卤素诱导生长超薄铁硒化合物纳米片

文档序号:162492 发布日期:2021-10-29 浏览:43次 >En<

阅读说明:本技术 卤素诱导生长超薄铁硒化合物纳米片 (Halogen induced growth ultrathin iron selenium compound nanosheet ) 是由 侯仰龙 徐俊杰 于 2020-04-28 设计创作,主要内容包括:本发明公开了一种卤素诱导生长超薄铁硒化合物纳米片的制备方法。将前驱体硒源、铁盐和卤素源溶解于高沸点胺类有机溶剂中,高温反应硒化,通过极性有机液体沉淀得到超薄铁硒化合物纳米片。其中超薄六方相FeSe纳米片厚度仅为5层,相当于2.9纳米,径向尺寸0.6-2.2微米,元素分布均匀。该材料表现出室温反铁磁性,奈尔温度远高于室温。同时其电导率随温度升到而增大,表现出半导体特性。除此之外,该方法制备的超薄Fe-(7)Se-(8)纳米片具有本征磁性。本发明以前驱体有机硒源、铁盐和卤素制备了超薄铁硒化合物纳米片,在自旋电子学领域具有潜在应用,制备方法简单易行,适合工业化生产。(The invention discloses a preparation method of halogen-induced growth ultrathin iron selenium compound nanosheets. Dissolving a precursor selenium source, an iron salt and a halogen source in a high-boiling-point amine organic solvent, reacting at a high temperature for selenylation, and precipitating through a polar organic liquid to obtain the ultrathin iron selenium compound nanosheet. The thickness of the ultrathin hexagonal phase FeSe nanosheet is only 5 layers, namely 2.9 nanometers, the radial size is 0.6-2.2 micrometers, and the elements are uniformly distributed. The material shows room temperature antiferromagnetism, and the neel temperature is far higher than the room temperature. Meanwhile, the conductivity of the semiconductor material increases with the increase of temperature, and the semiconductor material shows semiconductor characteristics. In addition, the method can prepare ultrathin Fe 7 Se 8 The nanosheets have intrinsic magnetic properties. The ultrathin iron-selenium compound nanosheet is prepared from the precursor organic selenium source, the iron salt and the halogen, has potential application in the field of spintronics, is simple and feasible in preparation method, and is suitable for industrial production.)

卤素诱导生长超薄铁硒化合物纳米片

技术领域

本发明属于材料技术领域,特别涉及超薄铁硒化合物纳米片的制备。

背景技术

自旋电子学同时利用电子的自旋和电荷的性质实现电子学的功能,很大程度上降低了磁存储的功耗。从应用的角度而言,高质量本征二维磁性材料是自旋电子学器件的首选。目前,二维本征磁性材料的制备主要依靠分子束外延和固相机械剥离,成本高且产量小,限制了其推广应用。相比于现有的方法,液相合成本征磁性二维材料凭借其高产量和低成本,具有一定的应用前景。

目前,已通过液相方法合成了多种二维本征磁性材料。由于对反应机理认识不够深入,液相合成本征磁性二维材料仍然具有一定的挑战。因此,发展具有合成简便和成本低廉的方法制备本征二维磁性材料在科学和工程上均具有重要意义。

发明内容

本发明的目的在于提供一种制备超薄铁硒化合物纳米片的方法,其在自旋电子学领域具有潜在应用价值。制备的超薄六方相FeSe纳米片厚度仅为5层,相当于2.9纳米,径向尺寸 0.6-2.2微米。该材料表现出本征反铁磁性,奈尔温度高达553开尔文。其本征磁性来源于Fe2+的自旋。低温下由于铁空位和铁化学环境的变化,材料会发生超顺磁转变和自旋玻璃转变。其电导率随温度升到而增大,表现出半导体特性。除此之外,制备的超薄Fe7Se8纳米片也表现出本征磁性。

本发明中的超薄铁硒化合物纳米片是通过硒源与高沸点胺类有机液体反应形成配体,该配体在卤素的参与下与铁源反应,由极性有机液体沉淀得到。

本发明所提供的超薄铁硒化合物纳米片的制备方法,包括以下步骤:

1)将前驱体硒源溶解于高沸点胺类有机液体中;

2)在上述均匀的液体中加入铁盐和氯离子;

3)将上述体系加热反应后,用极性有机液体沉淀,得到产物。

步骤1)硒源首选二苯基二硒醚,也可以使用其它类硒源,例如硒粉。

步骤1)高沸点胺类有机液体首选油胺,也可以使用其它类胺类,如三正辛胺。

步骤1)溶解过程通常在高温保护气氛下进行,温度为100-220摄氏度,例如200摄氏度,时间为1-3小时,例如2小时,气氛为Ar或N2,例如Ar。

步骤2)加入铁盐和氯离子后,继续将混合物继续搅拌,搅拌温度还是以室温为主,例如25摄氏度,时间为10-30分钟,例如10分钟。铁源与硒源摩尔比在目标产物摩尔比的上下20%浮动。

步骤3)反应过程通常在高温保护气氛下进行,温度为250-360摄氏度,例如335摄氏度,时间为1-3小时,例如2小时,气氛为Ar或N2,例如Ar。沉淀通常在室温下进行,极性有机液体选用乙醇或者丙酮,例如乙醇。

本发明进一步还提供上述超薄六方相FeSe纳米片的本征反铁磁半导体性能和超薄Fe7Se8纳米片的磁性能。进一步地,阐明其在自旋电子学领域的潜在应用。

本发明所提供的超薄六方相FeSe纳米薄片,具有本征反铁磁性,其奈尔温度高达553开尔文。同时其表现出正的电导率温度系数是典型的半导体行为。除此之外,提供的超薄Fe7Se8纳米片具有本征磁性。因此,其具有在自旋电子学领域应用的前景。

附图说明

图1为实施例1制备的超薄六方相FeSe纳米片的X射线衍射分析图。

图2为实施例1制备的超薄六方相FeSe纳米片的透射电子显微镜图。

图3为实施例1制备的超薄六方相FeSe纳米片的原子力显微镜图。

图4为实施例1制备的超薄六方相FeSe纳米片的磁化率与温度关系曲线。

图5为实施例1制备的超薄六方相FeSe纳米片的电导率与温度关系。

图6为实施例2制备的超薄六方相FeSe纳米片的透射电子显微镜图。

图7为实施例5制备的超薄Fe7Se8纳米片的X射线衍射分析图。

图8为实施例5制备的超薄Fe7Se8纳米片的透射电子显微镜图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

将118.59毫克二苯基二硒醚溶解于17毫升油胺中,在氩气气氛下将体系加热到200摄氏度并保温2小时。该体系降温到室温后,加入144毫克四水合氯化亚铁,升温到345摄氏度并保温2小时。体系降温到室温后,加入100毫升乙醇,8000转每分钟离心3分钟得到超薄六方相FeSe纳米片产物。

如图1所示,X射线衍射分析揭示的衍射峰的位置和强度均良好地匹配于FeSe(JCPDS 26-0795号)的标准卡,表明上述方法制备的材料是均匀的FeSe材料。

如图2所示,透射电子显微镜图片证明了其二维结构。

如图3所示,原子力显微镜图片证明材料的厚度为2.90纳米。

如图4所示,磁化曲线证明其反铁磁特性,并且低温下发生了超顺磁转变。

如图5所示,磁导率与温度关系曲线证明了其反铁磁特性,伏安曲线保持良好的线性。

实施例2

将118.59毫克二苯基二硒醚溶解于17毫升油胺中,在氩气气氛下将体系加热到200摄氏度并保温2小时。该体系降温到室温后,加入184毫克乙酰丙酮亚铁,5毫克氯化铵,升温到345摄氏度并保温2小时。体系降温到室温后,加入100毫升乙醇,8000转每分钟离心3分钟得到超薄六方相FeSe纳米片产物。

如图6所示,透射电子显微镜图片证明了其二维结构。

实施例3

将59.69毫克硒粉分散于15毫升油胺中,在氩气气氛下将体系加热到220摄氏度并保温 2小时。该体系降温到室温后,加入145毫克四水合氯化亚铁,升温到345摄氏度并保温2 小时。体系降温到室温后,加入100毫升乙醇,8000转每分钟离心3分钟得到超薄六方相FeSe 纳米片产物。

实施例4

将84.19毫克二氧化硒分散于15毫升油胺中,在氩气气氛下将体系加热到220摄氏度并保温2小时。该体系降温到室温后,加入145毫克四水合氯化亚铁,升温到345摄氏度并保温2小时。体系降温到室温后,加入100毫升乙醇,8000转每分钟离心3分钟得到超薄六方相FeSe纳米片产物。

实施例5

将103.42毫克二苯基二硒醚溶解于17毫升油胺中,在氩气气氛下将体系加热到200摄氏度并保温2小时。该体系降温到室温后,加入144毫克四水合氯化亚铁,升温到345摄氏度并保温2小时。体系降温到室温后,加入100毫升乙醇,8000转每分钟离心3分钟得到超薄Fe7Se8纳米片产物。

如图7所示,X射线衍射分析揭示的衍射峰的位置和强度均良好地匹配于Fe7Se8(JCPDS 48-1451号)的标准卡,表明上述方法制备的材料是均匀的Fe7Se8材料。

如图8所示,透射电子显微镜图片证明了其二维结构。

实施例6

将52.25毫克硒粉分散于16毫升油胺中,在氩气气氛下将体系加热到220摄氏度并保温 2小时。该体系降温到室温后,加入145毫克四水合氯化亚铁,升温到345摄氏度并保温2 小时。体系降温到室温后,加入100毫升乙醇,8000转每分钟离心3分钟得到超薄Fe7Se8纳米片产物。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种组分可控的Bi-Te-Se三元纳米线及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!