Organic porous material containing bimetallic nanoparticles and preparation method and application thereof

文档序号:1553222 发布日期:2020-01-21 浏览:9次 中文

阅读说明:本技术 含有双金属纳米粒子有机多孔材料及其制备方法和应用 (Organic porous material containing bimetallic nanoparticles and preparation method and application thereof ) 是由 陈琦 董安旺 邱璐 袁益辉 王宁 于 2019-09-16 设计创作,主要内容包括:本发明提供一种含有双金属纳米粒子有机多孔材料及其制备方法和应用,首先制备得到含有单齿、双齿、多齿配体的有机多孔材料,然后通过配位反应将两种金属化物螯合在有机多孔材料的骨架上,最后通过还原反应制备得到含有双金属纳米粒子的有机多孔材料。本发明制备得到的多孔材料可用于气体吸附、非均相催化、药物载体等领域。(The invention provides an organic porous material containing bimetallic nanoparticles, a preparation method and application thereof. The porous material prepared by the method can be used in the fields of gas adsorption, heterogeneous catalysis, drug carriers and the like.)

1. The preparation method of the organic porous material containing the bimetallic nanoparticles is characterized by comprising the following steps:

(1) preparing an organic porous material containing monodentate, bidentate and polydentate ligands;

(2) chelating two metalates on the framework of the organic porous material through coordination reaction;

(3) the organic porous material containing the bimetallic nanoparticles is prepared through reduction reaction.

2. The method for preparing the organic porous material containing the bimetallic nanoparticles as recited in claim 1, wherein the method for preparing the organic porous material in the step (1) is a Sonogashira coupling reaction.

3. The method for preparing an organic porous material containing bimetallic nanoparticles as claimed in claim 2, characterized in that the catalyst used for preparing the organic porous material is Pd (PPh)3)2Cl2、Pd(PPh3)4,Pd(dppf)Cl2、Pd(OAc)2、PdCl2、Pd(MeCN)2Cl2、Pd(PPh3)4、Pd(TFA)2One or more of them.

4. The method for preparing the organic porous material containing the bimetallic nanoparticles as recited in claim 2, wherein the solvent used for preparing the organic porous material is a co-solvent of N, N-dimethylformamide, triethylamine, tetrahydrofuran, acetonitrile, ethylenediamine, triethanolamine, or an organic base solvent.

5. The method for preparing the organic porous material containing the bimetallic nanoparticles as recited in claim 2, wherein the ligand used for preparing the organic porous material comprises one of pyridine, bipyridine and phenanthroline, or a ligand containing one, two or more N atoms in the derivatives thereof.

6. The method for preparing the organic porous material containing the bimetallic nanoparticles as recited in claim 1, wherein the reducing agent used in the reduction reaction in the step (3) is one of sodium borohydride, hydrogen sulfide, potassium iodide, a metal simple substance and carbon monoxide.

7. The method for preparing the organic porous material containing the bimetallic nanoparticles as claimed in claim 1, wherein the bimetallic nanoparticles in step (3) comprise any two of gold, palladium, platinum, copper and iron in combination.

8. The organic porous material containing bimetallic nanoparticles is characterized by being obtained by the preparation method of any one of claims 1 to 7.

9. The organic porous material containing bimetallic nanoparticles as claimed in claim 7, wherein the pore size of the organic porous material containing bimetallic nanoparticles is mainly distributed between 0.5-500.0nm, the bimetallic particle size distribution is mainly between 0.1nm-500nm, and the BET specific surface area is 10-10000cm2g-1

10. Use of an organic porous material containing bimetallic nanoparticles, characterized in that the material according to claim 8 or 9 is used for the detection of compounds with electron-withdrawing properties, also for catalysis, gas storage, molecular separation, support for clean energy, chemical or biological sensors, heterogeneous catalysis.

Technical Field

The invention belongs to the technical field of porous materials, and particularly relates to an organic porous material containing bimetallic nanoparticles, and a preparation method and application thereof.

Background

In recent years, the synthesis of organic porous materials has been rapidly developed, and the organic porous materials have many advantages compared with the traditional porous materials such as zeolite, silica and activated carbon. The organic porous material generally consists of light elements, and has the advantages of abundant and various structural monomers, good thermodynamic and chemical stability, strong selectivity of a polymerization method, excellent porosity, adjustable pore diameter and the like. At present, a plurality of organic porous materials obtained by noble metal catalysis, such as covalent organic frameworks, conjugated microporous polymers and porous aromatic frameworks, exist. In addition, organic porous materials obtained by catalyzing cheap ferric trichloride have many reports, such as normal-temperature normal-pressure preparation of polycarbazole and rapid preparation of hypercrosslinked porous materials. The organic porous material has been well applied in the fields of gas adsorption separation, heterogeneous catalysis, energy storage and conversion and the like by virtue of the advantages and simple pre-synthesis modification or post-synthesis functional modification guided by functions.

Disclosure of Invention

The invention provides a bimetal nanoparticle-containing organic porous material, and a preparation method and application thereof.

The specific technical scheme is as follows:

the preparation method of the organic porous material containing the bimetallic nanoparticles comprises the following steps:

(1) preparing an organic porous material containing monodentate, bidentate and polydentate ligands;

(2) chelating two metalates on the framework of the organic porous material through coordination reaction;

(3) the organic porous material containing the bimetallic nanoparticles is prepared through reduction reaction.

Further, the preparation method of the organic porous material in the step (1) is Sonogashira coupling reaction.

The catalyst used for preparing the organic porous material is Pd (PPh)3)2Cl2、Pd(PPh3)4,Pd(dppf)Cl2、Pd(OAc)2、 PdCl2、Pd(MeCN)2Cl2、Pd(PPh3)4、Pd(TFA)2One or more of them.

The solvent used for preparing the organic porous material is a cosolvent of N, N-dimethylformamide, triethylamine, tetrahydrofuran, acetonitrile, ethylenediamine and triethanolamine or an organic base solvent.

The ligand used for preparing the organic porous material comprises one of pyridine, bipyridine and phenanthroline, or a ligand containing one, two or more N atoms in derivatives of the pyridine, the bipyridine and the phenanthroline.

Further, the reducing agent used in the reduction reaction in the step (3) is one of sodium borohydride, hydrogen sulfide, potassium iodide, a metal simple substance and carbon monoxide.

The bimetallic nano-particles in the step (3) comprise any two of gold, palladium, platinum, copper and iron.

The pore diameter of the organic porous material containing the bimetallic nanoparticles is mainly distributed between 0.5 and 500.0nm, the particle size distribution of the bimetallic nanoparticles is mainly between 0.1 and 500nm, and the BET specific surface area is 10 to 10000cm2g-1

The pore size of the porous material obtained by the preparation method is in a nanometer scale, and the pore structure is constructed by covalent bond connection, so that the pore structure is relatively stable.

The porous material obtained by the preparation method has a large pi conjugated system and abundant electrons, so that the porous material has a wide application prospect in detecting compounds with electron-withdrawing properties such as carbon dioxide, sulfur dioxide, nitrogen dioxide, hydrogen and the like.

The microporous material obtained by the preparation method has a certain BET specific surface area, and can be used for catalysis, gas storage, molecular separation, carriers of clean energy, chemical or biological sensors, heterogeneous catalysis and the like.

The microporous material obtained by the preparation method of the invention can be used in the field of heterogeneous catalysis by virtue of the bimetallic nanoparticles, in particular to high value-added conversion of greenhouse gases such as carbon dioxide and methane.

Drawings

Fig. 1 is a nitrogen sorption-desorption isotherm plot of CPL of an example;

fig. 2 is an aperture profile of a CPL of an embodiment;

FIG. 3 is a high resolution TEM image of CPL-AuPd of the example.

Detailed Description

The specific embodiments of the present invention will be described with reference to examples.

A preparation method of an organic porous material loaded with bimetallic nanoparticles comprises the following steps: through Sonogashira coupling reaction, in an inert atmosphere, using a palladium catalyst to ensure that organic molecular building blocks dissolved or dispersed in an organic solvent are fully contacted and coupled; the organic molecular building block is an aromatic halide and a monomer containing terminal alkyne.

In the preparation method of the invention, the molar ratio of the organic molecular building block to the palladium catalyst can be selected widely, and can be generally 0.01-100.

In the preparation method of the present invention, the kind and amount of the organic solvent are not particularly limited as long as the organic solvent can dissolve the building blocks and linker molecules of the organic molecules in the present invention and the amount thereof is used, but the organic solvent is preferably N, N-dimethylformamide and triethylamine, and the amount of the organic solvent is preferably 0.04 to 0.05mL per 1mg of the building blocks of the organic molecules.

The oxidation reaction conditions include a usable temperature range from room temperature to 600 ℃ and a time of 1-72 h.

In the production method of the present invention, a palladium-containing catalyst can be generally used. In the preparation method of the invention, the inert atmosphere can be argon or nitrogen.

In the preparation method, the porous material is obtained by connecting the aryl halide and the carbon on the terminal alkyne through a carbon-carbon bond, and the loaded metal nano-particles are generally obtained by reduction reaction.

The pore size of the organic porous material containing the bimetallic nanoparticles is mainly distributed in the micropore and mesopore ranges, and the BET specific surface area is 100-500cm2g-1

The invention is further illustrated by the following examples and the associated drawings.

Specifically, the preparation of the organic porous material CPL-AuPd containing the bimetallic nanoparticles comprises the following steps:

as shown in formula 1, 338mg of 3, 8-dibromophenanthroline (1.01mmol) and 100mg of 1,3, 5-triacetylbenzene (0.67mmol), 20mg of CuI (0.105mmol) are added into a round-bottomed flask under the protection of argon, 15ml of anhydrous DMF and 8ml of triethylamine are added, and after three cycles of freezing with ethanol and liquid nitrogen, vacuumizing and argon filling, 60mg of catalyst Pd (PPh) is added3)4And continuing the operation of liquid nitrogen freezing, vacuumizing and argon filling once, then raising the temperature to 120 ℃, and continuously stirring for reacting for 48 hours.

After the reaction is finished, filtering the solid, and washing a filter cake by using dichloromethane, tetrahydrofuran, water, dilute hydrochloric acid and methanol in sequence. The solid obtained was then subjected to soxhlet extraction with tetrahydrofuran, methanol solvent. After drying, approximately 360mg of CPL were obtained as a pale yellow solid.

The reaction formula is as follows:

Figure BDA0002203183240000031

as shown in formula 2, 50mg of CPL (0.12mmol), 60mg of tetrachloroaurate trihydrate (0.15mmol) and 27mg of palladium chloride (0.15mmol) are weighed, added into a round-bottom flask, added with 15ml of methanol, heated to 80 ℃ and stirred to react for 12 hours. And after the reaction is finished, filtering the solid, washing a filter cake with methanol, drying, and then reducing with hydrogen to obtain the solid CPL-AuPd containing the Au-Pd nanoparticles.

Figure RE-GDA0002305392710000032

In addition, other organic porous materials of the same type can be obtained through the design and regulation of the structural monomer. As shown in formula 3, the halogen-containing building block may be a unit containing a monodentate, bidentate or polydentate ligand. As shown in formula 4, the alkyne building block can be a block containing three or four alkyne groups.

Figure BDA0002203183240000041

In addition, other composite materials of the bimetallic nanoparticles and the organic porous material can be obtained by changing the types of the metalates. As shown in formula 5, the bimetallic nanoparticles can be a combination of any two of Au, Pd, Pt, Cu and Fe.

Figure BDA0002203183240000051

Solid CPL nitrogen sorption and desorption performance was tested at 77k using a fully automated specific surface area and porosity analyzer (Micromeritics ASAP 2020M + C), as shown in fig. 1. From the adsorption data, the specific surface area of CPL was 281m as calculated by the BET method2g-1The pore size of CPL calculated by the theory of non-localized density functional is mainly distributed in 1.0-4.0nm, as shown in FIG. 2. The CPL-AuPd nanoparticles can be observed by a high-resolution projection electron microscope, as shown in FIG. 3.

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种聚合物、其制备方法及作为检测细菌及抗菌材料的应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!