一种新型咪唑为受体的化合物及其应用

文档序号:1196639 发布日期:2020-09-01 浏览:34次 >En<

阅读说明:本技术 一种新型咪唑为受体的化合物及其应用 (Novel compound taking imidazole as receptor and application thereof ) 是由 孙军 李启贵 张宏科 胡华院 李飞 刘凯鹏 霍东升 于 2020-05-22 设计创作,主要内容包括:本发明提供一种新型咪唑为受体的化合物,属于有机电致发光功能材料技术领域。结构通式如式(I)所示:式(Ⅰ)中:L&lt;Sub&gt;1&lt;/Sub&gt;、L&lt;Sub&gt;2&lt;/Sub&gt;各自独立的为C6~C30亚芳基;Ar&lt;Sub&gt;1&lt;/Sub&gt;、Ar&lt;Sub&gt;2&lt;/Sub&gt;各自独立为给电子基团或H,且Ar&lt;Sub&gt;1&lt;/Sub&gt;与Ar&lt;Sub&gt;2&lt;/Sub&gt;不同时为H;所述给电子基团为取代或未被取代的咔唑基、吩唖嗪基、吩噻嗪基、吩噁嗪基、吩嗪基、吖啶基、二苯胺基中的一种。本发明还提供一种新型咪唑为受体的化合物在有机电致发光器件中的应用。本发明基于新型咪唑结构为五元环并五元环咪唑结构,通过单键、芳香基、亚芳香基桥连引入特定的给电子基团修饰新型咪唑配体构成全新化合物,可以作为发光层敏化主体材料或发光染料使用。结构通式如式(I)所示:&lt;Image he="397" wi="496" file="DDA0002504470300000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;。(The invention provides a novel compound taking imidazole as a receptor, belonging to the technical field of organic electroluminescent functional materials. The structural general formula is shown as formula (I): in formula (I): l is 1 、L 2 Each independently is a C6-C30 arylene group; ar (Ar) 1 、Ar 2 Each independently is an electron donating group or H, and Ar 1 And Ar 2 Not H at the same time; the electron donating group is one of substituted or unsubstituted carbazolyl, phena azinyl, phenothiazinyl, phenoxazinyl, phenazinyl, acridinyl and diphenylamine. The invention also provides application of the novel compound taking imidazole as a receptor in an organic electroluminescent device. The novel imidazole structure is a five-membered ring and five-membered ring imidazole structure, and a novel compound is formed by introducing a specific electron-donating group to modify a novel imidazole ligand through single bond, aryl and arylene bridging, and can be used as a luminescent layer sensitized main body material or a luminescent dye. The structural general formula is shown as formula (I): 。)

一种新型咪唑为受体的化合物及其应用

技术领域

本发明属于有机电致发光功能材料技术领域,具体涉及一种新型咪唑为受体的化合物及其应用。

背景技术

作为一种自发光的电子元件,有机电致发光二极管(OLED:Organic LightEmission Diodes)显示及照明元件的发光机理是在直流电场的作用下,借助有机半导体功能材料将电能直接转化为光能的新型光电信息技术。其发光色彩可为单独的红、绿、蓝、黄光或者是组合白光。OLED发光显示技术的最大特点在于超薄、响应速度快、超轻量、面发光及柔性显示,可用于制造单色或全色显示器,作为新型光源技术,还可以制作照明、显示产品或新型背光源技术用于制造液晶显示器。

按照发光原理,有机电致发光元件(有机EL元件)可分为荧光型与磷光型这两类。对于有机电致发光元件施加电压,注入来自阳极的空穴与来自阴极的电子,他们在发光层中再次结合形成激子。依据电子自旋统计法,单线态激子与三重态激子以25%:75%的比例生成。荧光型因为利用了单线态激子来发光,故其内部量子效率只能达到25%。磷光材料由重金属元素构成,通过隙间穿越可以同时利用单线态和三线态能量,内量子效率可以达到100%。热活性延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有较小的单线态-三线态能级差(ΔEst),三线态激子可以通过反隙间穿越转变成单线态激子发光,可以充分利用电激发下形成的单线态激子和三线态激子,器件的内量子效率可以达到100%,同时材料结构可控,性质稳定,价格便宜无需铱、铂等贵重金属,在OLEDs领域的应用前景广阔。近几年的研究结果表明:绿光和红光磷光材料可以实现产业化要求,但是仍然存在价格昂贵的问题,而蓝光磷光材料寿命无法满足应用要求因此无法实现产业化,目前OLED产品中的蓝光材料仍为传统的荧光材料。

TADF材料不仅可以作为发光层中的发光材料(emitter),也可以做为发光层中的主体材料或辅助主体材料来敏化emitter,这类器件有助于提高传统器件的效率,改善器件的色纯度,提高器件的工作寿命,是一类具有广阔应用前景的有机电致发光功能材料。TADF材料结构上一般由给电子基团-吸电子基团通过π健连接而成,但是目前能够被利用的吸电子基团种类很少,尤其是具有高品质TADF蓝光材料比较少,而且目前所报道的蓝光材料色纯度存在缺陷,器件寿命不够理想还无法达到实用化要求,因此设计发明新型吸电子基团开发新型蓝光TADF材料非常重要。

咪唑环上的两个氮原子存在着特有的性质,选择合适的基团修饰咪唑得到的化合物可以实现蓝光发射,目前已经成为一个研究热点。马於光等课题组近几年的研究结果表明:菲并咪唑类配体通过三苯胺基团修饰构建的化合物局域态和电荷传输态存在一定的杂化,从而形成一个新的激发态,这就是局域杂化电荷转移激发态,这个激发态下存在一个“热激子”的通道,可以使三线态的激子通过反隙间穿越到达单重态,从而提高单线态激子利用率。另外,咪唑经过修饰后其分子存在扭曲,可以抑制分子内聚集,阻挡分子内电荷转移,从而保证其深蓝光发射,所以如何选择合适的基团取代从而实现咪唑衍生物的高效蓝光发射,成为当前研究的一个热点。本发明的新型咪唑配体通过芳香基团连接典型给电子基团可以构筑给-受体型分子结构,得到具有双极性特点的TADF材料,可以用作发光层敏化主体材料或发光染料。

发明内容

本发明的目的是提供一种新型咪唑为受体的化合物及其应用,充分利用局域杂化电荷转移激发态。经过不同给电子基团的修饰,该类化合物可以作为发光层中的敏化主体材料或发光材料,该类材料应用到有机电致发光器件中,能够显著改善有机电致发光器件的器件性能。

本发明的第一个目的是提供一种新型咪唑为受体的化合物,结构通式如式(I)所示:

式(Ⅰ)中:

L1、L2各自独立的为C6~C30亚芳基;

Ar1、Ar2各自独立为给电子基团或H,且Ar1与Ar2不同时为H;

所述给电子基团为取代或未被取代的咔唑基、吩唖嗪基、吩噻嗪基、吩噁嗪基、吩嗪基、吖啶基、二苯胺基中的一种;

所述取代基为甲基、乙基、异丙基、叔丁基、苯基、咔唑基、胺基、吖啶基、吩唖嗪基、芴基、二苯并呋喃、二苯并噻吩中的一种或多种。

优选的,所述L1、L2相同或不同,均选自以下结构式中的一种:

Figure BDA0002504470280000032

优选的,所述Ar1、Ar2相同或不同的给电子基团,均选自以下结构式中的一种:

Figure BDA0002504470280000033

优选的,具体为如下化合物中的任意一种:

Figure BDA0002504470280000071

本发明第二个目的是提供上述的所述的新型咪唑为受体的化合物在有机电致发光器件中的应用。

本发明第三个目的是提供一种有机电致发光器件,包括发光层,所述发光层的发光材料包括上述任一所述的新型咪唑为受体的化合物。

本发明第四个目的是提供一种有机电致发光器件,包括发光层,所述发光层的敏化主体材料包括上述任一所述的新型咪唑为受体的化合物。

本发明第五个目的是提供上述有机电致发光器件在有机电致发光显示装置中的应用。

与现有方法相比,本发明的有益效果在于:

本发明基于新型咪唑结构为5元环并五元环咪唑结构,通过单键、芳香基、亚芳香基或杂芳基桥连引入特定的给电子基团修饰新型咪唑配体构成全新化合物,为典型的给-受体结构,经过修饰改善了材料的轨道能级及三线态能量,使其存在局域杂化电荷转移激发态,具有双极性特点及TADF性质,可以实现高效蓝光,可以作为发光层敏化主体材料或发光染料使用。

该类系列化合物在有机电致发光(OLED)器件中作为发光层中的敏化主体材料或者发光材料,可以实现高亮度、低电压、高效率以及使用寿命长,同时,本发明的化合物制成的材料具有较高的热稳定性,可显著提高发光器件的发光稳定性,表现出优良的性能。

另外,本发明提供的有机电致发光器件可广泛应用在OLED发光器件及显示装置上,对比现有材料应用到OLED发光器件,器件的发光效率、寿命等光电性能均有良好的表现,而且材料的合成工艺简单,在OLED器件的应用上具有很大的应用价值,具有良好的产业化前景。

附图说明

图1为本发明实施例中有机电致发光元件的结构示意图。

附图标记说明:

1、衬底,2、阳极层,3、空穴注入层,4、第一空穴传输层,5、第二空穴传输层,6、发光层,7、空穴阻挡层,8、电子传输层,9、电子注入层,10、阴极层。

具体实施方式

为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。

下述各实施例中所述实验方法和检测方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可在市场上购买得到。

本发明提供的以新型咪唑配体上通过芳基或杂芳基桥连给电子基团修饰。

本发明提供一种新型咪唑为受体的化合物,结构通式如式(I)所示:

Figure BDA0002504470280000091

式(Ⅰ)中:

L1、L2各自独立的为C6~C30亚芳基;

Ar1、Ar2各自独立为给电子基团或H,且Ar1与Ar2不同时为H;

所述给电子基团为取代或未被取代的咔唑基、吩唖嗪基、吩噻嗪基、吩噁嗪基、吩嗪基、吖啶基、二苯胺基中的一种;

所述取代基为甲基、乙基、异丙基、叔丁基、苯基、咔唑基、胺基、吖啶基、吩唖嗪基、芴基、二苯并呋喃、二苯并噻吩中的一种或多种。

本发明通过在新型咪唑配体上通过芳基或杂芳基桥连引入给电子基团,改善了核心结构的轨道能级及三线态能量,使其存在局域杂化电荷转移激发态;所开发的材料为典型的给-受体结构,具有双极性特点及TADF性质,可以作为发光层敏化主体材料或发光染料使用;

该类系列化合物在有机电致发光(OLED)器件中作为敏化主体材料或者TADF材料表现出优良的性能。

以下示出本发明的新型咪唑为受体的化合物的具体示例:

Figure BDA0002504470280000101

下面,我们提供制备上述化合物所对应的几个中间体的具体合成方法。

(1)化合物5合成

将20g中间体1-1分批加入到11.2g中间体1-2,22.3g中间体1-3,20.3g醋酸铵,500ml冰醋酸的反应体系中,加料完毕后将体系加热至100℃反应8h。待原料完全反应后降至室温,反应液倒入1.5L水中搅拌析出固体,过滤后将所得固体完全溶于甲苯中,水洗至中性后无水硫酸钠干燥、过硅胶柱纯化,得29.5g中间体1,收率63.5%。

将20g中间体1-1分批加入到11.2g中间体1-2,22.3g中间体1-3,20.3g醋酸铵,500ml冰醋酸的反应体系中,加料完毕后将体系加热至100℃反应8h。待原料完全反应后降至室温,反应液倒入1.5L水中搅拌析出固体,过滤后将所得固体完全溶于甲苯中,水洗至中性后无水硫酸钠干燥、过硅胶柱纯化,得26.6g中间体2,收率57.2%。

将20g中间体1-1分批加入到20.8g中间体3-1,12.8g中间体3-2,20.3g醋酸铵,500ml冰醋酸的反应体系中,加料完毕后将体系加热至100℃反应8h。待原料完全反应后降至室温,反应液倒入1.5L水中搅拌析出固体,过滤后将所得固体完全溶于甲苯中,水洗至中性后用无水硫酸钠干燥、过硅胶柱纯化,得19.9g中间体3,收率42.9%。

将20g中间体1-1分批加入到20.8g中间体4-1,17.0g中间体4-2,20.3g醋酸铵,500ml冰醋酸的反应体系中,加料完毕后将体系加热至100℃反应8h。待原料完全反应后降至室温,反应液倒入1.5L水中搅拌析出固体,过滤后将所得固体完全溶于甲苯中,水洗至中性后用无水硫酸钠干燥、过硅胶柱纯化,得18.9g中间体3,收率37.6%。

Figure BDA0002504470280000143

在三口瓶中加入10g中间体1,11.0g化合物5-1,6.5g碳酸钾,1.5g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.68g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得13.0g化合物5,收率72.3%。

1H NMR(400MHz,CDCl3)δ8.21(d,j=7.2Hz,4H),7.96(d,j=6.8Hz,2H),7.80(d,j=8.0Hz,2H),7.69(d,j=7.6Hz,2H),7.62(t,j=6.4Hz,1H),7.55(m,4H),7.48(t,j=6.8Hz,2H),7.36-7.38(m,8H),7.24-7.26(m,6H),7.08(d,j=6.8Hz,4H),7.00(t,j=6.4Hz,2H);

(2)化合物21合成

在三口瓶中加入10g中间体2,6.8g化合物21-1,6.5g碳酸钾,1.5g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.68g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得11.3g化合物21,收率81.6%。

1H NMR(400MHz,CDCl3)δ8.55(d,j=7.2Hz,1H),8.38(d,j=6.8Hz,1H),8.20(m,2H),7.94(m,2H),7.80(d,j=8.0Hz,2H),7.73(t,j=6.4Hz,1H),7.68(m,3H),7.62(m,3H),7.58(d,j=7.2Hz,1H),7.55(t,j=7.6Hz,2H),7.48(m,4H),7.36(m,3H),7.20(t,j=6.8Hz,1H),7.16(t,j=6.8Hz,1H);

(3)化合物30合成

Figure BDA0002504470280000152

在三口瓶中加入10g中间体1,11.9g化合物30-1,6.5g碳酸钾,1.5g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.68g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得14.9g化合物30,收率78.6%。

1H NMR(400MHz,CDCl3)δ8.21(d,j=7.2Hz,4H),7.96(d,j=6.8Hz,2H),7.80(d,j=8.0Hz,2H),7.69(d,j=7.6Hz,2H),7.62(t,j=6.4Hz,1H),7.55(m,4H),7.48(t,j=6.8Hz,2H),7.36-7.38(m,8H),7.25(d,j=6.8Hz,2H),7.18(m,4H),7.14(d,j=7.2Hz,2H),6.95(t,j=7.2Hz,2H),1.69(s,6H);

(4)化合物49合成

Figure BDA0002504470280000161

在三口瓶中加入10g中间体1,13.7g化合物49-1,6.5g碳酸钾,1.5g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.68g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得17.3g化合物49,收率83.3%。

1H NMR(400MHz,CDCl3)δ8.55(d,j=7.2Hz,1H),8.24(d,j=7.2Hz,1H),8.21(d,j=7.2Hz,4H),7.92-7.96(m,7H),7.88(s,1H),7.80(d,j=8.0Hz,2H),7.74(d,j=7.2Hz,1H),7.69(d,j=7.6Hz,2H),7.62(t,j=6.4Hz,1H),7.55-7.57(m,3H),7.48(m,3H),7.35-7.38(m,8H),7.25(d,j=6.8Hz,2H),7.16(t,j=6.8Hz,1H),1.69(s,6H);

(5)化合物54合成

Figure BDA0002504470280000162

在三口瓶中加入10g中间体1,10.9g化合物54-1,6.5g碳酸钾,1.5g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.68g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得13.8g化合物54,收率76.9%。

1H NMR(400MHz,CDCl3)δ8.30(d,j=7.2Hz,1H),8.21(d,j=7.2Hz,4H),8.19(d,j=7.2Hz,1H),8.13(d,j=7.2Hz,1H),7.96(d,j=6.8Hz,2H),7.89(s,1H),7.80(d,j=8.0Hz,2H),7.69(d,j=7.6Hz,2H),7.62(m,3H),7.55-7.58(m,4H),7.48-7.51(m,5H),7.36-7.38(m,6H),7.25(d,j=6.8Hz,2H),7.20(t,j=6.8Hz,1H);

(6)化合物72合成

在三口瓶中加入10g中间体3,10.9g化合物72-1,6.5g碳酸钾,1.5g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.68g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得12.3g化合物72,收率68.3%。

1H NMR(400MHz,CDCl3)δ8.55(d,j=7.2Hz,1H),8.28(d,j=6.8Hz,2H),8.19-8.21(m,6H),8.09(s,1H),7.94(d,j=7.2Hz,1H),7.80(d,j=8.0Hz,2H),7.69(m,3H),7.55-7.59(m,5H),7.48-7.51(m,7H),7.37(d,j=7.2Hz,4H),7.35(t,j=7.2Hz,1H),7.20(t,j=7.2Hz,1H),7.16(t,j=7.2Hz,1H);

(7)化合物82合成

在三口瓶中加入10g中间体4,8.0g化合物82-1,12.0g碳酸钾,0.87g 1,10-菲罗啉,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.63g溴化亚铜,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得11.2g化合物72,收率75.9%。

1H NMR(400MHz,CDCl3)δ8.55(d,j=7.2Hz,2H),8.19(d,j=7.2Hz,2H),7.91-7.94(m,6H),7.80(d,j=8.0Hz,2H),7.75(m,4H),7.69(d,j=7.6Hz,2H),7.58(d,j=7.2Hz,2H),7.55(t,j=7.6Hz,2H),7.50(t,j=7.2Hz,2H),7.35(d,j=7.2Hz,2H),7.20(t,j=7.2Hz,2H),7.16(t,j=7.2Hz,2H);

(8)化合物98合成

在三口瓶中加入10g中间体4,6.3g化合物21-1,6.0g碳酸钾,1.4g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.63g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得9.6g化合物98-1,收率71.2%。

在三口瓶中加入9g化合物98-1,3.6g化合物98-2,4.0碳酸钾,0.9g四丁基溴化铵,120ml甲苯,40ml乙醇,20ml水,通入氮气排除体系内空气后加入0.42g四(三苯基膦)钯,加热至80℃反应10h,待原料完全反应后降至室温,反应液水洗至中性后用无水硫酸钠干燥,过硅胶柱、甲苯重结晶纯化,得8.7g化合物98-1,收率76.1%。

1H NMR(400MHz,CDCl3)δ8.55(d,j=7.2Hz,1H),8.52(d,j=6.4Hz,1H),8.31(d,j=6.4Hz,1H),8.21(s,1H),8.19(d,j=7.2Hz,1H),8.15(d,j=6.4Hz,1H),8.08(m,3H),8.04(t,j=6.4Hz,1H),7.92-7.96(m,4H),7.77-7.80(m,6H),7.69(m,4H),7.58-7.60(m,2H),7.55(t,j=7.6Hz,2H),7.50(t,j=7.2Hz,1H),7.47(d,j=6.4Hz,1H),7.35(t,j=7.2Hz,1H),7.25(d,j=6.4Hz,2H),7.20(t,j=7.2Hz,1H),7.16(t,j=7.2Hz,1H);

对上述实施例提供的部分化合物及现有材料分别进行T1能级以及HOMO、LUMO能级测试,结果如表1所示:

表1本发明化合物T1能级以及HOMO、LUMO

注:最高分子占有轨道(HOMO)、最低分子未占有轨道(LUMO)和三线态能量(T1)采用模拟软件计算得到数据。

由表1可得,本发明的有机化合物具有合适的HOMO/LUMO,在OLED器件中有利于载流子的传输和能量的转移,这些化合物可以作为发光层敏化剂材料,也可以作为TADF发光材料使用。在没有特定限制的情况下,上述有机电致发光器件可以是非掺杂发光层器件也可以是掺杂型发光层器件。所发明材料可以作为发光层敏化剂使用,也可以作为发光材料使用,本发明以新型咪唑配体为核心的化合物在应用于OLED器件发光层后,可以有效地提高器件的发光效率及使用寿命等性能。

下面以本发明提供的部分化合物为例,将其分别作为作为发光层材料(主体材料和/或掺杂染料)应用到有机电致发光器件中,以验证其所取得的优异效果。

具体通过器件实施例1~9和对比例1-2的器件性能详细说明本发明的OLED材料应用在器件中的优异效果。本发明器件实施例1~9和对比例1-2的结构制作工艺完全相同,并且采用了相同的玻璃基板和电极材料,电极材料膜厚也保持一致,所不同的是发光层材料做了调整,具体如下。

器件实施例1

本实施例提供了一种有机电致发光器件,其结构具体如图1所示,包括依次层叠设置的衬底1、阳极层2、空穴注入层3、第一空穴传输层4、第二空穴传输层5、发光层6、空穴阻挡层7、电子传输层8、电子注入层9和阴极层10。

其中,阳极层2材料选择具有高功函数的铟锡氧化物(ITO),空穴注入层3材料选择HAT-CN,厚度为5nm;第一空穴传输层4材料选择NPB,厚度为60nm;第二空穴传输层5材料选择TCTA,厚度为15nm;发光层6使用BH01作为主体材料,化合物5作为发光材料,掺杂质量比为5%,厚度为30nm;空穴阻挡层7的材料选择TPBI,厚度为10nm;电子传输层8的材料选择ET-1,厚度为35nm;电子注入层9的材料选择Liq,厚度为2nm;阴极层的材料选择Al,厚度为100nm。

器件中各功能层所使用基本材料结构式如下:

上述有机电致发光器件的具体制备步骤如下:

1)清洗透明玻璃基板上的ITO阳极,分别用去离子水、丙酮、乙醇各超声清洗20分钟,然后进行氧气氛围下等离子(Plasma)处理5分钟;

2)在ITO阳极层上,通过真空蒸镀方式蒸镀空穴注入层材料HAT-CN,厚度为5nm,这层作为空穴注入层;

3)在空穴注入层上通过真空蒸镀方式蒸镀空穴传输材料NPB,厚度为60nm,该层作为第一空穴传输层;

4)在第一空穴传输层NPB上通过真空蒸镀方式蒸镀空穴传输材料TCTA,厚度为15nm,这层作为第二空穴传输层;

5)在第二空穴传输层上,通过真空蒸镀方式共蒸镀发光层,使用化合物BH01作为主体材料,化合物5作为发光材料,掺杂质量比为5%,厚度为30nm;

6)在发光层之上,通过真空蒸镀的方式蒸镀空穴阻挡材料TPBI,厚度为10nm,这一层作为空穴阻挡层;

7)在空穴阻挡层上,通过真空蒸镀的方式蒸镀电子传输材料ET-1,厚度为35nm,这一层作为电子传输层;

8)在电子传输层上,通过真空蒸镀的方式蒸镀电子注入材料Liq,厚度为2nm,这一层作为电子注入层;

9)在电子注入层上,通过真空蒸镀的方式蒸镀阴极Al,厚度为100nm,该层作为阴极导电电极使用。

器件实施例2

与器件实施例1相同,不同之处:将化合物21作为dopant替代化合物5。

器件实施例3

与器件实施例1相同,不同之处:将化合物30作为dopant替代化合物5。

器件实施例4

与器件实施例1相同,不同之处:将化合物49作为dopant替代化合物5。

器件实施例5

与器件实施例1相同,不同之处:化合物54作为发光材料替代化合物5,不需要掺杂,即不需要BH01材料。

器件实施例6

与器件实施例1相同,不同之处:化合物72作为发光材料替代化合物5,不需要掺杂,即不需要BH01材料。

器件实施例7

与器件实施例1相同,不同之处:化合物82作为发光材料替代化合物5,不需要掺杂,即不需要BH01材料。

器件实施例8

与器件实施例1相同,不同之处:化合物98作为发光材料替代化合物5,不需要掺杂,即不需要BH01材料。

器件实施例9

与器件实施例1相同,不同之处:化合物21作为发光层敏化主体材料,BD01作为发光材料替代化合物5;发光层中包括BH01、化合物21、BD01,其中,BH01、化合物21、BD01的质量百分比为50~75%:20~45%:5%。

对比例1

与器件实施例1相同不同之处:BH01作为主体材料,BD01作为发光材料。

对比例2

与对比例1相同,不同之处:BD02作为发光材料替代BD01,不需要掺杂,即不需要BH01材料。

本发明器件实施例1~9、对比例1~2所制备的不同器件构成成分,如表2所示:

表2各器件实施例的有机电致发光器件构成成分对比表

将各组有机电致发光器件用公知的驱动电路将阴极和阳极连接起来,通过标准的方法采用Keithley2400电源结合PR670光度计测试OLED器件的电压-效率-电流密度关系;器件的寿命通过恒流法测试,测试条件为恒定电流密度为10mA/cm2,测试亮度衰减到初始亮度的90%的时间,即为器件LT90寿命,测试结果如表3所示:

表3各组有机电致发光器件性能结果

由表3可知,本发明提供的化合物作为发光材料应用到OLED蓝光发光器中,性能优良。如器件实施例3中的化合物30作为发光材料与对比例1中常规荧光蓝光材料BD01相比,发光效率和使用寿命都得到了显著的提高,发光效率提高了53.2%,使用寿命提高了25%;如器件实施例5所示,化合物54作为TADF材料性能优良,与对比例2相比器件效率提升40.2%,器件寿命提升20%;作为发光层敏化主体材料化合物21性能优良,如器件实施例9与对比例1相比,增加敏化主体后器件发光效率提高了46.7%,使用寿命提高了21.6%,主要是由于敏化主体材料可以把自身全部能量及主体材料能量传递给发光材料,从而实现发光材料的器件性能提升。可见选用本发明的化合物作为OLED器件的敏化主体材料或发光材料,对比现有材料应用到OLED发光器件,器件的发光效率、寿命等光电性能均有良好的表现,而且材料的合成工艺简单,在OLED器件的应用上具有很大的应用价值,具有良好的产业化前景。

本发明基于新型咪唑结构为5元环并五元环咪唑结构,通过单键、芳香基、亚芳香基或杂芳基桥连引入特定的咔唑衍生物、吖啶衍生物等给体基团修饰进而得到给-受体型化合物。经过修饰的该类化合物具有合适的前线轨道能级以及三线态能量,所创新的系列化合物在有机电致发光(OLED)器件中作为敏化主体材料或者发光材料表现出优良的性能。

该类系列化合物在有机电致发光(OLED)器件中作为发光层中的敏化主体材料或者发光材料,可以实现高亮度、低电压、高效率以及使用寿命长,同时,本发明的化合物制成的材料具有较高的热稳定性,可显著提高发光器件的发光稳定性,表现出优良的性能。

另外,本发明提供的有机电致发光器件可广泛应用在OLED发光器件及显示装置上,对比现有材料应用到OLED发光器件,器件的发光效率、寿命等光电性能均有良好的表现,而且材料的合成工艺简单,在OLED器件的应用上具有很大的应用价值,具有良好的产业化前景。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内也意图包含这些改动和变型在内。

27页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种4,6-二氯嘧啶制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!