材料可以纯化固定化亲和标签标记的有机磷降解酶形成有机磷降解酶基多功能催化剂,制备的催化剂不仅可以彻底降解有机磷农药,还可以用于检测有机磷农药。

具体来讲,称取一定量的有机磷降解酶基多功能催化剂、5μL 10mg/mL 甲基对硫磷(乙腈为溶剂)和995μL Tris-HCl缓冲液(50mM,pH 8.0)充分混合,置于37℃水浴锅中温育反应5min。然后通过加入1mL 10%的三氯乙酸溶液来终止反应,再加入1mL 10%Na2CO3溶液显色,在OD410处测定吸光值。由于对硝基苯酚在410nm下有特征吸收峰,且在Na2CO3存在下呈现黄色,因此可以通过颜色深浅判断甲基对硫磷农药的多少。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种啤酒酵母中过表达芳香氨基酸转氨酶II Aro9的构建方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!