一种超大尺寸铌酸锂晶体的生长装置和方法

文档序号:149808 发布日期:2021-10-26 浏览:59次 >En<

阅读说明:本技术 一种超大尺寸铌酸锂晶体的生长装置和方法 (Device and method for growing oversized lithium niobate crystal ) 是由 孙德辉 王蒙 韩文斌 刘宏 于 2021-07-14 设计创作,主要内容包括:本发明公开了一种超大尺寸铌酸锂晶体的生长装置和方法,包括铂金坩埚和位于生长装置内的可以旋转升降的籽晶杆;所述铂金坩埚外包覆保温层;所述保温层上缠绕加热线圈;所述籽晶杆穿过保温层并深入铂金坩埚中;所述铂金坩埚的上方设有上窄下宽的水冷罩,所述水冷罩的内部中空;所述水冷罩底端的宽度大于或等于铌酸锂晶体的直径;所述籽晶杆贯穿水冷罩的正中央;所述水冷罩上分别设有进水管和出水管,所述进水管和出水管分别贯穿保温层与外部连通;所述水冷罩上设有控制水冷罩上下移动的升降杆,所述升降杆贯穿保温层。本发明能够解决溶体对流缓慢,晶体生长界面处温度梯度小等问题,适合8~12英寸晶圆的制备。(The invention discloses a device and a method for growing a lithium niobate crystal with an oversized size, which comprise a platinum crucible and a seed rod which is positioned in the growing device and can rotate and lift; the platinum crucible is coated with a heat insulation layer; a heating coil is wound on the heat-insulating layer; the seed crystal rod penetrates through the heat-insulating layer and goes deep into the platinum crucible; a water cooling cover with a narrow upper part and a wide lower part is arranged above the platinum crucible, and the inside of the water cooling cover is hollow; the width of the bottom end of the water cooling cover is larger than or equal to the diameter of the lithium niobate crystal; the seed crystal rod penetrates through the center of the water cooling cover; the water cooling cover is provided with a water inlet pipe and a water outlet pipe respectively, and the water inlet pipe and the water outlet pipe penetrate through the heat insulation layer and are communicated with the outside; the water cooling cover is provided with a lifting rod for controlling the water cooling cover to move up and down, and the lifting rod penetrates through the heat insulation layer. The method can solve the problems of slow solution convection, small temperature gradient at a crystal growth interface and the like, and is suitable for preparing 8-12 inch wafers.)

一种超大尺寸铌酸锂晶体的生长装置和方法

技术领域

本发明涉及铌酸锂晶体制备技术领域,具体涉及一种超大尺寸铌酸锂晶体的生长装置和方法。

背景技术

铌酸锂晶体具有非线性效应、电光效应、声光效应、光折变效应、压电效应与热释电效应等多种物理特性,在声表器件、光电器件、声光器件等方面获得广泛的应用。经历了六七十年的发展,铌酸锂晶体历久弥新,随着材料特性的不断开发,新功能、新器件、新应用层出不穷,尤其是近年来铌酸锂单晶薄膜的问世,在薄膜滤波器、集成电光调制光电器件等领域的性能表现具有明显优势,被称为新一代信息技术的关键材料。

基于铌酸锂单晶薄膜的新型光调制器、薄膜滤波器,以及光集成和光电集成器件,将是下一代通信技术的关键器件,将大规模应用于5G通讯系统中,也成了国际通信技术研究和开发的重点。科学界已经提出即将进入“铌酸锂谷”的时代,集成光电子器件必然是未来光电子信息器件的发展趋势,全球有万亿级市场。铌酸锂薄膜是从铌酸锂晶圆上剥离,依赖于铌酸锂晶圆与硅基半导体键合技术;另一方面集成光路微结构加工依赖于CMOS工艺技术。而目前半导体主流产线设计为8-12英寸晶圆,所以符合目前半导体产线的8-12英寸铌酸锂晶体是目前集成光电子器件大规模量产最亟需的基础材料。

目前市场上的铌酸锂晶体以4-6英寸为主,8英寸铌酸锂晶体生长技术仍然不成熟。由于生长8英寸铌酸锂晶体所需要的坩埚直径超过300mm,且铌酸锂多晶料熔体粘度很大,坩埚中熔体对流缓慢,在晶体生长初期(缩颈、放肩)的生长界面处温度梯度很小,放肩难度大;并且在放肩末期晶体尺寸达到8英寸,此时大部分熔体表面被晶体盖住,降低了热量挥发速度,此时生长界面凹,容易出现放肩过度晶体出现大头现象,严重者晶体失重,生长中断。所以需要一种适合超大尺寸铌酸锂晶体的生长装置和方法,能够解决溶体对流缓慢,晶体生长界面处温度梯度小等问题,适合8~12英寸晶圆的制备。

发明内容

针对上述现有技术,本发明的目的是提供一种超大尺寸铌酸锂晶体的生长装置和方法。本发明的装置能够解决溶体对流缓慢,晶体生长界面处温度梯度小等问题,适合8~12英寸超大尺寸晶圆的制备,克服了生长界面凹、放肩过度晶体出现大头现象和晶体失重、生长中断等问题。

为实现上述目的,本发明采用如下技术方案:

本发明的第一方面,提供一种超大尺寸铌酸锂晶体的生长装置;包括铂金坩埚和位于生长装置内可以旋转升降的籽晶杆;所述铂金坩埚外包覆保温层;所述保温层上缠绕加热线圈;所述籽晶杆穿过保温层并深入铂金坩埚中熔体上方;所述铂金坩埚的上方设有上窄下宽的锥形水冷罩,所述水冷罩的内部中空;所述水冷罩底端的宽度大于或等于铌酸锂晶体的直径;所述籽晶杆贯穿水冷罩的正中心;所述水冷罩上分别设有进水管和出水管,所述进水管和出水管分别贯穿保温层与外部连通;所述水冷罩上还设有控制水冷罩上下移动的升降杆,所述升降杆贯穿保温层。

优选的,所述保温层包括两层高铝保温棉或刚玉。

由于生长装置内温度较高,进水管和出水管可选择耐高温金属软管,例如内衬四氟不锈钢软管。

优选的,所述保温层的底部开设加热孔,所述加热孔位于保温层底部的正中央;所述加热孔的下方设有加热器。

优选的,所述保温层的下方还设有透光底座,所述加热器位于透光底座的下方;所述加热器为激光器。

优选的,所述透光底座为石英底座。

优选的,所述加热孔的面积占坩埚底面积的20~30%。

优选的,所述水冷罩的底端距水平面的距离高于籽晶杆底端距水平面的距离10-20mm。

优选的,所述水冷罩包括顶盖和底罩;顶盖在水平方向上的横截面为圆环形;所述顶盖与底罩连接处形成的夹角为120~150°;

优选的,所述进水管位于底罩的底部,所述出水管位于顶盖上;所述升降杆分别位于顶盖的两端。

本发明的第二方面,提供上述生长装置在制备超大尺寸铌酸锂晶体中的应用。

本发明的第三方面,提供上述生长装置制备超大尺寸铌酸锂晶体的方法,包括以下步骤:

(1)将铌酸锂多晶料加入铂金坩埚中,启动中频电源,将电源功率升到8-15kW,铂金坩埚感应发热将多晶料熔化,熔体温度稳定后,旋转的籽晶杆与水冷罩以同速率下降,下降速率3-10mm/min,直到铌酸锂籽晶与熔体接触;水冷罩底端水平面高于熔体液面10-20mm;

(2)籽晶与熔体接触得生长界面稳定后,开始向上提拉籽晶杆,水冷罩跟随籽晶杆以同速率向上提拉,提拉速率2-4mm/h,同时控制水冷罩内循环水的温度400-600℃,打开激光器对铂金坩埚的底部进行加热;晶体通过放肩、等径和收尾,完成晶体生长。

本发明的有益效果:

(1)本发明的装置可以增加熔体向上的散热量,可以解决大坩埚生长晶体的初期放肩困难的普适应问题;还可以增加放肩阶段晶体向上的散热量,改善放肩阶段生长界面偏凹的难题,使生长界面趋于平整,改善等径外形的大头现象

(2)本发明的装置可以解决大直径坩埚生长大尺寸晶体过程中生长界面凸底的问题,作为热源的坩埚壁距离坩埚中心较远导致中心区域温度过冷,尤其对于铌酸锂熔体粘度较大,熔体对流较弱,热传导慢,在晶体生长过程中极易出现生长界面凸底严重的现象,严重者导致生长中断。

附图说明

图1为本发明第一种实施方式的结构示意图;

图2为本发明第二种实施方式的结构示意图;

图3为水冷罩的结构示意图;

其中:1.铂金坩埚,2.籽晶杆,3.保温层,4.加热线圈,5.水冷罩,6.进水管,7.出水管,8.升降杆,9.透光底座,10.加热器,11.顶盖,12.底罩,13.加热孔。

图4为实施例制备的8英寸铌酸锂晶体的照片。

具体实施方式

应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

正如背景技术部分介绍的,生长8英寸铌酸锂晶体所需要的坩埚直径超过300mm,且铌酸锂多晶料熔体粘度很大,坩埚中熔体对流缓慢,在晶体生长初期(缩颈、放肩)的生长界面处温度梯度很小,放肩难度大;并且在放肩末期晶体尺寸达到8英寸,此时大部分熔体表面被晶体盖住,降低了热量挥发速度,此时生长界面凹,容易出现放肩过度晶体出现大头现象,严重者晶体失重,生长中断。

基于此,本发明的目的是提供一种超大尺寸铌酸锂晶体的生长装置。如图1所示,本发明的第一种实施方式,一种超大尺寸铌酸锂晶体的生长装置,包括铂金坩埚1和位于生长装置内可以旋转升降的籽晶杆2;所述铂金坩埚1外包覆保温层3,所述保温层3上缠绕加热线圈4;所述籽晶杆2穿过保温层3并深入铂金坩埚1中;所述铂金坩埚1的上方设有上窄下宽的水冷罩5,所述水冷罩5的内部中空;所述水冷罩5底端的宽度大于或等于铌酸锂晶体的直径;所述籽晶杆2贯穿水冷罩5的正中央;所述水冷罩5上分别设有进水管6和出水管7,所述进水管6和出水管7还分别贯穿保温层3与外部连通;所述水冷罩5上还设有若干控制水冷罩5上下移动的升降杆8,所述升降杆8贯穿保温层3。

如图2所示,本发明的第二种实施方式,在第一种实施方式的基础上,所述保温层3包括两层高铝保温棉或刚玉。所述保温层3的底部开设加热孔13,所述加热孔13位于保温层3底部的正中央;所述加热孔13的下方设有加热器10。所述保温层3的下方还设有透光底座9,所述加热器10位于透光底座9的下方;所述加热器10为激光器。所述透光底座9为石英底座。所述加热孔13的面积占坩埚底面积的20~30%。所述水冷罩5的底端距水平面的距离高于籽晶杆2底端距水平面的距离10-20mm。所述水冷罩5包括顶盖11和底罩12;顶盖11在水平方向上的横截面为圆环形,顶盖11的直径为5-10mm;所述顶盖11与底罩12连接处形成的夹角为120~150°;所述进水管6位于底罩12的底部,所述出水管7位于顶盖11上;所述升降杆8分别位于顶盖11的两端。

为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。

本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。

实施例

制备8英寸铌酸锂晶体:

(1)首先将铌酸锂生长原料5N级碳酸锂以及5N五氧化二铌,按锂铌摩尔比48.38/51.62进行配料;将配好的铌酸锂原料放入混料机进行混料,混料时间为24h;将混好的料进行压块处理后放入马弗炉中1200℃烧结,烧结时间为14h;将铌酸锂多晶料加入直径为450mm的铂金坩埚中,启动中频电源,铂金坩埚感应发热将铌酸锂多晶料熔化,温度稳定后,旋转的籽晶杆与水冷罩以同速率下降,速率10mm/min,直到籽晶杆底部的铌酸锂籽晶与熔体接触;水冷罩底端水平面高于熔体液面10mm。

(2)籽晶与熔体接触得生长界面稳定后,开始向上提拉籽晶杆,水冷罩跟随籽晶杆以同速率向上提拉,提拉速率3mm/h,同时控制水冷罩内循环水的温度在40~60℃,打开激光器对铂金坩埚的底部进行加热;晶体通过放肩、等径和收尾,完成晶体生长,得到的晶体见图4。

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种生长高纯碳化硅单晶的方法及装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!