基于微管吸收技术的大面源红外遥感辐射定标靶标

文档序号:1418887 发布日期:2020-03-13 浏览:8次 >En<

阅读说明:本技术 基于微管吸收技术的大面源红外遥感辐射定标靶标 (Large-area source infrared remote sensing radiometric calibration target based on micro-tube absorption technology ) 是由 李传荣 钱永刚 邱实 高同 钱晓波 马灵玲 王宁 李坤 刘耀开 陈志明 唐伶俐 于 2018-09-06 设计创作,主要内容包括:本发明提供一种基于微管吸收技术的大面源红外遥感辐射定标靶标,该定标靶标包括温控箱体和微管阵列吸收组件,温控箱体包括侧壁和连接至侧壁的底壁,微管阵列吸收组件在温控箱体内设置于侧壁和底壁上,微管阵列吸收组件为蜂窝状结构,在蜂窝状结构的内壁表面上涂覆漫反射涂层。本发明通过腔体吸收与表面吸收漫射理论相结合,并通过设置温控箱体,保证定标靶标腔体温度的稳定性、均匀性和可控性。(The invention provides a large-area-source infrared remote sensing radiation calibration target based on a micro-tube absorption technology, which comprises a temperature control box body and a micro-tube array absorption assembly, wherein the temperature control box body comprises a side wall and a bottom wall connected to the side wall, the micro-tube array absorption assembly is arranged on the side wall and the bottom wall in the temperature control box body, the micro-tube array absorption assembly is of a honeycomb structure, and a diffuse reflection coating is coated on the surface of the inner wall of the honeycomb structure. According to the invention, the cavity absorption and surface absorption diffusion theories are combined, and the stability, uniformity and controllability of the temperature of the calibration target cavity are ensured by arranging the temperature control box body.)

基于微管吸收技术的大面源红外遥感辐射定标靶标

技术领域

本发明涉及定标领域,尤其涉及一种用于红外遥感的定标靶标。

背景技术

通过卫星遥感技术获取地表信息是目前快速获取大范围乃至全球尺度地表信息的唯一方法。以业务化运行的方式提供精准可靠的定量化遥感信息产品,是国际对地观测领域发展的必然趋势。遥感信息提取的精准性关键取决于载荷定标的精准性及数据质量的稳定性和可靠性,在遥感载荷运行的过程中,当环境变化或者仪器老化时,其辐射性能会发生变化,因而,对遥感载荷进行外场替代定标,并有效的监测遥感载荷运行过程中性能动态变化、精确检测变化程度以及准确发现变化的原因并制定针对性的补救措施,成为保障遥感载荷数据获取质量的关键。

目前,热红外遥感载荷实验室定标通常采用高精度黑体辐射源,通过调节黑体的温度进行定标,但是实验室定标黑体孔径一般在50cm以内,难以满足外场定标的需求。热红外遥感载荷外场替代定标目前主要利用发射率接近1的大面积水体进行外场辐射定标。尽管水体表面温度变化的差异较小,但是由于水体仅能作为低温辐射源,难以精确描述温度动态范围内的响应变化,难以实现适应度高的载荷在轨定标。

发明内容

为了克服上述问题的至少一个方面,本发明实施例提供一种基于微管吸收腔技术的高发射率大面源辐射定标靶标,该靶标通过腔体吸收与表面吸收/漫射理论相结合,采用大型箱式半封闭温控箱内置分区不锈钢电热管保证靶标腔体温度的稳定性、均匀性和可控性。

根据本发明的一个方面,提供一种基于微管吸收技术的大面源红外遥感辐射定标靶标,该定标靶标包括:温控箱体,该温控箱体包括侧壁和连接至侧壁的底壁;以及微管阵列吸收组件,微管阵列吸收组件在温控箱体内设置于侧壁和底壁上,微管阵列吸收组件为蜂窝状结构,在蜂窝状结构的内壁表面上涂覆漫反射涂层。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,温控箱体的侧壁和底壁从外到内分别依次包括防护层、保温层、加热层和微管阵列吸收组件。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,在加热层中设置有电加热管,通过电加热管对侧壁和底壁进行加热。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,加热层包括铸铝层。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,微管阵列吸收组件包括微管腔阵列,微管腔阵列为正六边体结构。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,漫反射涂层为黑色。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,定标靶标还包括位于其出射口处的孔径光阑,用于限制定标靶标的出口有效面积。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,温控箱体包括相对地设置在侧壁上的两个防护门。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,防护门设置成侧壁的一部分,每个防护门通过铰链连接至侧壁。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,防护门上设置有开关装置,开关装置包括螺柱和圆盘摇把。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,温控箱体还包括温控系统,温控系统包括控温探头和测温探头,控温探头设置在加热层中,测温探头设置在微管阵列吸收组件中。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,将每个侧壁均分为上下两个温度控制区域,将底壁均分为四个温度控制区域,温控系统对每个温度控制区域采用单独的控制器控制。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,温控系统还包括数据显示与采集装置,数据显示与采集装置设置在侧壁之一上。

根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标的一些实施例,定标靶标还包括底座,温控箱体设置在底座上,底座能够移动;底座包括用于支撑温控箱体的多个支撑腿。

与现有技术相比,本发明至少具有如下优点之一:

(1)靶标温度可以调节,可以控制,并且可以自动采集;

(2)靶标辐射面远远大于实验室用黑体;

(3)靶标具有高发射率和均匀性。

附图说明

通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。

图1是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的立体示意图;

图2是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的侧壁或底壁的纵向剖切示意图;

图3是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的微管阵列吸收组件的立体示意图;

图4是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的从防护门一侧看的侧视图;

图5是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的测温探头和控温探头的位置示意图;

图6是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的底座的示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。

本发明实施例提供一种基于微管吸收技术的大面源红外遥感辐射高发射率大面源辐射定标靶标,该靶标通过腔体吸收与表面吸收/漫射理论相结合,采用大型箱式半封闭温控箱内置分区不锈钢电热管保证靶标腔体温度的稳定性、均匀性和可控性。

下面结合附图对本发明实施例作进一步的说明。

图1是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的立体示意图。如图1所示,基于微管吸收技术的大面源红外遥感辐射定标靶标100包括温控箱体1和设置在温控箱体1内的微管阵列吸收组件4,温控箱体1包括侧壁2和连接至侧壁2的底壁3。微管阵列吸收组件4在温控箱体1内设置于侧壁2和底壁3上,微管阵列吸收组件4为蜂窝状结构,在蜂窝状结构的内壁表面上涂覆漫反射涂层。根据优选的实施例,漫反射涂层为黑色。

从图中可以看出,本实施例的温控箱体1包括四个侧壁2和一个底壁3,上方开口,也即是温控箱体1处于半封闭的状态。在其他的实施例中,根据本发明的基于微管吸收技术的大面源红外遥感辐射定标靶标100的温控箱体1也可以为其他形状,比如圆柱体、正方体、正多面体等等。

图2是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的纵向剖视图;如图2所示,温控箱体1的侧壁2和底壁3从外到内分别依次包括防护层21、保温层22、加热层23和微管阵列吸收组件4。防护层21用于防止外部物体对温控箱体进行碰撞,保护箱体内的部件不受损坏,同时也可以减少内部物质朝向外部的辐射;保温层22用于减缓热量的散失;加热层23用于对整个箱体进行加热。例如,可以在加热层23中设置电加热管,通过电加热管对侧壁2和底壁3进行加热。

根据优选的实施例,加热层23包括铸铝层。可以在铸铝层内设置电加热管和热电偶,从而实现更好的加热效果。

微管阵列吸收组件4包括微管腔阵列41,微管腔阵列41为正六边体结构。图3是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的微管阵列吸收组件4的立体结构示意图。在本实施例中,为解决大面积黑体制作工艺难题并保障发射率和均匀性等技术问题,将腔体吸收与表面吸收/漫射理论相结合,将微管腔阵列41作为基本工作单元,腔体表面涂覆低反漫射消光材料,增强吸收和漫射特性,保障黑体的发射率和均匀性。同时,设置在侧壁2和底壁3上的多个微管腔阵列41组成半封闭复合腔体,进一步抑制了环境对靶标发射率和均匀性的影响。微管阵列吸收组件4由连续排列的正六边形立体结构的大面积蜂窝铝组成,微管截面为正六边形。在本实施例中,正六边形的内切圆半径R可以为3mm,管长L可以为25mm,管壁厚可以为0.06mm,当然在其他的实施例中,正六边形的尺寸可以不同,或者也可以采用其他截面形状的微管,比如三角形、四边形以及其他正多边形等。微管阵列吸收组件4表面进行氧化发黑处理并喷涂黑色漫射涂层。可以采用铆钉将微管阵列吸收组件4固定于腔体内部的侧壁2和底壁3,当然也可以采用本领域普通技术人员能够想到的其他固定方式。

腔体发射率可以通过下式计算:假设腔内反射率为ρc、腔壁反射率为ρ0、腔体内径为R、腔体深度为L,则根据腔体吸收理论和基尔霍夫定律,腔内发射率ε为:

ε=1-ρc=1-ρ0/[(1-ρ0)·(1+(L/R)2)]

若ρ0=0.1,L/R=8.5,则目标理论发射率ε大于0.99。因此,当微管阵列吸收组件4表面喷涂发射率大于0.9的黑色漫射涂层时,腔体发射率将大于0.99。本实施例中采用具有高发射率、低漫反射的消光涂层材料Pyromark1200,其发射率在8~14微米谱段范围内高于0.9,并且具有长时间防止金属表面生锈、抗氧化、抗腐蚀性特点。微管阵列吸收组件4和黑色漫射涂层从结构消光和表面消光两个方面保障了黑体源具有良好的朗伯性和均匀性。

定标靶标还包括位于其出射口处的孔径光阑,用于限制定标靶标的出口有效面积。本实施例中,孔径光阑位于靶标腔体上方出射口,孔径光阑尺寸可定制,用于限制靶标出口有效面积,可最大限度地保障靶标腔体发射率和温度的均匀性。

温控箱体1包括相对地设置在侧壁2上的两个防护门5,当然,也可以设置1个防护门。

图4是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的防护门5的外部示意图。如图4所示,防护门5包括外框51、铰链52和开关装置53。防护门5设置成侧壁2的一部分,每个防护门5通过铰链52连接至侧壁2。防护门5上设置有开关装置53,开关装置53包括螺柱和圆盘摇把,可以通过旋转圆盘摇把而使螺柱与侧壁2上的相关部件结合或分离,从而使防护门5与侧壁2密封配合或分离。在本实施例中,有前后两扇防护门5,即在相对的侧壁2上分别设置防护门5,每扇防护门5均由三个高强度铰链52固定,配备上下两个螺柱及圆盘摇把来实现防护门5的开关。防护门5打开或者关闭前,需要先调节定标靶标的底部支撑使得整体上处于水平状态,然后旋转圆盘摇把将其打开或关闭。防护门5位于温控箱体两侧,便于靶标的维护。

图5是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的测温探头和控温探头的位置示意图。温控箱体1还包括温控系统,温控系统包括控温探头61和测温探头62。如图5所示,控温探头61设置在加热层23中,测温探头62设置在微管阵列吸收组件4中。

本实施例中,温度控制通过大型箱式温度控制装置实现,采用大型箱式半封闭腔体,内置分区加热元件配合温度实时反馈和PID(Proportion IntegrationDifferentiation,比例-积分-微分控制器)持续对底壁3和侧壁2进行温度控制,保证整体温度的稳定性、均匀性和可控性。测温探头62和控温探头61均采用pt100热电阻温度传感器,pt100热电阻温度传感器的测量精度高达0.1K,适用于-200℃~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。控温探头是用来监测加热层23的温度,从而控制加热层23的温度,其位置穿过保温层22,到达加热层23的中间位置,与加热层23四壁接触。测温探头62是测温仪所使用的检测探头,其位置穿过保温层22和加热层23,停留在了微管阵列吸收组件4的孔中,贴合微管阵列吸收组件4的四壁,测量的是微管阵列吸收组件4中间部分的温度。

为了使温控箱体1的底壁3和侧壁2的加热层23的温度可控,可以将底壁3和侧壁2均分为多个大区域,并在加热层23内置电加热管进行分区加热,保持舱内温度均匀与稳定。在本实施例中,将每个侧壁2均分为上下两个温度控制区域,将底壁3均分为四个温度控制区域,温控系统对每个温度控制区域采用单独的控制器控制。

温控系统还包括数据显示与采集装置63,数据显示与采集装置设置在侧壁之一上。在本实施例中,数据显示与采集装置63包括高精度智能数显温度控制仪表和温度记录仪。高精度智能数显温度控制仪表主要用于控制底壁3和侧壁2的加热层23内部温度及控温探头61的数据的显示;温度记录仪包括存储SD卡,主要用于显示和记录位于微管阵列吸收组件4内部的测温探头62的测量数据。

定标靶标还包括底座8,温控箱体设置在底座8上,底座8能够移动;底座8包括用于支撑温控箱体1的多个支撑腿81。图6是根据本发明实施例的基于微管吸收技术的大面源红外遥感辐射定标靶标的底座8的示意图。在实际运用中,由于靶标重量高达数吨,为便于靶标移动使用,可以设置底座8,将靶标放置于底座8上,可以采用拖车或多人手动方式实现靶标移动。底座8具备前悬回转支撑转向、后悬定向功能。底座8配备有多条手摇式支撑腿81,例如可以是4条,支撑腿81平时收缩在底座8上,可以通过人工摇动将支撑腿81撑起,从而用于静止状态时靶标的长期放置。在其他的实施例中,支撑腿81也可以通过红外线等方式遥控撑起。

本发明能够实现在外场试验条件下,对定标靶标的温度自动采集以及对温度的控制,解决了传统热红外载荷外场替代定标仅有低温端点的问题;本发明能够实现外场试验条件下地面、塔吊、机载等中低空平台下高分辨率热红外遥感载荷外场替代定标,靶标辐射面最高可达1.7m×1.7m,面源尺寸远大于实验室用黑体;本发明通过采用大型箱式半封闭腔体,内置分区不锈钢电热管均匀埋设在整块铝块内,靶标腔体底部和四周设有多路测温元件,采用高精度仪表监控和调节整块电加热铝块温度,保证靶标腔体温度的稳定性、均匀性和实时温变能力;本发明通过腔体吸收与表面吸收/漫射理论相结合,采取微管腔阵列为基本单元、腔体表面涂覆黑色消光材料;微管腔阵列与靶标腔体底部及四周的铝块嵌套于一体,保障靶标腔体的高发射率和均匀性。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种便于更换的高炉用热电偶测温装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!