一种非晶GeH的高压制备方法

文档序号:1585400 发布日期:2020-02-04 浏览:30次 >En<

阅读说明:本技术 一种非晶GeH的高压制备方法 (High-pressure preparation method of amorphous GeH ) 是由 李全军 荆晓玲 赵海洋 杜轶 刘冰冰 于 2019-12-02 设计创作,主要内容包括:本发明提供了一种非晶GeH的制备方法,属于非晶GeH制备技术领域。本发明提供的制备方法,包括以下步骤:将晶体GeH、压力标定物和传压介质密封在金刚石对顶砧压机的腔体内,调节腔体内的压力,得到非晶GeH。本发明在密封的金刚石对顶砧压机中,对GeH施加压力,使GeH的非晶化过程在室温条件下能够实现,且在制备过程中不易引入杂质,能够获得纯净的非晶态GeH。且本发明提供的方法操作简单,重复性好。(The invention provides a preparation method of amorphous GeH, belonging to the technical field of amorphous GeH preparation. The preparation method provided by the invention comprises the following steps: and sealing the crystal GeH, the pressure calibration material and the pressure transmission medium in a cavity of the diamond anvil cell pressing machine, and adjusting the pressure in the cavity to obtain the amorphous GeH. In the invention, pressure is applied to GeH in a sealed diamond anvil cell press, so that the GeH non-crystallization process can be realized at room temperature, impurities are not easy to introduce in the preparation process, and pure amorphous GeH can be obtained. The method provided by the invention is simple to operate and good in repeatability.)

一种非晶GeH的高压制备方法

技术领域

本发明属于非晶GeH制备技术领域,尤其涉及一种非晶GeH的高压制备方法。

背景技术

目前,各种电子器件大都以单晶半导体,特别是以单晶硅作为基片。但是单晶硅有两个明显的缺点:一是其从生长到晶片的切、磨、抛光直到成为器件的制作工艺相当复杂,损耗较大;二是硅晶片的直径小,制成大面积器件有困难,而非晶半导体刚好能够解决上述问题。

目前,研究最多的非晶态半导体分为两类:一类是硫属非晶态半导体;另一类是IV族元素半导体,比如非晶硅。非晶硅太阳能电池是目前非晶硅应用最广泛的领域,与晶态硅太阳能电池相比,非晶硅太阳能电池原材料损耗少,工艺相对简单,价格相对便宜,且非晶GeH作为太阳能电池材料时,能够有效的提高太阳能电池的转化效率。

传统合成非晶GeH的方法通常是在氩气中,75~175℃的范围内对GeH加热4h以上,进行非晶化处理,自然降温至室温得到非晶GeH样品。但该方法耗时长,成本高,既不节能又不环保,且非晶GeH在制备过程中容易因氩气不纯而引入杂质。

发明内容

鉴于此,本发明的目的在于提供一种非晶GeH的制备方法,本发明提供的制备方法耗时短,可在室温下实现GeH的非晶化,且非晶GeH在制备过程中不易引入杂质。

为了实现上述目的,本发明提供了如下的技术方案:

本发明提供了一种非晶GeH的高压制备方法,包括以下步骤:

将晶体GeH、压力标定物和传压介质密封在金刚石对顶砧压机的腔体内,调节腔体内的压力,得到非晶GeH。

优选地,所述调节腔体内的压力通过调节金刚石对顶砧压机的加压螺丝实现。

优选地,所述加压螺丝的加压速率为0.2~0.5GPa/min。

优选地,所述压力为0.5~40GPa。

优选地,所述金刚石对顶砧压机的金刚石的砧面直径为300~400μm。

优选地,所述金刚石对顶砧压机的腔体的直径为130~150μm,高度为40~60μm。

优选地,所述金刚石对顶砧压机的垫片为T301钢片。

优选地,还包括对GeH的X射线衍射以及GeH的非晶化过程的原位检测。

本发明提供了一种非晶GeH的高压制备方法,包括以下步骤:将晶体GeH、压力标定物和传压介质密封在金刚石对顶砧压机的腔体内,调节腔体内的压力,得到非晶GeH。本发明在密封的金刚石对顶砧压机中,对晶体GeH施加压力,使晶体GeH的非晶化过程在室温条件下能够实现,制备周期短,且制得的非晶GeH不易引入杂质,能够获得纯净的非晶态GeH,能够有效地解决现有技术存在的问题。且本发明提供的方法操作简单,重复性好。

附图说明

图1为GeH样品在不同压力下的X射线衍射图谱;

图2为实施例1制得的非晶化GeH在卸压过程中的X射线衍射图谱;

图3为实施例1制得的非晶化GeH的选区电子衍射图谱;

图4为实施例1制得的非晶化GeH的高分辨透射电子显微镜照片;

图5为实施例2制得的非晶化GeH的高分辨透射电子显微镜照片。

具体实施方式

本发明提供了一种非晶GeH的高压制备方法,包括以下步骤:

将晶体GeH、压力标定物和传压介质密封在金刚石对顶砧压机的腔体内,调节腔体内的压力,得到非晶GeH。在本发明中,所述压力标定物优选为红宝石,所述红宝石的粒径优选为10~20μm,用量优选为1~2颗,所述红宝石优选放置在腔体内的边缘处。在本发明中,所述晶体GeH的粒径优选为100~110μm,所述晶体GeH优选放置在腔体内的中心处。本发明对所述晶体GeH的用量没有特殊的限定,充满金刚石对顶砧压机的腔体即可。在本发明中,所述传压介质优选为硅油,所述硅油的用量优选为1滴。

在本发明中,所述金刚石对顶砧压机优选为对称式金刚石对顶砧装置(DiamondAnvil Cell,DAC)。在本发明中,所述金刚石对顶砧压机的金刚石的砧面直径优选为300~400μm;所述金刚石对顶砧压机的腔体的直径优选为130~150μm,高度优选为40~60μm,中心优选通过激光打孔完成;所述金刚石对顶砧压机的垫片优选为T301钢片。本发明采用T301钢片用作密封垫,可以在腔内装入原料时产生静水压,并对金刚石起到保护作用。本发明采用特定面积的金刚石的砧面能在腔体内产生较高的压力。本发明对所述金刚石对顶砧压机的操作没有特殊的限定,采用本领域技术人员熟知的操作方式即可。

在本发明中,所述调节腔体内的压力优选通过调节金刚石对顶砧压机的加压螺丝实现,所述加压螺丝的加压速率优选为0.2~0.5GPa/min,进一步优选为0.2~0.4GPa/min,更优选为0.2GPa/min。本发明采用特定的加压速率对金刚石对顶砧压机的腔体均匀、缓慢的施加压力,并以硅油作为传压介质,将施加的压力均匀地传递给晶体GeH,使晶体GeH的非晶化过程在室温条件下能够实现,且该过程是在密封条件下进行的,制得的非晶GeH不易引入杂质。

在本发明中,所述压力优选为0.5~40GPa,进一步优选为0.5~35GPa。本发明优选对金刚石对顶砧压机的腔体施加0.5~1GPa的初始压力后,通过旋转金刚石对顶砧压机的加压螺丝给压腔内均匀施压。本发明通过对金刚石对顶砧压机的腔体施加0.5~1GPa的初始压力,增大硅油的粘稠度,使其完全固化,并使晶体GeH、红宝石和硅油完全密封在金刚石对顶砧压机的腔体内。

本发明还包括对GeH的X射线衍射以及GeH的非晶化过程的原位检测。本发明通过原位检测GeH在非晶化过程中的X射线衍射图谱和红宝石随压力变化的荧光图谱,实现在线检测GeH的X射线衍射以及GeH的非晶化过程的目的。

下面结合实施例对本发明提供的非晶GeH的制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。

实施例1

首先在两个干净的金刚石砧面上放上一颗红宝石,红宝石的粒径为10μm,两个砧面分别由直径为400μm的金刚石组成,取大片晶体GeH样品放在直径为150μm,厚度为50μm的不锈钢片样品腔中,晶体GeH样品的粒径为100μm,将红宝石放在样品腔的边缘处,样品腔的中心处铺满样品。

装好样品和红宝石后,滴入一滴硅油作为传压介质,闭合金刚石对顶砧装置并将加压螺丝归位。调节加压螺丝找好初始位置,并缓慢旋转加压螺丝给予0.5GPa的初始压力,使晶体GeH样品、红宝石和硅油完全被封到压腔内,并使传压介质硅油固化,金刚石对顶砧压腔内的压力由红宝石标定。

以0.2GPa/min的加压速率对金刚石对顶砧压腔体内的样品施加压力,当金刚石对顶砧压机腔内的压力达到33.7GPa时,停止加压,卸压至常压后,得到非晶GeH样品。

本实施例通过原位检测金刚石对顶砧压机腔体内GeH样品的X射线衍射图谱和红宝石随压力变化的荧光图谱,随着腔体内压力的增加,记录GeH样品的X射线衍射图谱和红宝石随压力变化的荧光图谱,在线检测GeH的X射线衍射以及GeH的非晶化过程。

图1为GeH样品在不同压力下的X射线衍射图谱,从图中可以看出,初始压力为1GPa,当旋转加压螺丝给样品施加的压力为19.33GPa时,从X射线衍射图谱中可以观察到GeH样品非晶化,11度左右的衍射峰强度降低,开始宽化,随着压力的进一步增加,GeH样品的长程有序受到了破坏,开始向非晶态转化,直到33.7GPa仍然为非晶态。

图2为实施例1制得的非晶化GeH在卸压过程中的X射线衍射图谱,从图中可以看出,卸至常压的衍射峰仍旧宽化严重,强度很低,证明卸至常压的样品短程有序,依旧保持很好的非晶化状态。

图3为实施例1制得的非晶化GeH的选区电子衍射图谱,从图中可以看出,卸压后的GeH样品的电子衍射花样只有一个漫散的中心斑点,更加证实了采用本方法可以制备得到非晶GeH样品。

图4为实施例1制得的非晶化GeH的高分辨透射电子显微镜照片,从图中可以看出,相对于压缩之前GeH样品晶格的有规则排布,压缩之后的GeH样品的晶格排布变得杂乱无章,没有整齐的晶格结构;相对于加压之前,卸压后的GeH样品是不可逆的非晶状态。

实施例2

首先在两个干净的金刚石砧面上放上一颗红宝石,红宝石的粒径为20μm,两个砧面分别由直径为400μm的金刚石组成,取大片晶体GeH样品放在直径为130μm,厚度为40μm的不锈钢片样品腔中,晶体GeH样品的粒径为110μm,将红宝石放在样品腔的边缘处,样品腔的中心处铺满样品。

装好样品和红宝石后,滴入一滴硅油作为传压介质,闭合金刚石对顶砧装置并将加压螺丝归位。调节加压螺丝找好初始位置,并缓慢旋转加压螺丝给予1GPa的初始压力,使晶体GeH样品、红宝石和硅油完全被封到压腔内,并使传压介质硅油固化。金刚石对顶砧机腔体内的压力由红宝石标定。

以0.5GPa/min的加压速率对金刚石对顶砧机腔体内的样品施加压力,当金刚石对顶砧机腔体内的压力达到33GPa时,停止加压,卸压至常压后,得到非晶GeH样品。

图5为实施例2卸至常压后的非晶GeH样品的高分辨透射电子显微镜照片,从图中可以看出,制得的非晶GeH样品的晶格排布没有规则,无晶格结构;相对于加压之前,卸压后的GeH样品是不可逆的非晶状态,同时说明本发明提供的制备方法重复性好。

综上所述,本发明通过采用金刚石对顶砧机对GeH样品施加19.33GPa或者更高的压力,使晶体GeH样品达到非晶化,卸压后GeH样品的非晶化不可逆,从而实现在室温下就可以得到非晶GeH样品的目的,所得到的非晶样品纯度高,操作安全,得到非晶GeH样品的速度快,时间短。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种新型蓝光或近红外光激发小分子蒽醌电荷转移态产生单线态氧的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!