用于fdm法打印的可控轻量化发泡材料及其制备方法与应用

文档序号:163416 发布日期:2021-10-29 浏览:42次 >En<

阅读说明:本技术 用于fdm法打印的可控轻量化发泡材料及其制备方法与应用 (Controllable lightweight foam material for FDM printing and preparation method and application thereof ) 是由 杨义浒 胡浩 陈锐 刘浦 于 2021-05-06 设计创作,主要内容包括:本发明公开了一种用于FDM法打印的可控轻量化发泡材料及其制备方法与应用,属于3D打印技术领域。该制备方法包括如下步骤:1)制备颗粒物A;2)制备颗粒物B:其中,双螺杆挤出机加工温度为60~140℃,发泡剂占颗粒物B质量的30~50%;且侧料斗下料口与模头之间距离为螺杆长度的1/10~1/2;3)拉丝处理:取步骤1)的颗粒物A、步骤2)的所述颗粒物B混匀,通过单螺杆挤出机拉丝处理,即用于FDM法打印的可控轻量化发泡丝线。该发泡材料制备发泡制品时,不仅发泡工艺容易控制,而且发泡倍率较高,通过调节FDM打印机挤出倍率或/和流量在打印相同大小模型时可减少制品重量50%以上。(The invention discloses a controllable lightweight foam material for FDM printing and a preparation method and application thereof, and belongs to the technical field of 3D printing. The preparation method comprises the following steps: 1) preparing particles A; 2) preparing particles B: wherein the processing temperature of the double-screw extruder is 60-140 ℃, and the foaming agent accounts for 30-50% of the mass of the particles B; and the distance between the feed opening of the side hopper and the die head is 1/10-1/2 of the length of the screw; 3) wire drawing treatment: uniformly mixing the particulate matter A obtained in the step 1) and the particulate matter B obtained in the step 2), and performing wire drawing treatment through a single-screw extruder, namely, a controllable lightweight foaming silk thread for FDM printing. When the foaming material is used for preparing a foaming product, the foaming process is easy to control, the foaming multiplying power is high, and the weight of the product can be reduced by more than 50% by adjusting the extrusion multiplying power or/and the flow of an FDM printer when models with the same size are printed.)

用于FDM法打印的可控轻量化发泡材料及其制备方法与应用

技术领域

本发明涉及一种3D打印材料,属于3D打印技术领域,具体地涉及一种用于FDM法打印的可控轻量化发泡材料及其制备方法与应用。

背景技术

近几十年来,作为快速成型领域的一种新兴技术,3D打印技术发展非常迅速,目前已经在航空航天、生物医学、国防军工、工程教育、新产品开发等领域得到应用。3D打印技术根据制造塑性制备工艺核心的不同主要分为熔融沉积造型技术(FDM法)、光固化立体成型(SLA法)、溶剂浇铸成型(SC-3DP法)和选择性激光烧结成型技术(SLS法)。其中FDM发展最快且应用广泛,因为FDM法操作环境干净、安全,工艺简单、易于操作。

聚乳酸(PLA)材料是目前FDM打印时最常用的材料,非常容易打印,打印不易翘曲或喷嘴堵塞,与热塑性弹性体相比,打印时也不易收缩,PLA材料的另一个优点是它提供3D打印的高质量表面细节,其他材料容易产生拉丝或斑点,与另一种流行的3D打印材料ABS不同,PLA材料在挤出时不会散发出难闻的气味,典型的PLA材料是无毒和可生物降解的,使其成为环保型3D打印机用户的理想材料。

发泡材料是指发泡剂在材料内部气化或膨胀从而产生多孔结构的材料,可在较少损失材料力学性能的前提下降低材料密度和用量,同时满足材料的轻质高强度和功能性要求。目前发泡材料的制备方法基本集中在传统制造领域,例如超临界流体制备聚合物发泡技术、二次开模法,所需开模费用高,开发周期长。这促使我们开发一种可发泡的3D打印材料,将其制备方法与快速成型技术相结合,从而大幅度提升多孔产品的开发速度,大大增加对个体化产品的支持力度。

根据发泡与3D打印的先后顺序,运用于3D打印的发泡产品主要分为这几类:

1、在3D打印前进行发泡处理后,利用3D打印机进行制品成型。比如中国发明专利(申请公布号:CN111154135A,申请公布日:2020-05-15)专利文献公开了一种3D打印发泡制品及其制备工艺,该方法是先将第一高分子树脂与第二高分子树脂粉末混合,得到待发泡粉末,将待发泡粉末在超临界流体中进行超临界发泡,得到第二高分子树脂包裹第一高分子树脂的发泡粉末,然后对所述发泡粉末进行选择性激光烧结,制得发泡制品,这种方法不适用于FDM打印。

2、在3D打印后进行发泡处理,得到制品。比如中国发明专利(申请公布号:CN111154135A,申请公布日:2017-03-15)公开了一种3D打印相结合生产发泡制品的方法和装置。该方法是先根据产品需要打印出三维模型,再将此三维模型在超临界渗透单元内渗透,后在发泡箱内水蒸气发泡,得到发泡制品,但是这样最终得到发泡制品外观粗糙,并不能充分利用3D打印的优点。

3、在3D打印时直接发泡得到制品。比如中国发明专利(申请公布号:CN107254151A,申请公布日:2017-10-17)公开了一种微孔发泡3D打印聚合物耗材及其制备方法与生产装置,选用了特定的复配发泡剂与聚合物基体来制备3D打印聚合物耗材,通过FDM打印机打印聚合物耗材同时发泡,获得轻量化的FDM模式3D打印耗材,但是发泡倍率非常小,打印的制品在相同打印条件下质量仅下降10%以上。

发明内容

为解决上述技术问题,本发明公开了一种用于FDM法打印的可控轻量化发泡材料及其制备方法与应用。该发泡材料制备发泡制品时,不仅发泡工艺容易控制,而且发泡倍率较高,在打印相同大小模型时可减少制品重量50%以上。

为实现上述技术目的,本发明公开了一种用于FDM法打印的可控轻量化发泡材料的制备方法,它包括如下步骤:

1)制备颗粒物A:取聚乳酸及其它配方组分混匀,通过双螺杆挤出机混合塑化后造粒得到颗粒物A,其中,所述双螺杆挤出机加工温度为180~200℃,所述聚乳酸占颗粒物A质量的90~98%;

2)制备颗粒物B:取增韧剂通过所述双螺杆挤出机主料斗下料,所述发泡剂通过侧料斗下料,混合塑化后造粒得到颗粒物B,其中,所述双螺杆挤出机加工温度为60~140℃,所述发泡剂占颗粒物B质量的30~50%;且侧料斗下料口与模头之间距离为螺杆长度的1/10~1/2;本发明选择发泡剂从螺杆的中段或末端的侧喂料下料,这种方法有利于发泡剂在造粒加工时不发泡而在后续3D打印时保持其高发泡率,增韧剂从主料斗下料而不与发泡剂同时从侧料斗下料可以加强增韧剂的塑化混炼。

3)拉丝处理:取步骤1)的所述颗粒物A、步骤2)的所述颗粒物B按照质量比(7:3)~(8:2)混匀,通过单螺杆挤出机拉丝处理,即制得直径为1.75mm的用于FDM法打印的可控轻量化发泡丝线。

进一步地,所述发泡剂在FDM法打印中起始发泡温度200~240℃。

进一步地,所述发泡剂为偶氮二甲酰胺、对甲苯磺酰氨基脲或膨胀微球中的一种或两种或三种。

本发明公开技术方案的其中一个目的是公开了上述制备方法制得的发泡材料,它包括如下质量百分比的各配方组分:

聚乳酸:65~80%,增塑剂:0.2~1%,交联剂:0.2~0.5%,扩链剂:0.2~5%,增韧剂:5~15%,润滑剂:0.2~1%,抗氧剂:0.2~1%,成核剂:1~5%,发泡剂:5~15%。

进一步地,所述发泡剂为偶氮二甲酰胺、对甲苯磺酰氨基脲或膨胀微球中的一种或两种或三种。

进一步地,所述增韧剂熔点为60~140℃。

进一步地,所述增韧剂为聚乳酸基热塑性聚氨酯弹性体、丙烯酸甲酯类共聚物、乙烯-辛烯高聚物或乙烯-醋酸乙烯酯共聚物中至少一种。

进一步地,所述增塑剂为乙酰柠檬酸三丁酯、环氧大豆油、环氧丙烷缩合物或邻苯二甲酸二丁酯中的一种或两种及两种以上。

进一步地,所述交联剂为过氧化二苯甲酰、过氧化二异丙苯或双叔丁基过氧异丙基苯中至少一种;所述扩链剂为苯乙烯-甲基丙烯酸缩水甘油酯共聚物、二异氰酸酯、亚磷酸酯、二酸酐或二环氧化合物中至少一种。

本发明公开技术方案的另一个目的是提供上述制备方法制得的发泡材料用于FDM法打印3D产品,通过调节FDM打印机挤出倍率得到不同密度和大小的打印制品,且设定打印温度为190~270℃。

具体的,挤出倍率为30%~100%。

优选的,所述打印温度为250℃。

有益效果:

1、本发明提供了一种直接利用FDM打印机打印轻量化制品的方法,且这种方法的发泡倍率较高,可超过2.5倍,在打印相同大小的模型时可以减少制品重量超过50%。

2、本发明设计的材料生产工艺简便,在FDM打印中使用方便灵活,可根据制品的要求,通过控制打印机挤出倍率和/或挤出流量得到不同密度和大小的PLA制品,打印温度为190~270℃,超过发泡温度制品会在打印时发泡,打印时调节3D打印机的挤出倍率和/或挤出流量,相同条件可控制其打印制品的大小和重量,且这种材料的冲击强度较普通PLA高,为打印不同大小的轻量化模型和零件的应用提供了一种方法。

3、本发明制备工艺中的步骤(2)中加工温度为60~140℃,使用了远低于发泡剂起始发泡温度的加工温度,同时发泡剂在螺杆的中段或末端的侧喂料下料,这种方法有利于发泡剂在加工时不发泡而在后续3D打印时保持其高发泡率,而低熔点的增韧剂既可以起增韧效果,也可作为发泡剂载体,有助于发泡剂在聚乳酸中的良好分散。

附图说明

图1为部分加工装置结构示意图;

其中,上述附图中各编号如下:

主料斗1、侧料斗2、电机3、模头4。

具体实施方式

下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚地、完整的描述。显然,所描述的实施例仅为本发明一部分实施例,它们不构成对本发明的限定,仅作举例而已。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

本实施例的发泡材料包括如下质量百分比的各配方组分:

采用上述各组分的制备步骤如下:

1)制备颗粒物A:取72份聚乳酸,1份增塑剂ATBC,0.2份交联剂DCP,3份扩链剂ADR,0.5份润滑剂硅酮粉,0.3份抗氧剂1010,3份成核剂滑石粉,投入到高速混合机中混合10min,混合均匀后通过双螺杆挤出机熔融共混挤出,水冷切粒得到颗粒A。将所得颗粒A在65℃真空干燥箱中烘干4h,测得水分含量低于0.2%,加工温度为200℃,挤出机1-7区温度分别为160,180,190,200,200,190,180,温度单位为℃,主机转速为200rpm。

2)制备颗粒物B:取12份增韧剂PLA-TPU,投入到图1所述的主料斗1中,8份膨胀微球投入到侧料斗2中,通过双螺杆挤出机熔融共混挤出,水冷切粒得到颗粒B。将颗粒B在65℃真空干燥箱中烘干4h,测得水分含量低于0.2%,加工温度为130℃,挤出机1-7区温度分别为100,110,120,130,130,120,120,温度单位为℃,主机转速为50rpm,侧料斗下料口与模头4之间的距离为螺杆长度的1/5;电机3用于提供动力;

3)拉丝处理:取步骤1)的所述颗粒物A、步骤2)的所述颗粒物B按照质量比8:2高速混合5~10min,混合后通过单螺杆挤出机拉丝线成直径为1.75mm的细丝,末端用3D打印线盘将细丝收卷;单螺杆挤出机挤出温度为180℃,1-5区温度分别为160,175,180,180,170,温度单位为℃,主机转速为30rpm。

4)制备3D打印制品:将拉出的丝线送入FDM 3D打印机打印制品,打印制品为长方块,15mm×15mm×10mm,填充率为100%,打印速度为40mm/s,设定打印温度为190℃和250℃,而在250℃打印时,跟据密度的变化逐渐减小挤出流量,观察打印后的制品体积大小变化,测量密度,通过调节3D打印机的挤出倍率(挤出流量),控制打印制品的大小。其中,本实施例制得的材料性能如表1,表2所示。

实施例2

本实施例的发泡材料包括如下质量百分比的各配方组分:

采用上述各组分的制备步骤如下:

1)制备颗粒物A:取70份聚乳酸,1份增塑剂ATBC,0.2份交联剂DCP,3份扩链剂HDI,0.5份润滑剂硅酮粉,0.3份抗氧剂1010,5份成核剂滑石粉,投入到高速混合机中混合10min,混合均匀后通过双螺杆挤出机熔融共混挤出,水冷切粒得到颗粒A。将所得颗粒A在65℃真空干燥箱中烘干4h,测得水分含量低于0.2%,加工温度为200℃,挤出机1-7区温度分别为160,180,190,200,200,190,180,温度单位为℃,主机转速为200rpm。

2)制备颗粒物B:取12份增韧剂EVA,投入到主喂料机中,6份发泡剂对甲苯磺酰氨基脲投入到侧喂料机中,通过双螺杆挤出机熔融共混挤出,水冷切粒得到颗粒B。将颗粒B在65℃真空干燥箱中烘干4h,测得水分含量低于0.2%,加工温度为130℃,挤出机1-7区温度分别为100,110,120,130,130,120,120,温度单位为℃,主机转速为50rpm,侧喂料下料口与模头之间的距离为螺杆长度的1/5;

3)拉丝处理:取步骤1)的所述颗粒物A、步骤2)的所述颗粒物B按照质量比8:2高速混合5~10min,混合后通过单螺杆挤出机拉丝线成直径为1.75mm的细丝,末端用3D打印线盘将细丝收卷;单螺杆挤出机挤出温度为180℃,1-5区温度分别为160,175,180,180,170,温度单位为℃,主机转速为30rpm。

4)制备3D打印制品:将拉出的丝线送入FDM 3D打印机打印制品,打印制品为长方块,15mm×15mm×10mm,填充率为100%,打印速度为40mm/s,设定打印温度为190℃和250℃,而在250℃打印时,跟据密度的变化逐渐减小挤出流量,观察打印后的制品体积大小变化,测量密度,通过调节3D打印机的挤出倍率(挤出流量),控制打印制品的大小。其中,本实施例制得的材料性能如表1,表2所示。

实施例3

本实施例的发泡材料包括如下质量百分比的各配方组分:

其它均与实施例1保持相同。

实施例4

本实施例发泡材料的组分中发泡剂为偶氮二甲酰胺、对甲苯磺酰氨基脲质量比为1:1的混合物,其它均与实施例1保持相同。

实施例5

本实施例发泡材料的组分中发泡剂为偶氮二甲酰胺、对甲苯磺酰氨基脲及膨胀微球以质量比为1:1:1的混合物,其它均与实施例1保持相同。

实施例6

本实施例发泡材料的组分中增韧剂为丙烯酸甲酯类共聚物,其它均与实施例1保持相同。

实施例7

本实施例发泡材料的组分中增韧剂为乙烯-醋酸乙烯酯共聚物(EVA),其它均与实施例1保持相同。

对比例1

本对比例与实施例1不同仅在于在步骤2)中增韧剂PLA-TPU和发泡剂膨胀微球是按配比搅拌后一起通过主喂料斗下料,侧料斗没有下料。

对比例2

本对比例与实施例1的不同仅在于步骤(1)和步骤(2)中的所有原料按配比搅拌后用步骤(1)的工艺造颗粒后,颗粒物用步骤(3)的工艺拉细丝,没有步骤(2)。

上述实施例和对比例的打印测试长方块,尺寸为15mm×15mm×10mm,采用经典的FDM 3D打印测试模型进行评估,不同的打印温度和挤出流量,其打印后形状大小变化和3D打印后制品的密度,见表1:其中,挤出流量包括30%~100%,具体为30%、40%、45%、50%、55%、60%、80%、90%和100%。

表1 3D打印制品在不同打印温度和挤出流量下密度

此外,将上述打印产品打印制作80mm×10mm×4mm的缺口试样(A型缺口),以标准ISO179测试打印缺口试样的缺口冲击性能,冲击性能见表2:

表2 冲击性能列表

由上述表1可知,3D打印相同模型时,当采用打印温度250℃,超过了发泡温度,制品打印时因为发泡膨胀而变形,密度减小,在其它条件相同的情况下,通过减小挤出流量,可以在减小制品重量的同时控制制品形状,保持打印制品大小形状基本不变。

结合表1、表2可知,实施例1的原始密度为1.19g/cm3,升温到250℃后,因为发泡体积膨胀而变形,通过减小挤出流量可以减小体积膨胀,在挤出流量为40%时,可以保持形状大小基本不变情况下,密度减小到0.485g/cm3,而在相同温度250℃情况下,对比例1可以保持形状大小基本不变时的密度为0.68g/cm3,对比例2可以保持形状大小基本不变时的密度为1.08g/cm3,实施例1在保持形状大小基本不变情况下重量更轻,而其缺口冲击强度也略优于对比例,其他实施例也可以通过减小挤出流量得到形状大小基本不变的轻量化制品,本发明不作详细赘述。

以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:彩色防静电EVA发泡板及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!