用于稳定的高温二次电池的系统和方法

文档序号:1722341 发布日期:2019-12-17 浏览:17次 >En<

阅读说明:本技术 用于稳定的高温二次电池的系统和方法 (System and method for stable high temperature secondary battery ) 是由 王宇凡 毛罗·帕斯塔 奥利维亚·里塞 陈建帆 于 2018-02-24 设计创作,主要内容包括:一种用于高温、高能量密度的二次电池的系统,该系统包括含有离子液体溶剂和电解质盐的电解质;金属阳极;与该电解质相容并包含活性材料和聚酰亚胺粘结剂的阴极;以及分隔该阴极和阳极的隔膜部件。(a system for a high temperature, high energy density secondary battery, the system comprising an electrolyte comprising an ionic liquid solvent and an electrolyte salt; a metal anode; a cathode compatible with the electrolyte and comprising an active material and a polyimide binder; and a separator member separating the cathode and the anode.)

用于稳定的高温二次电池的系统和方法

相关申请的交叉引用

本申请要求2017年2月24日提交的美国临时申请号62/463,194的权益,该申请通过此援引以其全文并入。

政府权利

本发明是在合作研究和开发协议(Cooperative Research and DevelopmentAgreement)号FP00003662的政府支持下与加利福尼亚大学欧内斯特奥兰多劳伦斯伯克利国家实验室的董事会董事(Regents of the University of California Ernest OrlandoLawrence Berkeley National Laboratory)在其美国能源部号DE-AC02-5CH11231下完成的。政府拥有本发明的某些权利。

技术领域

本发明总体上涉及可再充电电池领域,并且更具体地涉及一种用于稳定的高能量可再充电电池的新的且有用的系统和方法。

背景技术

电池用于各种行业中,诸如消费电子产品、电动车辆、随钻测量/测井、航空航天、医疗设备、便携式电力设备、军事、石油和天然气等。已知电池在室温下操作时达到最佳性能,但在高温下电池变得不稳定且危险,并且充电和放电效率低。虽然具有挑战性,但在恶劣环境中的电池操作对于包括汽车、石油和天然气、军事和医疗设备在内的各种行业至关重要。一般来讲,可商购获得的可再充电电池在高于70℃不能安全且可靠地运行。此外,它们不提供在诸如石油和天然气钻探器械等的特定市场中使用的高能量密度。

因此,在可再充电电池领域中需要创造一种用于稳定的高能量可再充电电池的新的且有用的系统和方法。本发明提供了此种新的且有用的系统和方法。

具体实施方式

以下对本发明的实施例的描述并非旨在将本发明限制于这些实施例,而是使本领域的技术人员能够制造和使用本发明。

概述

如图1所示并且更一般地如图2所示,优选实施例的高温、高能量密度二次电池的系统可以包括电解质100,该电解质包括离子液体溶剂110、锂盐120、和稳定盐130;金属阳极200;与电解质相容的金属氧化物阴极300;以及分隔阴极和阳极的至少一个隔膜400。优选地,阴极包含聚酰亚胺粘结剂310。在此,对电池的提及可以描述整个系统或其中该系统是子部件的设备。该系统可以另外包括电池壳体500、用作多电芯电池内的电芯的多个电池单位、和/或任何适合的电池部件。该系统可以另外包括充电器系统600。充电器系统600与电池组合可以为电池提供特定的再充电能力。该系统可以另外包括集成或耦合的电气设备,其中电池可以适用于诸如井或采矿测量和测井设备、钻探设备、一个医疗设备、多个医疗设备(例如,电气医疗设备植入物)、航空航天、可穿戴设备、和/或其他适合的应用。

该系统优选地利用可用于启用非挥发性的且不可燃的电池的一组相容部件。在此所述的许多部件提供高热稳定性(例如,高达250℃下稳定),并且使用这些部件的电池可以特别适用于在高温下使用电池的情况。对于电池的高温可被认为是高于50℃的温度,但许多实现方式可以适用于高于100℃、150℃、并且甚至大于180℃的温度。作为更具体的描述,电池的高性能可以来自宽电化学窗口与独特的化学特性结合,该宽电化学窗口使得即使在高温下也能够使用高电压(在完全充电状态下相对于锂大于4V)阴极材料,该独特的化学特性使得能量密集的金属阳极稳定化。总之,精心挑选的电池部件与电解质之间的协同效应可以产生具有在高温下安全地输送高能量密度和比能量的潜力的独特电池,并且呈如本申请人发现的可再充电构型。

在一种实现方式中,该系统可以使得电池能够在高达至少160℃的温度下以3.7V的平均电压运行,从而在DD形式电芯(电芯体积约100立方厘米)中提供80Wh。另外,这种示例性电池可以是基本上不可燃的且可再充电的。电池可以替代性地具有其他适合的操作特性。

作为一个潜在的益处,该系统的电池可以包含在高温(高达和/或高于160℃)下稳定且起作用的部件。这可以使电池在诸如石油和天然气钻探器械等的特定市场中是可操作的且安全的,其中电池必须承受极热。

除了高温使用之外,另一个潜在的益处可以是该系统的电池可以在高温下稳定并且可再充电。该电池可以提供高温稳定性和可再充电特征的独特组合,同时提供与其他技术相当或更好的能量特性。这些品质有可能极大地有益于军事应用、钻探应用、和/或其他适合的应用。

作为另一个潜在的益处,该系统的电池可以由不可燃的且总体上安全的部件产生。安全电池可能在其中人或敏感器械易受电池问题影响的私营部门和医疗应用中具有特定应用。目前风险太大而无法长时间使用或由人长时间携带的高能量医疗设备可以由于这种电池而变得更加安全。类似地,在像井下钻探等的电池故障阈值低的情况下使用可再充电电池可以类似地变得更加安全。

作为另一个潜在的益处,可以使用与目前在其他相当的电池总体上缺乏该系统的许多特征(例如,可再充电性、安全性、稳定性等)的情况下使用的其他电池选项相比提供显著的成本节约的材料和方法来生产系统的电池。成本节约的一个实例可以是,其中在DD形式电芯中的电池的实现方式每次放电的成本范围为10-20美元,其中在DD形式电芯中的相当的电池(诸如锂亚硫酰氯电池或锂一氟化碳电池)每次放电可能花费30-40美元之间。

作为另一个潜在的益处,与其他电池技术相比,该系统可以提供低重量和体积分布。这可能导致创造迄今为止不可行的新医疗设备。脊髓的神经刺激器和植入的除颤器就是这类实例。

该系统特别适用于高度仪表化的且耗电的井下钻机和探头中的使用案例。在这种使用案例中,安全性和稳定性非常重要。短路、电降解、机械降解、热降解、和/或过热引起的***可能导致这类井下作业的显著复杂化。该系统和方法可以为电动车辆提供适用性,其中由于当前电池缺乏足够的电力以及缺乏便携性而导致的里程焦虑使得长程旅行变得困难。该系统还可以在个人电子产品中提供大的市场适用性,其中稳定性是主要因素。此外,具有稳定性的电池的长期放电可能对军事用途特别感兴趣。航空航天行业还可以潜在地从耐温、稳定、且持久的电池中获得益处。

优选实施例的电池包括内部电池部件和外部部件。内部电池部件提供电化学过程,从而使得能够再充电和放电。外部部件或壳体部件可以用于包装并固定内部电池部件。

电池的内部构件可以包括惰性部件(例如,隔膜、箔、插片等)和活性部件(例如,金属氧化物阴极和金属阳极)。优选地,电池包括阳极子部件和阴极子部件,其中阳极子部件和阴极子部件被隔膜400分开。电池的内部空间,位于阴极和阳极之间并且包括隔膜400和阴极300的多孔空间,优选地填充有电解质100。该系统的电池将另外包括阳极端子和阴极端子作为外部部件的一部分。阴极和阳极可以用金属垫片或弹簧电连接到它们各自的终端,但也可以用金属插片连接。电池内部构件优选地封装在电池壳体500中。壳体500可以是用于包装内部部件的金属结构。在一种实现方式中,壳体500可以包括内部金属涂层和钢外部构件。可以制造各种类型的电池形式,诸如如图3所示的纽扣电芯、如图1所示的卷绕型电池、如图4所示的袋状电芯电池、和/或任何适合形式的电池。电池的形状可以是但不限于圆柱形、实心棱柱形、或任何适合的形状。

电子器件可以导电地耦合到阳极端子和阴极端子以使用电池作为能量源,其中电池可以以放电模式进行操作。充电系统600还可以导电地耦合到阳极端子和阴极端子以便于给电池充电,其中电池以充电模式进行操作。

电解质

优选实施例的电解质100起到用作电池中的离子载体的作用,从而促进阴极与阳极之间的离子流动。电解质100优选是来自具有高度热稳定性的离子液体家族的非水性液体的共混物。更具体地,用于锂电池的电解质100可以包含电解质盐、互补的非水性离子液体溶剂、和任选的另外的稳定该系统的盐和添加剂。溶剂的互补性质可以使盐在系统的优选参数下溶解。电解质100可以促进金属阳极和高压阴极二者的使用,从而使电池具有呈稳定和/或可再充电形式的高比能量和/或能量密度。优选的电解质的共混物可以描述为不可燃的,从而形成用于高能量可再充电电池的热稳定电解质100。在一些优选的变型中,溶剂和/或添加剂可以改善库仑效率、减少放气、和/或减少与金属阳极和/或高压阴极的副反应。在优选的实例中,可以在高温下发生改善的库仑效率、减少的放气、和/或减少的副反应。在一些优选的变型中,添加剂可以促进均匀的锂沉积,从而改善电池可靠性和/或可循环性。可循环性可能与两个潜在量度之一相关联:电力能力(即,电池可以多快地循环)和电池寿命(即,达到寿命终止(EOL)之前的循环次数)。可循环性可能是依赖于温度的。寿命终止可以通过保留率小于初始容量的80%时的时间来表征。循环可以表征为完全充电状态与特定放电深度之间的基本上完整的循环。可循环性可能是依赖于温度的。在一个实例中,电池可以在<5h内放电并在110℃下经历80个循环;电池可以在<10h内放电并在150℃下经历12个循环。

在优选的实例中,非挥发性的且不可燃的电解质100在高达250℃和高于250℃时可以是热稳定的。

电解质100的优选变型包含电解质盐,或更具体地包含锂盐120。这些盐溶解成在液体介质中传导电荷的离子,因此使隔膜和阴极部件的可润湿性变成了电池性能的重要因素。在优选的实例中,锂盐120浓度高。电解质盐可以是电解质100总重量的百分之10-30。在一种实现方式中,高浓度的锂盐120大于按重量计15%。在一种实现方式中,这可以包括按重量计18-22%的锂盐120浓度。在典型的操作温度(即室温)下,高锂盐浓度可能引起电解质100的高粘度,这通常被认为对电池性能有害。然而,如申请人所发现的,高锂盐浓度及其对于如本文所述的使用案例(例如,高温)在商业电池实现方式中的应用可以具有特定的益处。与高盐浓度相关的一些潜在益处可以包括改善的锂电镀层的均匀性、增加的离子导电性、更高的氧化稳定性、和/或其他适合的益处。对于具有优选部件的系统,高锂盐浓度可以使系统在较高温度下更好地起作用,这些温度诸如被认为对于典型的可再充电电池而言不能起作用的温度(即>70℃)。

如图5所示,与更常规的浓度水平相比,电解质盐的浓度可以提供显著的改善。在该示例性图表中,具有按重量计22%的盐的电池在80次循环之后保留约80%的容量,而具有按重量计15%的盐的电池在25次循环之后可能损失20%的容量。

锂盐的实例包括:双(氟代磺酰)亚胺锂、六氟磷酸锂、双(草酸根)硼酸锂、或四氟硼酸锂。锂盐的一种优选的实现方式是双(三氟甲磺酰)亚胺锂(LiTFSI)。在一种实现方式中,LiTFSI占电解质重量的27%。

液体溶剂110优选是非水性非质子溶剂,该溶剂可以含有烷基取代的吡咯烷鎓或哌啶鎓阳离子和酰亚胺阴离子。阴离子可以包括磺酰基基团。离子液体溶剂的一个优选实例是基于双(三氟甲磺酰)亚胺(TFSI)的离子液体溶剂。更优选的实现方式可以是1-丁基-1-甲基吡咯烷鎓双(三氟甲磺酰)亚胺。替代性的离子液体材料可以包括通过以下各项在分子上相关的化合物:用哌啶鎓取代吡咯烷鎓、用不同长度的烷基(例如甲基、乙基等)取代丁基、用不同长度的烷基(例如丁基、乙基等)取代甲基、用双(氟磺酰)亚胺(FSI)取代双(三氟甲磺酰)亚胺(TFSI)、和/或这些或其他适合的组合中的任一种。离子液体溶剂可以用作离子流动的介质,增加系统的热稳定性,并甚至促进离子电镀到阳极上。

稳定盐和/或其他添加剂130可以起到调节电解质的物理和化学特性(例如粘度、电化学稳定性、热稳定性、迁移数、扩散性、和导电性)的作用。在优选的变型中,盐和添加剂使电解质100在高温下稳定,这可以增加高温循环时的电池寿命、增加各种多孔部件(即隔膜和阴极)的可润湿性、和/或在电解质100上传递其他所需的特性。在一些实例中,稳定盐130和添加剂可以包括双(三氟甲磺酰)亚胺钠、双(三氟甲磺酰)亚胺钾、双(三氟甲磺酰)亚胺铯、双(三氟甲磺酰)亚胺镁、和/或双(三氟甲磺酰)亚胺锌。可以使用其他适合的盐和/或添加剂。

隔膜

优选实施例的隔膜400作为阳极子部件与阴极子部件之间的物理屏障起作用,并通过促进负电极与正电极之间的离子流动促进所需的电化学相互作用。隔膜400位于阴极与阳极之间,从而确保两者之间没有电接触。隔膜400可以是设置在负电极与正电极之间的电子绝缘膜,但可以替代性地是任何适合类型的分隔结构。隔膜400优选是多孔结构,这些多孔结构虽然是离子可透过的,但是不导电。在一种实现方式中,电解质100在隔膜表面上的接触角小于或等于60°,如在沉积之后60秒所测量的。如果液滴在材料上的接触角小于60度,则液体与材料之间的相互作用是有利的,并且材料可以被认为是润湿的。在一种示例性实现方式中,隔膜厚度小于或等于35微米。根据它们的组成,隔膜400可以具有除了前面提到的那些之外的附加特性(例如,陶瓷涂层可以增加隔膜的机械强度并增加隔膜在高温下的稳定性)。可能的隔膜实例是:表面活性剂涂覆的隔膜、陶瓷涂覆的聚乙烯、非涂覆的聚丙烯、非涂覆的聚乙烯或聚酰亚胺(单独使用或与其他先前选项中的一种组合使用)。在一种优选的实现方式中,隔膜400可以是陶瓷涂覆的聚丙烯隔膜。陶瓷涂层可以起到使隔膜400具有附加的热稳定性和机械稳定性的作用。聚丙烯可以与电解质具有有利的相互作用,这增强了可润湿性,该可润湿性促进离子迁移并减轻阳极上的树枝状晶体生长。在一种示例性实现方式中,隔膜可以具有:<200nm的孔径;>35%的孔隙率;>90kfg/cm2的拉伸强度;>4sec/100mL的透气度数;>6g/m2的密度;和/或>110℃的熔融温度。在此种示例性实现方式中,在90℃下2小时的收缩率可能小于3%,并且在105℃下1小时的收缩率可能小于5%。隔膜与优选的电解质100相容。

隔膜400可以是如先前所述的单部件隔膜。隔膜400可以替代性地是由多个单部件隔膜、层、和/或其他材料制成的复合隔膜。复合隔膜可以是具有阳极相邻表面和/或阴极相邻表面的双层隔膜,如图6所示。在优选的变型中,阳极相邻隔膜包含陶瓷涂覆的聚丙烯层(如上所述),并且阴极相邻隔膜包含聚酰亚胺层。在该实现方式中,聚酰亚胺可以起到为隔膜400提供附加的机械稳健性的作用,以避免在高温下的退化、变形、或其他形式的故障。在一些实现方式中,这种隔膜400可以适合高达至少200℃。

阳极

优选实施例的阳极200或带负电的电极是金属阳极,并且更具体地是锂金属阳极。锂金属阳极包括可以形成为条带、板、或锂金属箔的一片锂金属。在一些实现方式中,锂金属阳极可以具有约5-150微米的厚度。在一些实现方式中,锂金属安装在铜箔集电器上。无论可以变换的锂金属阳极的确切组成如何,锂纯度水平基本上优选是高的。锂金属具有高比能量,典型地比公共使用的可再充电电池的石墨阳极大一个数量级。锂-镁合金是金属阳极的其他优选实例。在一些实例中,锂金属阳极可以通过电解质100稳定化。可以通过形成稳定且稳健的固体电解质中间相(SEI)来实现锂金属阳极的锂表面的稳定化。在一些实现方式中,可以通过电解质100与锂金属阳极的锂表面的反应来实现稳定的SEI形成。优选的富锂电解质在与负电极活性材料接触时可以部分分解,以形成富含氟和硫的锂物质,这些物质通过在电极上形成抑制进一步的电解质分解和树枝状晶体形成的非反应层来增强电极的寿命。在这类实施例中,SEI结构、稳定性、和/或特性可以取决于电解质的化学和物理特性。

阴极

优选实施例的阴极300或带正电的电极典型地呈条带形式,包含可以可逆地嵌入离子的活性材料、至少一种粘结剂310、和至少一种导电添加剂320。正电极具有典型地在50-120微米的范围内的厚度以及至少约2.4g/cm3的密度。按重量计,活性材料占阴极300的至少93%,粘结剂占阴极300的0.5-5%,并且一种或多种导电添加剂占阴极300的约0.1-4%。

活性材料典型地由金属氧化物、金属磷酸盐、金属氟化物、或其组合组成。活性材料典型地在160℃或低于160℃的温度下经历最小的结构变化或气态副产物的释放。活性材料可以是由Li、Ni、Mn、Co、和氧组成的材料。更优选地,该材料可以包括由LiNixMnyCozO2组成的化合物,其中x的范围为0.3-0.9,y的范围为0.05-0.3,并且z的范围为0.05-0.3。活性材料二次粒度范围为4微米至28微米。在一种优选的实现方式中,该比例为5:3:2(即LiNi0.5Mn0.3Co0.2O2)。在替代性实施例中,金属氧化物阴极300可以以其他常见比例(例如,1:1:1、6:2:2、或8:1:1)包含磷酸铁锂或锂镍锰钴(NMC)氧化物。在优选的变型中,阴极300组合物可以具体地被设计成在高达160℃和高于160℃的温度下保持稳定。

阴极300的导电添加剂320可以包括导电的基于碳的材料。在一种变型中,导电添加剂320可以是导电石墨和/或炭黑。其他替代方案可以包括其他典型的锂离子碳添加剂。

除活性材料之外,阴极混合物包含粘结剂310。粘结剂310起到保持活性材料与碳添加剂和集电器结合的作用。粘结剂310的优选实施例优选为聚酰亚胺。由于聚酰亚胺与优选的电解质100的相容性以及聚酰亚胺的特定的机械和化学特性,聚酰亚胺是优选的粘结剂310。聚酰亚胺在可再充电电池领域是新颖的:它比聚四氟乙烯(PTFE)更容易作为薄阴极涂层加工,在高温下是机械稳定的,具有大于300℃的玻璃化转变温度,在150℃下60分钟后具有小于0.5%的收缩率,在高温下不会失去作用,并且在与电解质100接触时表现出最小的膨胀和软化。可以选择替代性的粘结剂,诸如聚酰胺-酰亚胺、聚偏二氟乙烯、羧甲基纤维素、乙烯-(丙烯-二烯单体)共聚物、聚丙烯酸酯、苯乙烯-丁二烯橡胶、聚四氟乙烯、以及任何其他也可与所需电解质100相容的粘结剂。

如图7所示,与其他更常规的粘结剂像聚偏二氟乙烯(PVDF)相比,使用聚酰亚胺粘结剂的诸如本文所述的电池可以实现容量保留的显著改善。虽然聚酰亚胺粘结剂在9个循环之后可以保留约90%的容量,但是更常规的方法在仅8个循环之后就可能损失约30%的容量。

壳体

如所讨论的,电池壳体500可以优选地起到提供保护性包装以使电池适合使用的作用。外部壳体可以形成为各种电池结构形状因素,诸如纽扣电芯电池结构、卷绕型电池结构、或袋状电芯电池。特别是对于高温使用,电池优选地包括高温电池壳体。

高温电池壳体起到包装内部电池系统用于高温用途的作用,该高温用途可以包括大于50℃的温度,但是电池可以另外在室温或低于室温下保持操作。如图8所示,高温电池壳体可以包括封闭电池内部构件的金属外部壳体。一些种类的金属壳体是基于钢材料并用作负接触,但也可以替代性地使用其他适合的材料。高温电池壳体可以另外包括电接触区域,该电接触区域包括由玻璃-金属密封件限定的正接触柱,如图8所示。正接触柱优选地从电池壳体的表面向外延伸。负接触优选地是电接触区域中的其他地方的材料,诸如围绕玻璃-金属密封件的金属表面和金属壳体本身。玻璃-金属密封件优选地是围绕正接触柱的环。玻璃-金属密封件优选地是电绝缘体。玻璃-金属密封件,至少对于所需的操作温度范围而言,可以另外具有与电池壳体中使用的材料匹配的热膨胀特性。匹配的热膨胀可以起到防止电池泄漏和其他机械故障的作用。

在某些实例中,可以制造纽扣电芯电池以输送10mWh,如图3所示。在优选的实现方式中,阳极200可以是如上所述的锂金属阳极。在优选的实现方式中,阴极可以是如上所述的阴极。在优选的实现方式中,隔膜200可以是如上所述的隔膜系统。如图所示,纽扣电芯电池可以包括铝隔板、不锈钢垫片、和不锈钢弹簧。

在某些实施例中,如图1所示的卷绕型的DD形式电芯电池可以产生大约3.7伏的标称电压,提供大约80Wh的能量,是不可燃的,在高达160℃或更高的温度下操作,并且是可再充电的。可以替代性地使用替代性的卷绕型形式。

在一些实施例中,如图4所示,可以通过润湿并压缩电极以得到良好的接触和低电阻来形成袋状电芯电池。在各种实施例中,可以将袋状电芯电池的金属箔和插片焊接在一起。在某些实施例中,袋状电芯电池可以包括堆叠电极,这些堆叠电极被配置成从2×3cm形式的40mWh输送到10×12cm形式的8Wh。在一个实施例中,袋状电芯电池的二至二十个电极可以沿Z形折叠组装并堆叠在袋状层压件或预成型的袋状层压件中。在某些实施例中,可以在真空密封该袋之前将电解质100注入袋状电芯电池中。

如图2中的示例性电池的横截面图所示,电池可以包括金属阳极200、聚合物隔膜400、离子液体电解质100、和金属氧化物阴极300。电池的部件可以是本文所述的优选部件。

该系统可以另外包括充电器系统600,该充电器系统起到给电池再充电的作用,如图9所示。充电器系统600优选地电耦合到电池,并且然后电池以充电模式操作以给电池重新供能,用于随后在电气系统供电中使用。如本申请人所发现的,当在高充电温度下充电时,电池经历的一些变化增强可再充电性(再充电量和/或再充电循环次数)。在一些变型中,充电器系统600是可以包括加热器元件的高温充电系统,该高温充电系统起到在高温下给电池充电的作用。加热器元件可以优选地是受调控的加热元件,该加热元件被控制并配置成在充电模式下将电池设定和/或维持在特定温度下。在一种实现方式中,高温充电系统600被配置成将电池的温度设定在70-120℃之间。例如,高温充电系统600可以在至少80℃的温度下给电池充电。电池系统可以被配置成用于在充电循环期间改变由加热器元件设定的充电温度。例如,加热器元件可以被配置成用于在充电循环中在一个时间段内设定第一温度,并且在该充电循环中在第二时间段内设定第二温度。充电器系统600可以另外被配置成应用调谐到在电池中使用的特定部件材料和化学品的充电循环。

电池优选地至少在充电操作模式和放电模式(即,活动使用模式)下可操作。电池可以另外具有待机模式,其中电池未处于活动使用状态。如所讨论的,电池优选地在放电操作模式和待机操作模式期间在高温下是可操作的。换句话讲,未处于活动使用状态的电池可以暴露于高温条件下,并且同一电池可以在高温条件下使用。在充电操作模式期间,高温系统可以被配置成将电池的温度加热或维持在至少80℃。

该系统可以另外包括一个或多个电气设备,其中这些电气设备起到提供一些基于电气的功能的作用,这些功能至少部分地由可再充电电池供电或者为本文所述的可再充电电池供电。示例性电气设备可以包括恶劣环境传感器或设备(例如,井和采矿设备)、医疗设备(例如,由电池供电的可植入医疗设备和给电池充电的感应充电器)、可穿戴计算设备、和/或其他适合的电气设备。在一个变型中,充电器系统600可以集成到电气设备中,使得电池可以通过电气设备再充电。

如本领域技术人员将从前面的详细描述以及从附图和权利要求中所认识到的,在不脱离以下权利要求限定的本发明的范围的情况下,可以对本发明的实施例进行修改和改变。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:电池隔膜和使用该电池隔膜的电池

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类