背面研磨带

文档序号:1315879 发布日期:2020-07-10 浏览:5次 >En<

阅读说明:本技术 背面研磨带 (Back grinding belt ) 是由 尹美善 金色拉 李光珠 延博拉 朴成灿 金殷英 于 2019-01-11 设计创作,主要内容包括:本发明涉及背面研磨带和使用该背面研磨带研磨晶片的方法,所述背面研磨带包括聚合物基底和粘合层,其中所述粘合层包含含有30重量%至60重量%的衍生自玻璃化转变温度为0℃或更高的单体或低聚物的重复单元的(甲基)丙烯酸酯树脂,以及其中所述粘合层的玻璃化转变温度为-20℃至10℃。(The present invention relates to a back-grinding tape comprising a polymer substrate and an adhesive layer, wherein the adhesive layer comprises a (meth) acrylate resin containing 30 to 60% by weight of a repeating unit derived from a monomer or oligomer having a glass transition temperature of 0 ℃ or more, and wherein the adhesive layer has a glass transition temperature of-20 to 10 ℃, and a method of grinding a wafer using the back-grinding tape.)

背面研磨带

技术领域

相关申请的交叉引用

本申请要求于2018年1月22日向韩国知识产权局提交的韩国专利申请第10-2018-0007963号和于2019年1月8日向韩国知识产权局提交的韩国专利申请第10-2019-0002459号的申请日的权益,其全部内容通过引用并入本文。

本发明涉及背面研磨带。

背景技术

近来,电子器件朝小型化、高功能性和容量增大的趋势日益增加,对半导体封装的致密化和高集成度的需求快速增加。反映这一点,半导体芯片的尺寸变得更大,同时芯片的厚度变得更薄,电路的集成度增加。然而,芯片本身的模量降低,从而引起制造过程或最终产品的可靠性方面的问题。

为了满足这样的对半导体的增大和减薄的需求,基本上通过用由细金刚石颗粒构成的抛光轮研磨晶片的背表面来进行用于促进组装的研磨(背面研磨)过程以减小芯片的厚度。然而,在研磨过程期间,由于大量的硅残留物(粉尘)和颗粒,经常发生晶片的损坏,例如污染或开裂。因此,进一步强调了用于保护半导体晶片的表面的粘合膜或背面研磨带的作用。

随着半导体器件进一步小型化和减薄,需要将晶片研磨至比常规晶片更薄的厚度的过程。因此,当将在将晶片研磨至约100μm的厚度的步骤中使用的粘合膜应用于将晶片研磨至约50μm的厚度的过程时,粘合带的蠕变变形高,这可能引起诸如研磨之后的模具未对准(misalignment of die)的问题。

发明内容

技术问题

本发明的一个目的是旨在提供背面研磨带,其能够容易地应用于研磨具有薄厚度的晶片的过程,并且能够通过将粘合带的蠕变变形保持在低水平来防止诸如研磨之后的模具未对准的问题。

本发明的另一个目的是旨在提供使用背面研磨带研磨晶片的方法。

技术方案

为了实现上述目的,本发明提供了背面研磨带,其包括:聚合物基底;和粘合层,其中粘合层包含含有30重量%至60重量%的衍生自玻璃化转变温度为0℃或更高的单体或低聚物的重复单元的(甲基)丙烯酸酯树脂,其中粘合层的玻璃化转变温度为-20℃至10℃。

本发明还提供了使用背面研磨带研磨晶片的方法。

在下文中,将更详细地描述根据本发明的具体实施方案的背面研磨带和研磨晶片的方法。

如本文所用,术语“(甲基)丙烯酸酯”旨在涵盖丙烯酸酯和甲基丙烯酸酯二者。

如上所述,根据本发明的一个实施方案,可以提供包括聚合物基底和粘合层的背面研磨带,其中粘合层包含含有30重量%至60重量%的衍生自玻璃化转变温度为0℃或更高的单体或低聚物的重复单元的(甲基)丙烯酸酯树脂,其中粘合层的玻璃化转变温度为-20℃至10℃。

本发明人对包括聚合物基底和粘合层的背面研磨带进行了研究,并且通过实验发现,当粘合层包含含有30重量%至60重量%的衍生自玻璃化转变温度为0℃或更高的单体或低聚物的重复单元的(甲基)丙烯酸酯树脂时,其玻璃化转变温度为-20℃至10℃,其可以容易地应用于研磨具有约50μm的薄厚度的晶片的过程,并且可以通过将粘合带的蠕变变形保持在低水平来防止诸如研磨之后的模具未对准的问题,从而完成了本发明。

更具体地,由于粘合层的玻璃化转变温度为-20℃至10℃,因此当在90℃下施加20000Pa的力时,蠕变应变可以为10%至30%。在90℃下施加20000Pa的力的条件可以对应于在背面研磨过程中的背面研磨期间由砂轮接收的水平力。由于粘合层在上述条件下的蠕变变形为10%至30%,因此可以防止在背面研磨过程之后模具未对准。

如果当在90℃下向粘合层施加20000Pa的力时,蠕变变形小于10%,则粘合层的模量高,因此粘合稳定性降低,因此其可能在过程期间脱离。如果当在90℃下向粘合层施加20000Pa的力时,蠕变变形大于30%,则粘合层的模量低,因此模具可能未对准或者可能在半导体电路表面上形成粘合剂残留物。

蠕变变形意指当向预定材料长时间施加一定力时材料随时间的变形,随着时间流逝,变形程度也趋于增加。

本实施方案的背面研磨带通过包括前述粘合层而可以表现出低水平的蠕变变形率。因此,即使当在背面研磨过程中向附接有背面研磨带的半导体晶片施加力时,粘合层的变形也可以不大,并且可以抑制由于在背面研磨过程期间向晶片施加的力而发生模具偏移。

由于粘合层包含含有30重量%至60重量%的衍生自玻璃化转变温度为0℃或更高的单体或低聚物的重复单元的(甲基)丙烯酸酯树脂,因此其玻璃化转变温度可以为-20℃至10℃。

更具体地,玻璃化转变温度为0℃或更高的单体或低聚物的玻璃化转变温度可以为0℃至100℃。玻璃化转变温度为0℃或更高的单体或低聚物的具体实例包括选自丙烯酸甲酯、(甲基)丙烯酸异冰片酯和(甲基)丙烯酸羟基环己酯的至少一种化合物。

此外,(甲基)丙烯酸酯树脂还可以包含与衍生自玻璃化转变温度为0℃或更高的单体或低聚物的重复单元一起的,具有具2至12个碳原子的烷基的基于(甲基)丙烯酸酯的重复单元或含有可交联官能团的基于(甲基)丙烯酸酯的重复单元。

具体地,(甲基)丙烯酸酯树脂可以包含30重量%至60重量%的衍生自玻璃化转变温度为0℃或更高的单体或低聚物的重复单元、和40重量%至70重量%的具有具2至12个碳原子的烷基的基于(甲基)丙烯酸酯的重复单元或含有可交联官能团的基于(甲基)丙烯酸酯的重复单元。

具有具2至12个碳原子的烷基的基于(甲基)丙烯酸酯的重复单元可以为衍生自选自以下的至少一种单体或低聚物的重复单元:(甲基)丙烯酸戊酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸己酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸癸酯等。

含有可交联官能团的基于(甲基)丙烯酸酯的重复单元的具体实例包括含有羟基、羧基、含氮官能团等的基于(甲基)丙烯酸酯的重复单元,含有可交联官能团的基于(甲基)丙烯酸酯的重复单元可以衍生自含有可交联官能团的基于(甲基)丙烯酸酯的单体。

在这种情况下,含羟基的基于(甲基)丙烯酸酯的单体的实例可以包括(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸2-羟基丙酯等。含羧基的基于(甲基)丙烯酸酯的单体的实例可以包括(甲基)丙烯酸等。含有含氮官能团的(甲基)丙烯酸酯单体的实例包括(甲基)丙烯腈、N-乙烯基吡咯烷酮、N-乙烯基己内酰胺等,但不限于此。

(甲基)丙烯酸酯树脂的重均分子量可以为100000至1500000,优选200000至1000000。当(甲基)丙烯酸酯树脂的重均分子量小于100000时,涂覆特性或内聚力降低,并且在剥离期间残留物可能残留在被粘物上,或者可能发生粘合剂的破裂现象。此外,当(甲基)丙烯酸酯树脂的重均分子量大于1500000时,由于高粘度而需要添加额外的稀释溶剂,并且涂覆特性可能劣化。

同时,粘合层可以包含可紫外固化的粘合剂或可热固化的粘合剂。当使用可紫外固化的粘合剂时,照射紫外线以增加粘合剂的内聚力和玻璃化转变温度,从而降低粘合强度。在可热固化的粘合剂的情况下,增加温度以降低粘合强度。

基于(甲基)丙烯酸酯的树脂还可以包含含有乙酸乙烯酯、苯乙烯或丙烯腈的碳-碳双键的低分子量化合物。

粘合层还可以包含多官能(甲基)丙烯酸酯化合物。

多官能(甲基)丙烯酸酯化合物的重均分子量为100至100000,其可以包括选自多官能氨基甲酸酯(甲基)丙烯酸酯和多官能(甲基)丙烯酸酯单体或低聚物的至少一者。

重均分子量是通过GPC法测量的以聚苯乙烯换算的重均分子量。

基于100重量份的(甲基)丙烯酸酯树脂,多官能(甲基)丙烯酸酯化合物的含量可以为5重量份至400重量份,优选10重量份至200重量份。当多官能(甲基)丙烯酸酯化合物的含量小于5重量份时,固化之后的粘合强度可能无法充分降低。当多官能(甲基)丙烯酸酯化合物的含量超过400重量份时,紫外线照射之前的粘合剂的内聚力可能不足。

粘合层还可以包含光引发剂。光引发剂的类型没有特别限制,并且可以使用本领域已知的常用引发剂。基于100重量份的多官能(甲基)丙烯酸酯化合物,其含量可以为0.05重量份至20重量份。当光引发剂的含量小于0.05重量份时,通过紫外线照射的固化反应可能不足。当光引发剂的含量超过20重量份时,在固化过程中,在短单元中发生交联反应或者产生未反应的可紫外固化的化合物,这可能导致被粘物的表面上的残留物,或者固化之后的剥离力可能过低。

粘合层可以包含选自以下的至少一种交联剂:基于异氰酸酯的化合物、基于氮丙啶的化合物、基于环氧的化合物和基于金属螯合物的化合物。

基于100重量份的多官能(甲基)丙烯酸酯化合物,交联剂可以以2重量份至40重量份,优选2重量份至20重量份的量包含在内。当交联剂的含量小于2重量份时,粘合剂的内聚力可能不足,当含量超过20重量份时,紫外线照射之前的粘合性可能不足。

粘合层还可以包含选自以下的至少一种增粘剂:松香树脂、萜烯树脂、酚树脂、苯乙烯树脂、脂族石油树脂、芳族石油树脂以及脂族和芳族共聚石油树脂。

对用于形成粘合层的粘合剂组合物进行涂覆和干燥的方法没有特别限制,例如,可以使用如下方法:其中将包含上述各组分的组合物原样使用或者用适当的有机溶剂稀释,通过已知工具例如逗号涂覆机、凹版涂覆机、模涂机或反向涂覆机涂覆,然后在60℃至200℃的温度下干燥溶剂10秒至30分钟。此外,在上述过程中,可以另外进行老化步骤以进行粘合剂的充分交联反应。

粘合层的厚度没有特别限制,但可以在例如5μm至300μm、或10μm至100μm的范围内。

另一方面,聚合物基底没有特别限制,并且聚合物基底的实例包括选自以下的至少一种聚合物树脂:聚氨酯、聚对苯二甲酸乙二醇酯、低密度聚乙烯、线性聚乙烯、中密度聚乙烯、高密度聚乙烯、超低密度聚乙烯、聚丙烯的无规共聚物、聚丙烯的嵌段共聚物、均聚丙烯、聚甲基戊烯、乙烯-乙酸乙烯酯共聚物、乙烯-甲基丙烯酸共聚物、乙烯-甲基丙烯酸甲酯共聚物、乙烯-离聚物共聚物、乙烯-乙烯醇共聚物、聚丁烯、和苯乙烯共聚物。

聚合物基底的厚度没有特别限制,例如,其可以在10μm至500μm的范围内。

另一方面,根据本发明的另一个实施方案,可以提供使用前述背面研磨带研磨晶片的方法。

研磨半导体晶片的步骤可以在背面研磨带粘附至半导体晶片的一个表面的状态下进行。在研磨步骤之后,可以用紫外线照射背面研磨带或使其经历热处理等以剥离带。

在研磨半导体晶片的步骤中,使用背面研磨带的方法没有特别限制,例如,在室温下将背面研磨带附接至半切电路(half-cut circuit)表面至50μm的厚度之后,可以将附接有研磨带的表面固定至真空台(vacuum table),从而可以研磨电路表面的背表面。然后,可以通过用UV A以500mJ/cm2或更大照射经研磨的晶片上的背面研磨带的方法来移除背面研磨带。

有益效果

根据本发明,可以提供背面研磨带和使用背面研磨带研磨晶片的方法,所述背面研磨带能够容易地应用于研磨具有薄厚度的晶片的过程,并且能够通过将粘合带的蠕变变形保持在低水平来防止诸如研磨之后的模具未对准的问题。

具体实施方式

将通过以下示出的实施例更详细地描述本发明。然而,提供这些实施例仅用于说明性目的,并且本发明的范围不旨在限于这些实施例或被这些实施例限制。

[制备例:(甲基)丙烯酸酯树脂的制备]

制备例1

将由27g丙烯酸2-乙基己酯(2-EHA)、48g丙烯酸甲酯(MA,玻璃化转变温度为86℃)和25g丙烯酸羟基乙酯(HEA)构成的单体混合物添加到配备有用以实现氮气的回流并且易于控制温度的冷却系统的反应器中。

然后,基于100重量份的单体混合物,向其中添加400ppm的作为链转移剂(CTA)的n-DDM和100重量份的作为溶剂的乙酸乙酯(EAc),在注入氮气以从反应器中除去氧的同时在30℃下彼此充分混合30分钟或更长时间。然后,将温度升至50℃并保持在50℃,向其中添加300ppm的作为反应引发剂的V-70[2,2'-偶氮双(4-甲氧基-2,4-二甲基戊腈)]以由此引发反应,随后聚合24小时以制备第一反应物质。

将24.6重量份的2-甲基丙烯酰氧基乙基异氰酸酯(MOI)(基于第一反应物质中的HEA为70mol%)和基于MOI的1重量%的催化剂(二月桂酸二丁基锡:DBTDL)混合在第一反应物质中,然后使其在40℃下反应24小时,由此将紫外固化基团引入第一反应物质中的聚合物的支链中。从而,制备了基于(甲基)丙烯酸酯的聚合物树脂(重均分子量:约900000g/mol)。

制备例2

以与制备例1中相同的方式制备基于(甲基)丙烯酸酯的聚合物树脂(重均分子量:约900000g/mol),不同之处在于添加由27g丙烯酸2-乙基己酯(2-EHA)和25g丙烯酸羟基乙酯(HEA)构成的单体混合物。

[实施例和比较例:背面研磨带的制备]

实施例1

将7g基于TDI的异氰酸酯固化剂和3g光引发剂(Irgacure 184)与100g制备例1的基于(甲基)丙烯酸酯的聚合物树脂混合以制备粘合剂组合物。将粘合剂组合物涂覆到厚度为38μm的经离型处理的PET上,在110℃下干燥3分钟以形成厚度为20μm的粘合层(玻璃化转变温度Tg-17℃)。

比较例1

将7g基于TDI的异氰酸酯固化剂和3g光引发剂(Irgacure 184)与100g制备例2的基于(甲基)丙烯酸酯的聚合物树脂混合以制备粘合剂组合物。将粘合剂组合物涂覆到厚度为38μm的经离型处理的PET上,在110℃下干燥3分钟以形成厚度为20μm的粘合层(玻璃化转变温度Tg-55℃)。

[实验例]

实验例1:蠕变变形的测量

通过在90℃下向实施例和比较例的粘合层施加20000Pa的力来测量蠕变变形。

更具体地,在将实施例和比较例的粘合层形成为1mm或更大的厚度之后,使用ARES-G2仪器(TA Instruments)测量它们。使用8mm不锈钢板,在90℃下施加20000Pa的力100秒以测量粘合层的蠕变变形。

实验例2:晶片的研磨测试

使用用实施例和比较例的粘合剂的各背面研磨带,将背面研磨带附接至其中进行半切(half cut)的半导体电路表面至50μm的厚度,使780μm晶片经历背表面研磨至50μm的厚度。通过用UV A以500mJ/cm2照射来移除背面研磨带,比较研磨前后的模具的对准。

[表1]

实施例1 比较例1
蠕变测量(%) 20 100
晶片的研磨测试 研磨前后,保持模具的对准 发生模具的未对准

如上表1中可以看出的,确定当在90℃下向实施例1的背面研磨带的粘合层施加20000Pa的力时,蠕变变形为20%并且研磨前后模具的对准没有变化。

另一方面,确定当在90℃下向比较例1的背面研磨带的粘合层施加20000Pa的力时,蠕变变形为100%并且发生从研磨之前到研磨之后的模具的未对准。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:包覆荧光体、其制造方法、以及荧光体片和发光装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!