接合材料及使用该接合材料的接合体

文档序号:1721835 发布日期:2019-12-17 浏览:31次 >En<

阅读说明:本技术 接合材料及使用该接合材料的接合体 (Bonding material and bonded body using the same ) 是由 堀达朗 远藤圭一 藤本英幸 栗田哲 于 2018-03-26 设计创作,主要内容包括:本发明提供一种可通过即使反复经历冷热循环也不易产生很大裂纹的银接合层将电子元器件与基板接合的接合材料,以及使用该接合材料将电子元器件与基板接合的接合体。其是隔着包含银烧结体的银接合层将作为电子元器件的(接合面镀银的)SiC芯片等半导体芯片与铜基板接合的接合体,其特征是,银接合层的剪切强度为60MPa以上,且该银接合层的(111)面的微晶粒径为78nm以下。(The invention provides a bonding material for bonding an electronic component and a substrate by a silver bonding layer which is less likely to generate large cracks even after repeated cold and hot cycles, and a bonded body for bonding the electronic component and the substrate by using the bonding material. The semiconductor chip is bonded to a copper substrate via a silver bonding layer containing a silver sintered body, wherein the shear strength of the silver bonding layer is 60MPa or more, and the crystallite diameter of the (111) plane of the silver bonding layer is 78nm or less.)

接合材料及使用该接合材料的接合体

技术领域

本发明涉及接合材料及使用该接合材料的接合体,特别涉及由包含银微粒的银糊料构成的接合材料及通过使用该接合材料形成的银接合层将电子元器件与基板接合的接合体。

背景技术

以往,在铜基板等金属基板上装载半导体芯片等电子元器件的半导体装置中,电子元器件通过焊锡固定在基板上,而近年来,考虑到对人体和环境等的负担,焊锡从以往的含铅焊锡逐渐转换成无铅焊锡。

此外,作为这种半导体装置的半导体芯片,探讨了使用SiC芯片,该SiC芯片具有比广泛使用的Si芯片更低的损耗,具有优异的特性。但是,将SiC芯片装载在基板上的半导体装置中,因为有时工作温度会超过200℃,所以,作为将SiC芯片固定在基板上的焊锡,需要使用熔点高的高温焊锡,但这种高温焊锡很难无铅化。

另一方面,近年来,提出了使用包含银微粒的银糊料作为接合材料,将接合材料置于被接合物之间,一边对被接合物之间施加压力一边加热规定时间,使接合材料中的银烧结,通过银接合层将被接合物彼此接合的技术方案(例如参照专利文献1)。由这种银糊料构成的接合材料形成的银接合层因为熔点比普通的焊锡高,所以尝试使用其来代替焊锡,将半导体芯片等电子元器件固定在基板上。

现有技术文献

专利文献

专利文献1:日本专利特开2011-80147号公报(段落编号0014-0020)

发明内容

本发明所要解决的技术问题

但是,将SiC芯片之类的半导体芯片装载在基板上的半导体装置中,如果使用由银糊料构成的接合材料将半导体芯片固定在基板上,则在半导体装置工作时,银接合层处于超过100℃的高温下,如果因半导体装置的反复开关等而反复经历冷热循环或电源循环,则因为半导体芯片或基板与银接合层的热膨胀率的差异,可能会在银接合层中产生很大的裂纹,半导体芯片破损,导致半导体装置的故障。

因此,本发明鉴于这些以往的问题,其目的是提供一种可通过即使反复经历冷热循环也不易产生很大裂纹的银接合层将电子元器件与基板接合的接合材料,以及使用该接合材料将电子元器件与基板接合的接合体。

解决技术问题所采用的技术方案

为了解决上述课题,本发明的接合体是隔着包含银烧结体的银接合层将电子元器件与基板接合的接合体,其特征是,银接合层的剪切强度为60MPa以上,且该银接合层的(111)面的微晶粒径为78nm以下。该接合体中,电子元器件的与银接合层的接合面优选用贵金属镀敷,更优选用银镀敷。此外,电子元器件优选为SiC芯片。此外,基板优选为铜基板。

此外,本发明的接合材料是由包含银微粒的银糊料构成的接合材料,其特征是,将该接合材料涂布在铜基板上,在大气气氛中一边施加10MPa的负荷一边在120秒钟内升温至280℃后,在280℃下保持180秒钟来进行烧成,使接合材料中的银烧结而形成银接合层,此时的银接合层的剪切强度为60MPa以上,且该银接合层的(111)面的微晶粒径为78nm以下。该接合材料中,银微粒的平均一次粒径优选为1~100nm。此外,该接合材料也可以包含平均一次粒径0.2~10μm的银颗粒。

另外,在本说明书中,“平均一次粒径”是指通过银微粒或银颗粒的扫描电子显微镜(SEM)或透射电子显微镜照片(TEM图像)求得的一次粒径的平均值。

发明效果

通过本发明,可提供一种可通过即使反复经历冷热循环也不易产生很大裂纹的银接合层将电子元器件与基板接合的接合材料,以及使用该接合材料将电子元器件与基板接合的接合体。

附图说明

图1是示意地表示作为本发明的接合体的实施方式的一例的、隔着银接合层将电子元器件与基板接合的接合体的剖视图。

具体实施方式

本发明的接合体的实施方式如图1所示,是隔着包含银烧结体的银接合层12将电子元器件14(优选为SiC芯片等半导体芯片)与基板10(优选为铜基板)接合的接合体,其中,银接合层的剪切强度为60MPa以上(优选为70MPa以上,更优选为90~150MPa),且该银接合层的(111)面的微晶粒径为78nm以下(优选为75nm以下,更优选为45~74nm)。另外,为了提高接合力,电子元器件14的接合面优选用金、银、钯等贵金属镀敷。

此外,本发明的接合材料的实施方式是由包含银微粒的银糊料构成的接合材料,其中,将该接合材料涂布在铜基板上,在大气气氛中一边施加10MPa的负荷一边在120秒钟内升温至280℃后,在280℃下保持180秒钟来进行烧成,使接合材料中的银烧结而形成银接合层,此时的银接合层的剪切强度为60MPa以上(优选为70MPa以上,更优选为90~150MPa),且该银接合层的(111)面的微晶粒径为78nm以下(优选为75nm以下,更优选为45~74nm)。

如果如上所述,银接合层的剪切强度为60MPa以上,且该银接合层的(111)面的微晶粒径为78nm以下,则可通过即使反复经历冷热循环也不易产生很大裂纹的银接合层将电子元器件与基板接合。

为了提高通过银接合层将电子元器件等与基板接合时的接合强度(剪切强度),优选通过提高接合时的烧成温度、延长烧成时间等来充分地进行银的烧结。认为如果如上所述充分地进行银的烧结,则在银接合层和基板之间发生原子扩散,接合强度提高。但是,已知如果充分地进行银的烧结,则对晶体生长产生强烈的作用,银接合层的微晶粒径增大,如果反复经历冷热循环,则在银接合层中容易产生很大的裂纹。

上述接合材料优选包含银微粒和溶剂、分散剂。

溶剂只要是具有容易将接合材料涂布在基板上的粘度、且能够使银烧结而形成银接合层的溶剂即可,可以单独使用一种溶剂,也可以组合使用两种以上的溶剂。接合材料中的溶剂的含量优选为1~25质量%,更优选为5~20质量%。作为该溶剂,可使用极性溶剂或非极性溶剂,从与接合材料中的其它成分的相容性和环境负担的角度来看,优选使用极性溶剂。例如,作为极性溶剂,可使用水、醇、多元醇、二元醇醚、1-甲基吡咯烷酮、吡啶、萜品醇、丁基卡必醇、丁基卡必醇乙酸酯、TEXANOL、苯氧基丙醇、二乙二醇单丁醚、二乙二醇单丁醚乙酸酯、γ-丁内酯、乙二醇单甲醚乙酸酯、乙二醇单***乙酸酯、甲氧基丁基乙酸酯、甲氧基丙基乙酸酯、二乙二醇单***乙酸酯、乳酸乙酯、1-丁醇等。作为该极性溶剂,优选使用1-癸醇、1-十二醇、1-十四醇、3-甲基-1,3-丁二醇、3-羟基-3-甲基丁基乙酸酯、2-乙基-1,3-己二醇(辛二醇)、己基二甘醇、2-乙基己二醇、二丁基二甘醇、甘油、二羟基萜品醇、二氢萜品醇乙酸酯、2-甲基丁烷-2,3,4-三醇(异戊二烯三醇A(IPTL-A)、日本萜化学株式会社(日本テルペン化学株式会社)制)、2-甲基丁烷-1,3,4-三醇(异戊二烯三醇B(IPTL-B)、日本萜化学株式会社制)、テルソルブIPG-2Ac(日本萜化学株式会社制)、テルソルブMTPH(日本萜化学株式会社制)、テルソルブDTO-210(日本萜化学株式会社制)、テルソルブTHA-90(日本萜化学株式会社制)、テルソルブTHA-70(日本萜化学株式会社制)、テルソルブTOE-100(日本萜化学株式会社制)、二氢萜品氧基乙醇(日本萜化学株式会社制)、萜品基甲基醚(日本萜化学株式会社制)、二氢萜品基甲基醚(日本萜化学株式会社制)等,更优选使用1-癸醇、1-十二醇、2-乙基-1,3-己二醇(辛二醇)、二丁基二甘醇、2-甲基丁烷-2,3,4-三醇(异戊二烯三醇A(IPTL-A))和2-甲基丁烷-1,3,4-三醇(异戊二烯三醇B(IPTL-B))的至少一种。

如果添加分散剂,则可提高接合材料中的银微粒的分散性,减小由接合材料形成的银接合层的微晶粒径。可以单独使用一种分散剂,也可以组合使用两种以上的分散剂。接合材料中的分散剂的含量优选为0.01~2质量%,更优选为0.03~0.7质量%。作为该分散剂,可使用丁氧基乙氧基乙酸等羧酸类分散剂、磷酸酯类分散剂。

为了能以200~350℃的低温对接合材料中的银微粒加热以使银烧结、形成高剪切强度的银接合层,银微粒的平均一次粒径优选为1~100nm,更优选为40~100nm。此外,为了能形成高剪切强度的银接合层,接合材料中的银微粒的含量优选为60~97质量%,更优选为75~95质量%。此外,为了保持接合材料中的银微粒的分散状态,优选用有机化合物被覆银微粒。特别是为了在使银烧结时能够从银微粒上除去有机化合物而形成高剪切强度的银接合层,被覆银微粒的有机化合物优选为碳数3~8的脂肪酸或胺。

此外,接合材料也可以包含平均一次粒径0.2~10μm、优选为0.2~3μm的银颗粒。如果以200~350℃的低温对接合材料中的银微粒加热以使银烧结,则这种微米尺寸的银颗粒可通过熔接的银微粒而相互联结,整体上形成银接合层。如果添加这种微米尺寸的银颗粒,则可在维持接合材料中的银的高含量的同时降低接合材料的粘度,可获得具有容易涂布在基板上的粘度的接合材料。接合材料包含微米尺寸的银颗粒的情况下,优选接合材料中的平均一次粒径0.2~10μm的银颗粒的含量为60质量%以下,且银微粒的含量和平均一次粒径0.2~10μm的银颗粒的含量的总和为61~97质量%。此外,为了提高接合材料中的填充性,优选用有机化合物(优选碳数6~24的脂肪酸或胺)被覆微米尺寸的银颗粒。

另外,为了由接合材料得到剪切强度高且微晶粒径小的银接合层,优选将银微粒和溶剂等混合,将所得的混合物用湿式喷射磨碾碎。

为了得到用上述接合材料将电子元器件与基板接合的接合体,将上述接合材料涂布在基板上形成涂膜,根据需要以70~160℃加热5~60分钟使涂膜中的至少一部分溶剂挥发而形成预干燥膜,在涂膜或预干燥膜上配置电子元器件,以200~350℃烧成90秒~30分钟,藉此使涂膜中的银烧结而形成银接合层,通过该银接合层将电子元器件与基板接合。另外,形成预干燥膜时的加热温度可根据溶剂的种类和量任意设定。此外,烧成温度可在200~350℃的范围内调整,如果烧成温度升高,则银的烧结程度提高,银接合层的剪切强度提高,但有微晶粒径也增大的趋势。此外,烧成时间可在90秒~30分钟之间调整,如果烧成时间延长,则银的烧结程度提高,银接合层的剪切强度提高,但有微晶粒径也增大的趋势。烧成时,还优选在电子元器件和基板之间施加5~40MPa的负荷。如果该负荷加重,则有银接合层的剪切强度提高,微晶粒径减小的趋势。

实施例

以下,对本发明的接合材料及使用该接合材料的接合体的实施例进行详细说明。

[实施例1]

在300mL烧杯中加入纯水180.0g,添加硝酸银(东洋化学株式会社制)33.6g使其溶解,从而调配成硝酸银水溶液作为原料液。

此外,在5L烧杯中加入3322.0g纯水,一边向该纯水内通入氮气30分钟来除去溶存氧,一边升温至40℃。向该纯水中添加作为(银微粒被覆用的)有机化合物的山梨酸(和光纯药工业株式会社(和光純薬工業株式会社)制)44.8g后,添加作为稳定剂的28%的氨水(和光纯药工业株式会社制)7.1g。

一边对添加该氨水后的水溶液进行搅拌,一边在从添加氨水的时间点(反应开始时)起经过5分钟后添加作为还原剂的纯度80%的含水肼(大塚化学株式会社制)14.91g,调配成含还原剂的水溶液作为还原液。从反应开始时起经过9分钟后,将液温调整为40℃的原料液(硝酸银水溶液)一并添加至还原液(含还原剂的水溶液)中进行反应,接着搅拌80分钟,然后以升温速度1℃/分钟将液温从40℃升温至60℃,结束搅拌。

如上所述形成用山梨酸被覆的银微粒的凝聚体后,将包含该银微粒的凝聚体的液体用5C号滤纸过滤,将该过滤的回收物用纯水清洗,得到银微粒的凝聚体。将该银微粒的凝聚体在真空干燥机中以80℃干燥12小时,得到银微粒的凝聚体的干燥粉末。将如上所述得到的银微粒的凝聚体的干燥粉碎碾碎,调整二次凝聚体的大小。另外,用扫描电子显微镜(SEM)求出该银微粒的平均一次粒径,结果为85nm。

接着,将如上所述调整了二次凝聚体的大小的(用山梨酸被覆的)银微粒的凝聚体的干燥粉末(银颗粒1)89.0g、作为第一溶剂的辛二醇(ODO)(协和发酵化学株式会社(協和発酵ケミカル株式会社)制的2-乙基-1,3-己二醇)9.25g、作为第二溶剂的2-甲基丁烷-2,3,4-三醇(异戊二烯三醇A(IPTL-A))(日本萜化学株式会社制)1.5g、作为分散剂的2-丁氧基乙氧基乙酸(BEA)(东京化成工业株式会社(東京化成工業株式会社)制)0.25g混合。将该混合物用混炼脱泡机(株式会社EME公司制的V-mini300型)以公转速度1400rpm、自传速度700rpm混炼30秒钟。将该混炼物用混合溶剂(日本醇贩卖株式会社(日本アルコール販売株式会社)制的ソルミックスAP-7)稀释并搅拌,用湿式喷射磨装置(RIX株式会社(リックス株式会社)制的RM-L1000EP)碾碎,用真空搅拌脱泡混合机进行真空脱泡,使全部混合溶剂(ソルミックスAP-7)蒸发,得到由包含89.0质量%的银颗粒1、9.25质量%的第一溶剂(ODO)、1.5质量%的第二溶剂(IPTL-A)、0.25质量%的分散剂(BEA)的银糊料构成的接合材料1。

用流变仪(粘弹性测定装置)(赛默公司(Thermo社)制的HAAKE Rheostress 600,使用的锥体:C35/2°)在25℃下测定该接合材料1的粘度,其结果是,以5rpm(15.7[1/S])测得的粘度为36(Pa·s),在25℃下以1rpm(3.1[1/S])测得的粘度与以5rpm测得的粘度的比值(1rpm的粘度/5rpm的粘度)(Ti值)为3.1。另外,通过热减量法求出接合材料1中的Ag浓度,结果Ag浓度为88.4质量%。

如下所述用粒度计(BYK公司的50μm不锈钢)评价该接合材料1(银糊料)中所含的银微粒的粒度。首先,用醇溶剂(ソルミックス)清扫粒度计,充分地干燥后,在粒度计的槽的深处(50μm侧)放置5~10g左右的银糊料,用双手的拇指和另一手指捏住刮刀,将刮刀放置成使得刮刀的长边与粒度计的宽度方向平行且刀尖与粒度计的槽的深处前端接触,一边将刮刀保持与粒度计的表面垂直,一边相对于槽的长边成直角地以均等的速度用1~2秒将粒度计牵拉至槽的深度为0,牵拉结束后3秒以内,将粒度计对着光以便观察银糊料的模样,从相对于槽的长边为直角方向且相对于粒度计表面成20~30°的角度的方向观察银糊料上开始出现明显的线的部分,得到沿着槽出现的第1根线(第1划痕,最大粒径Dmax)和第4根线(第4划痕)的粒度,并且得到10根以上均匀出现的线作为平均粒径D50的粒度。另外,将开始出现明显的线之前的零星出现的线忽略,因为粒度计左右各有1根,所以将这2根所示的值的平均值作为测定结果。其结果是,第1划痕为1μm以下,第4划痕为1μm以下,平均粒径D50为1μm以下。

接着,在20mm×20mm×2mm的铜基板(C1020)上配置厚120μm的金属掩模,使用丝网印刷机(松下FS工程株式会社(パナソニックFSエンジニアリング株式会社)制的SP18P-L),用金属刮墨刀将上述接合材料1以10mm×10mm的大小和105μm的厚度(印刷膜厚)涂布在铜基板上。然后,将涂布有接合材料1的铜基板载放于金属搪瓷盘,设置在烘箱(大和科学株式会社(ヤマト科学株式会社)制)内,在大气气氛中以118℃加热14分钟进行预干燥,从而除去接合材料1中的溶剂,形成预干燥膜。接着,将形成有预干燥膜的铜基板冷却至25℃后,在预干燥膜上配置(对接合面实施了镀银的5mm×5mm×0.3mm大小的)SiC芯片,设置在热压机(同和电子公司(DOWAエレクトロニクス社)制)上,在大气气氛中一边施加10MPa的负荷一边在120秒钟内升温至280℃,在到达280℃后保持180秒钟来进行正式烧成,使接合材料1中的银烧结而形成银接合层,得到通过该银接合层将(对接合面实施了镀银的)SiC芯片与铜基板接合的接合体1。

对于该接合体1,用超声波显微镜(C-SAM SONOSCAN公司制)观察银接合层有无空隙,结果未观察到空隙。此外,如果将接合体1的厚度减去SiC芯片和铜基板的厚度而得的厚度作为银接合层的厚度,则银接合层的厚度为46μm。此外,将接合体1置于冷热冲击装置(爱斯佩克株式会社(エスペック株式会社)制的TSA-71H-W)内,在大气气氛中在9分钟内从200℃冷却至-40℃后,在6分钟内升温至200℃,将该循环执行100次,进行冷热冲击试验。对于该冷热冲击试验后的接合体1,用超声波显微镜(C-SAM SONOSCAN公司制)观察银接合层有无空隙,结果在接合体1的银接合层的表面的四角端部(4个角部)确认到空隙。如果从该接合体1的银接合层的表面的四角向中央部划4条直线,将这些直线的线段长度记作La,将这些直线上存在空隙的长度记作Lc,将4个Lc中最大的Lc相对于La的比例记作裂纹进展率,则裂纹进展率(%)(=Lc×100/La)为17%,接合体1的银接合层的裂纹进展率低于30%,接合体1的银接合层的接合良好。

此外,在10mm×10mm×1mm的铜基板(C1020)上配置厚120μm的金属掩模,使用丝网印刷机(松下FS工程株式会社制的SP18P-L),用金属刮墨刀将上述接合材料1以7mm×7mm的大小和105μm的厚度(印刷膜厚)涂布在铜基板上。然后,将涂布有接合材料1的铜基板载放于金属搪瓷盘,设置在烘箱(大和科学株式会社(ヤマト科学株式会社)制)内,在大气气氛中以118℃加热14分钟进行预干燥,从而除去接合材料1中的溶剂,形成预干燥膜。接着,将形成有预干燥膜的铜基板冷却至25℃后,在预干燥膜上配置(3mm×3mm×2mm大小的)铜块,设置在热压机(同和电子公司制)上,在大气气氛中一边施加10MPa的负荷一边在120秒钟内升温至280℃,在到达280℃后保持180秒钟来进行正式烧成,使接合材料1中的银烧结而形成银接合层,得到通过该银接合层将铜块与铜基板接合的接合体2。

以JIS Z3918-5(2003年)的“无铅焊锡试验方法-第5部:焊锡连接的拉伸及剪切试验方法”为基准测定该接合体2的接合强度。具体而言,将接合体2固定于铜基板,在水平方向上按压与该铜基板接合的铜块,用接合强度试验机(DAGE公司制的万能型接合试验机系列(万能型ボンドテスターシリーズ)4000)测定铜块和银接合层的界面、银接合层的内部、银接合层和铜基板的界面中的任一处最初发生断裂时的力(N)。该试验中,将剪切高度设为400μm,将剪切速度设为5mm/分钟,在室温下进行测定。另外,在剪切试验方法中,因为直接测定断裂时的力(N),而接合强度是取决于接合面积的值,所以将断裂时的力(N)除以接合面积(3mm×3mm=9mm2)而算出的值作为接合强度(平均剪切强度)。其结果是,接合体2的剪切强度为113MPa,接合强度高。

此外,在20mm×20mm×2mm的铜基板(C1020)上配置厚120μm的金属掩模,使用丝网印刷机(松下FS工程株式会社制的SP18P-L),用金属刮墨刀将上述接合材料1以10mm×10mm的大小和105μm的厚度(印刷膜厚)涂布在铜基板上。然后,将涂布有接合材料1的铜基板载放于金属搪瓷盘,设置在烘箱(大和科学株式会社(ヤマト科学株式会社)制)内,在大气气氛中以118℃加热14分钟进行预干燥,从而除去接合材料1中的溶剂,形成预干燥膜。接着,将形成有预干燥膜的铜基板冷却至25℃后,在预干燥膜上配置(5mm×5mm×0.3mm大小的)SiC芯片,设置在热压机(同和电子公司制)上,在大气气氛中一边施加10MPa的负荷一边在120秒钟内升温至280℃,在到达280℃后保持180秒钟来进行正式烧成,使接合材料1中的银烧结而形成银接合层。另外,该银接合层上未接合(未对接合面实施镀银的)SiC芯片。

对于如上所述形成的银接合层,使用X射线衍射装置(株式会社理学(株式会社リガク)制的RINT-2100型),用Co灯管(40kV/30mA)作为X射线源测定40~50°/2θ的范围,进行X射线衍射(XRD)测定。根据由该X射线衍射测定而得的X射线衍射图,用Scherrer公式(Dhkl=Kλ/βcosθ)求出微晶粒径(Dx)。该式中,Dhkl是微晶粒径的大小(与hkl垂直的方向的微晶的大小)(nm),λ是测定X射线的波长(nm)(使用Co靶时为0.178892nm),β是取决于微晶大小的衍射线的宽度(弧度rad)(用半值宽度表示),θ是衍射角的布拉格角(弧度rad)(入射角与反射角相等时的角度,使用峰顶的角度),K是Scherrer常数(根据D和β的定义等而不同,设为K=0.94)。另外,计算中使用(111)面的峰数据。其结果是,微晶粒径(Dx)在(111)面上为69nm。

[实施例2]

在300mL烧杯中加入纯水180.0g,添加硝酸银(东洋化学株式会社制)33.6g使其溶解,从而调配成硝酸银水溶液作为原料液。

此外,在5L烧杯中加入3322.0g纯水,一边向该纯水内通入氮气30分钟来除去溶存氧,一边升温至60℃。向该纯水中添加作为(银微粒被覆用的)有机化合物的山梨酸(和光纯药工业株式会社(和光純薬工業株式会社)制)44.8g后,添加作为稳定剂的28%的氨水(和光纯药工业株式会社制)7.1g。

一边对添加该氨水后的水溶液进行搅拌,一边在从添加氨水的时间点(反应开始时)起经过5分钟后添加作为还原剂的纯度80%的含水肼(大塚化学株式会社制)14.91g,调配成含还原剂的水溶液作为还原液。从反应开始时起经过9分钟后,将液温调整为60℃的原料液(硝酸银水溶液)一并添加至还原液(含还原剂的水溶液)中进行反应,在从反应开始时起经过25分钟的时间点结束搅拌。

如上所述形成用山梨酸被覆的银微粒的凝聚体后,将包含该银微粒的凝聚体的液体用5C号滤纸过滤,将该过滤的回收物用纯水清洗,得到银微粒的凝聚体。将该银微粒的凝聚体在真空干燥机中以80℃干燥12小时,得到银微粒的凝聚体的干燥粉末。将如上所述得到的银微粒的凝聚体的干燥粉碎碾碎,调整二次凝聚体的大小。另外,用扫描电子显微镜(SEM)求出该银微粒的平均一次粒径,结果为60nm。

接着,将如上所述调整了二次凝聚体的大小的(用山梨酸被覆的)银微粒的凝聚体的干燥粉末(银颗粒2)45.0g、平均一次粒径300nm的银颗粒(同和电子株式会社制的Ag-2-1C)(银颗粒3)45.0g、作为第一溶剂的辛二醇(ODO)(协和发酵化学株式会社制的2-乙基-1,3-己二醇)9.25g、作为第二溶剂的2-甲基丁烷-2,3,4-三醇(异戊二烯三醇A(IPTL-A))(日本萜化学株式会社制)0.5g、作为分散剂的2-丁氧基乙氧基乙酸(BEA)(东京化成工业株式会社制)0.25g混合。将该混合物用混炼脱泡机(株式会社EME公司制的V-mini300型)以公转速度1400rpm、自传速度700rpm混炼30秒钟。将该混炼物用混合溶剂(日本醇贩卖株式会社制的ソルミックスAP-7)稀释并搅拌,用湿式喷射磨装置(RIX株式会社制的RM-L1000EP)碾碎,用真空搅拌脱泡混合机进行真空脱泡,使全部混合溶剂(ソルミックスAP-7)蒸发,得到由包含45.0质量%的银颗粒2、45.0质量%的银颗粒3、9.25质量%的第一溶剂(ODO)、0.5质量%的第二溶剂(IPTL-A)、0.25质量%的分散剂(BEA)的银糊料构成的接合材料2。

对于该接合材料2,通过与实施例1同样的方法求出粘度、Ti值、Ag浓度和粒度,其结果是,在25℃下以5rpm测得的粘度为6.5(Pa·s),Ti值为2.5,Ag浓度为89.2质量%。此外,第1划痕为1μm以下,第4划痕为1μm以下,平均粒径D50为1μm以下。

此外,使用该接合材料2,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为46μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为26%,低于30%,接合体1的银接合层的接合良好。

此外,使用接合材料2,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为78MPa,接合强度高。此外,使用接合材料2,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为71nm。

[实施例3]

除了与实施例2同样的(平均一次粒径60nm的)银微粒(银颗粒2)和(平均一次粒径300nm的)银颗粒(银颗粒3)和第一溶剂(ODO)的量分别为46.5g、46.5g和6.25g以外,通过与实施例2同样的方法得到由包含46.5质量%的银颗粒2、46.5质量%的银颗粒3、6.25质量%的第一溶剂(ODO)、0.5质量%的第二溶剂(IPTL-A)、0.25质量%的分散剂(BEA)的银糊料构成的接合材料3。

对于该接合材料3,通过与实施例1同样的方法求出粘度、Ti值、Ag浓度和粒度,其结果是,在25℃下以5rpm测得的粘度为40(Pa·s),Ti值为5.4,Ag浓度为92.1质量%。此外,第1划痕为1μm以下,第4划痕为1μm以下,平均粒径D50为1μm以下。

此外,使用该接合材料3,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为60μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为17%,低于30%,接合体1的银接合层的接合良好。

此外,使用接合材料3,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为93MPa,接合强度高。此外,使用接合材料3,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为73nm。

[比较例1]

将与实施例1同样的(平均一次粒径85nm的)银微粒(银颗粒1)82.0g、作为第一溶剂的辛二醇(ODO)(协和发酵化学株式会社制的2-乙基-1,3-己二醇)11.99g、作为第二溶剂的2-甲基丁烷-2,3,4-三醇(异戊二烯三醇A(IPTL-A))(日本萜化学株式会社制)6.0g、作为烧结助剂的氧二乙酸(二甘醇酸(DGA))(绿色化学株式会社(みどり化学株式会社)制)0.01g混合。将该混合物用混炼脱泡机(株式会社EME公司制的V-mini300型)以公转速度1400rpm、自传速度700rpm混炼30秒钟后,用三辊机(EXAKT公司制)使其分散,然后添加作为稀释溶剂的辛二醇(ODO)0.82g,得到由包含81.33质量%的银颗粒1、12.71质量%的第一溶剂(ODO)、5.95质量%的第二溶剂(IPTL-A)、0.01质量%的烧结助剂(DGA)的银糊料构成的接合材料4。

对于该接合材料4,通过与实施例1同样的方法求出粘度、Ti值、Ag浓度和粒度,其结果是,在25℃下以5rpm测得的粘度为25(Pa·s),Ti值为3.5,Ag浓度为80.2质量%。此外,第1划痕为16μm以下,第4划痕为10μm以下,平均粒径D50为4μm以下。

此外,使用该接合材料4,除了正式烧成时的负荷为5MPa以外,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为41μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为100%,高于30%,接合体1的银接合层的接合不好。

此外,使用接合材料4,除了正式烧成时的负荷为5MPa以外,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为38MPa,接合强度低。此外,使用接合材料4,除了正式烧成时的负荷为5.0MPa以外,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为98nm。

[比较例2]

使用与比较例1同样的接合材料4,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为37μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为79%,高于30%,接合体1的银接合层的接合不好。

此外,使用接合材料4,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为28MPa,接合强度低。此外,使用接合材料4,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为84nm。

[比较例3]

使用与比较例1同样的接合材料4,除了正式烧成时的负荷为15MPa以外,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为36μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为57%,高于30%,接合体1的银接合层的接合不好。

此外,使用接合材料4,除了正式烧成时的负荷为15MPa以外,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为49MPa,接合强度低。此外,使用接合材料4,除了正式烧成时的负荷为15MPa以外,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为75nm。

[比较例4]

使用与比较例1同样的接合材料4,除了正式烧成时的负荷为30MPa以外,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为33μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为38%,高于30%,接合体1的银接合层的接合不好。

此外,使用接合材料4,除了正式烧成时的负荷为30MPa以外,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为133MPa,接合强度高。此外,使用接合材料4,除了正式烧成时的负荷为30MPa以外,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为80nm。

[比较例5]

除了使用与实施例2同样的(平均一次粒径60nm的)银微粒(银颗粒2)来代替与实施例1同样的(平均一次粒径85nm的)银微粒(银颗粒1)、作为稀释溶剂添加的辛二醇(ODO)的量为0.56g以外,通过与比较例1同样的方法得到由包含81.54质量%的银颗粒2、12.48质量%的第一溶剂(ODO)、5.97质量%的第二溶剂(IPTL-A)、0.01质量%的烧结助剂(DGA)的银糊料构成的接合材料5。

对于该接合材料5,通过与实施例1同样的方法求出粘度、Ti值、Ag浓度和粒度,其结果是,在25℃下以5rpm测得的粘度为38(Pa·s),Ti值为4.2,Ag浓度为80.0质量%。此外,第1划痕为15μm以下,第4划痕为11μm以下,平均粒径D50为6μm以下。

此外,使用该接合材料5,除了正式烧成时的负荷为5MPa以外,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为33μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为100%,高于30%,接合体1的银接合层的接合不好。

此外,使用接合材料5,除了正式烧成时的负荷为5MPa以外,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为31MPa,接合强度低。此外,使用接合材料5,除了正式烧成时的负荷为5MPa以外,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为68nm。

[比较例6]

使用与比较例5同样的接合材料5,除了正式烧成时的负荷为30MPa以外,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为34μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为53%,高于30%,接合体1的银接合层的接合不好。

此外,使用接合材料5,除了正式烧成时的负荷为30MPa以外,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为128MPa,接合强度高。此外,使用接合材料5,除了正式烧成时的负荷为30MPa以外,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为84nm。

[比较例7]

除了使用与实施例1同样的(平均一次粒径85nm的)银微粒(银颗粒1)41.0g和与实施例2同样的(平均一次粒径60nm的)银微粒(银颗粒2)41.0g来代替与实施例1同样的(平均一次粒径85nm的)银微粒(银颗粒1)82.0g、作为稀释溶剂添加的辛二醇(ODO)的量为1.13g以外,通过与比较例1同样的方法得到由包含40.54质量%的银颗粒1、40.54质量%的银颗粒2、12.98质量%的第一溶剂(ODO)、5.93质量%的第二溶剂(IPTL-A)、0.01质量%的烧结助剂(DGA)的银糊料构成的接合材料6。

对于该接合材料6,通过与实施例1同样的方法求出粘度、Ti值、Ag浓度和粒度,其结果是,在25℃下以5rpm测得的粘度为29(Pa·s),Ti值为3.7,Ag浓度为80.1质量%。此外,第1划痕为20μm以下,第4划痕为14μm以下,平均粒径D50为6μm以下。

此外,使用该接合材料6,通过与实施例1同样的方法制备(将对接合面实施了镀银的SiC芯片与铜基板接合的)接合体1,观察银接合层有无空隙,求出银接合层的厚度。其结果是,在银接合层中未观察到空隙,银接合层的厚度为38μm。此外,对于该接合体1,通过与实施例1同样的方法进行冷热冲击试验后,观察银接合层有无空隙,求出银接合层的裂纹进展率。其结果是,在接合体1的银接合层的表面的四角确认到空隙,裂纹进展率为93%,高于30%,接合体1的银接合层的接合不好。

此外,使用接合材料6,通过与实施例1同样的方法制备(将铜块与铜基板接合的)接合体2,求出剪切强度,结果为32MPa,接合强度低。此外,使用接合材料6,通过与实施例1同样的方法尝试隔着银接合层进行(未对接合面实施镀银的)SiC芯片和铜基板的接合,结果未能在银接合层上接合(未对接合面实施镀银的)SiC芯片。此外,对于该银接合层,通过与实施例1同样的方法求出微晶粒径(Dx),结果(111)面的微晶粒径为86nm。

这些实施例以及比较例的结果示于表1~表3。

[表1]

[表2]

[表3]

由表1~表3可知,如果像实施例1~3的接合体那样,银接合层的剪切强度为60MPa以上,且该银接合层的(111)面的微晶粒径为78nm以下,则可通过即使反复经历冷热循环也不易产生很大裂纹的银接合层将电子元器件与铜基板接合。另外,由比较例1~4的比较可知,如果提高接合时的压力,则银接合层的厚度变薄,剪切强度提高,但银接合层的(111)面的微晶粒径大于78nm,裂纹进展率高于30%。此外,可知如果像比较例1~7那样在接合材料中添加烧结助剂作为添加剂,则烧结得到促进,银接合层的剪切强度提高,但银接合层的(111)面的微晶粒径大于78nm,裂纹进展率高于30%。此外,由比较例1和比较例5的比较可知,如果接合材料中的银微粒的粒径减小,则银接合层的剪切强度提高,但银接合层的(111)面的微晶粒径大于78nm,裂纹进展率高于30%。

符号说明

10 基板

12 银接合层

14 电子元器件

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:电极修磨机刀片

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!