抗apoc3抗体和其使用方法

文档序号:1745530 发布日期:2019-11-26 浏览:35次 >En<

阅读说明:本技术 抗apoc3抗体和其使用方法 (Anti- APOC3 antibody and its application method ) 是由 P·达西尔瓦-贾迪尼 H·德哈德 于 2018-04-20 设计创作,主要内容包括:本公开提供了特异性结合于ApoC3(例如人ApoC3)并且拮抗ApoC3功能的抗体。还提供了包含这些抗体的药物组合物、编码这些抗体的核酸、用于产生这些抗体的表达载体和宿主细胞以及使用这些抗体治疗受试者的方法。(Present disclose provides the antibody for specifically binding to ApoC3 (such as people ApoC3) and antagonism ApoC3 function.It additionally provides comprising the pharmaceutical composition of these antibody, the nucleic acid for encoding these antibody, the expression vector for generating these antibody and host cell and using the method for these Antybody therapies subject.)

抗APOC3抗体和其使用方法

相关申请

本申请要求2017年4月21日提交的美国临时申请第62/488,425号的权益,所述申请以全文引用的方式并入本文中。

技术领域

本公开涉及特异性结合于ApoC3(例如人ApoC3)的抗体和其使用方法。

背景技术

升高的血液三酸甘油酯水平(高三酸甘油酯血症)是动脉粥样硬化的一个因果因素,并且增加心血管事件的风险,例如心血管死亡、心绞痛、心肌梗塞和中风。

ApoC3是以极高浓度(超过10μM)在血液中循环的蛋白质,其主要结合于富含三酸甘油酯的脂蛋白(TRL)、TRL残余物和高密度脂蛋白。ApoC3似乎是血液三酸甘油酯水平的重要调节因子。举例来说,人体内的ApoC3水平已经显示与血液三酸甘油酯水平正相关,其中升高的ApoC3水平与高三酸甘油酯血症相关联。另外,ApoC3已经显示抑制脂蛋白脂肪酶(水解TRL中的三酸甘油酯的酶)的活性并且还抑制TRL残余物的肝吸收,两方面都引起血液三酸甘油酯水平的升高。

已经批准若干疗法用于治疗高三酸甘油酯血症,例如贝特类药(fibrate)、烟酸和Ω-3脂肪酸。然而,这些疗法只略微有效地降低血浆三酸甘油酯。因此,在本领域中需要改良的降低血浆三酸甘油酯的疗法。

发明内容

本公开提供了特异性结合于ApoC3(例如人ApoC3)并抑制ApoC3功能的抗体。还提供了包含这些抗体的药物组合物、编码这些抗体的核酸、用于产生这些抗体的表达载体和宿主细胞以及使用这些抗体治疗受试者的方法。

在某些实施例中,本文公开的抗ApoC3抗体在向受试者施用时可以减弱ApoC3抑制肝细胞吸收TRL的能力并且能够快速而持续地降低ApoC3和ApoB的血清水平。因此,所公开的抗ApoC3抗体可用于治疗和预防高三酸甘油酯血症和相关疾病(例如心血管疾病和胰腺炎)。

因此,在一方面,本公开提供了一种分离的抗体,其在pH 7.4下以第一解离常数(KD)和在pH 5.5下以第二KD特异性结合于ApoC3,其中所述第二KD与所述第一KD之间的比率超过或至少约5、10、20或50。在某些实施例中,第一KD小于10、5、2、1、0.5、0.2或0.1nM。在某些实施例中,抗体在表达ApoC3的小鼠中的半衰期超过或至少约3天、7天、14天、21天或28天。

在某些实施例中,抗体减弱ApoC3抑制肝细胞吸收极低密度脂蛋白(VLDL)的能力。在某些实施例中,抗体能够提高ApoC3从受试者的血液中清除的速率。在某些实施例中,抗体能够提高ApoB从受试者的血液中清除的速率。在某些实施例中,抗体能够降低ApoC3在受试者的血液中的水平。在某些实施例中,抗体能够使ApoC3在受试者的血液中的水平降低至少40%,持续至少2周。在某些实施例中,抗体能够降低ApoB在受试者的血液中的水平。在某些实施例中,抗体能够使ApoB在受试者的血液中的水平降低至少20%,持续至少2周。在某些实施例中,抗体能够抑制受试者的餐后脂血症。在某些实施例中,抗体能够结合于脂质结合的ApoC3。

在某些实施例中,抗体结合于在SEQ ID NO:2中所述的氨基酸序列内的表位。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5、6、8或10处的氨基酸中的至少一个。在某些实施例中,表位包含处于SEQ ID NO:2的位置5和6处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5、6和8处的氨基酸。在某些实施例中,表位包含处于SEQ IDNO:2的位置10处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置6、8和10处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置6和8处的氨基酸。

在某些实施例中,抗体包含具有互补决定区CDRH1、CDRH2和CDRH3的重链可变区和具有互补决定区CDRL1、CDRL2和CDRL3的轻链可变区,并且其中:

(a)CDRH1包含TYSMR(SEQ ID NO:3)的氨基酸序列;

(b)CDRH2包含SIX1TDGGGTAYRDSVKG的氨基酸序列,其中X1是S或H(SEQ ID NO:4);

(c)CDRH3包含X2GYSD的氨基酸序列,其中X2是A或H(SEQ ID NO:5);

(d)CDRL1包含KTSQGLVHSDGKTYFY(SEQ ID NO:6)的氨基酸序列;

(e)CDRL2包含QVSNRAS(SEQ ID NO:7)的氨基酸序列;并且

(f)CDRL3包含AX3GTYYPHT的氨基酸序列,其中X3是Q或H(SEQ ID NO:8),

并且其中X1、X2和X3中的至少一个是H。

在某些实施例中,CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3分别包含以下中所述的氨基酸序列:SEQ ID NO:3、11、10、6、7和13;SEQ ID NO:3、9、12、6、7和13;SEQ ID NO:3、9、10、6、7和14;SEQ ID NO:3、11、10、6、7和14;SEQ ID NO:3、9、12、6、7和14;SEQ ID NO:3、11、12、6、7和13;或SEQ ID NO:3、11、12、6、7和13。在某些实施例中,重链可变区包含选自由SEQ ID NO:16-18组成的群组的氨基酸序列。在某些实施例中,轻链可变区包含SEQ ID NO:20中所述的氨基酸序列。在某些实施例中,重链可变区和轻链可变区分别包含分别在SEQID NO:16和19、SEQ ID NO:17和19、SEQ ID NO:18和19、SEQ ID NO:15和20、SEQ ID NO:16和20、SEQ ID NO:17和20或SEQ ID NO:18和20中所述的氨基酸序列。

在另一方面,本公开提供了一种特异性结合于ApoC3的分离的抗体,所述抗体包含具有互补决定区CDRH1、CDRH2和CDRH3的重链可变区和具有互补决定区CDRL1、CDRL2和CDRL3的轻链可变区,其中:

(a)CDRH1包含TYSMR(SEQ ID NO:3)的氨基酸序列;

(b)CDRH2包含SIX1TDGGGTAYRDSVKG的氨基酸序列,其中X1是S或H(SEQ ID NO:4);

(c)CDRH3包含X2GYSD的氨基酸序列,其中X2是A或H(SEQ ID NO:5);

(d)CDRL1包含KTSQGLVHSDGKTYFY(SEQ ID NO:6)的氨基酸序列;

(e)CDRL2包含QVSNRAS(SEQ ID NO:7)的氨基酸序列;并且

(f)CDRL3包含AX3GTYYPHT的氨基酸序列,其中X3是Q或H(SEQ ID NO:8),

并且其中X1、X2和X3中的至少一个是H。

在某些实施例中,CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3分别包含以下中所述的氨基酸序列:SEQ ID NO:3、11、10、6、7和13;SEQ ID NO:3、9、12、6、7和13;SEQ ID NO:3、9、10、6、7和14;SEQ ID NO:3、11、10、6、7和14;SEQ ID NO:3、9、12、6、7和14;SEQ ID NO:3、11、12、6、7和13;或SEQ ID NO:3、11、12、6、7和13。

在另一方面,本公开提供了一种特异性结合于ApoC3的分离的抗体,所述抗体包括包含选自由SEQ ID NO:16-18组成的群组的氨基酸序列的重链可变区。

在另一方面,本公开提供了一种特异性结合于ApoC3的分离的抗体,所述抗体包括包含SEQ ID NO:20中所述的氨基酸序列的轻链可变区。

在另一方面,本公开提供了一种特异性结合于ApoC3的分离的抗体,所述抗体包含重链可变区和轻链可变区,其中所述重链可变区和所述轻链可变区分别包含分别在SEQ IDNO:16和19、SEQ ID NO:17和19、SEQ ID NO:18和19、SEQ ID NO:15和20、SEQ ID NO:16和20、SEQ ID NO:17和20或SEQ ID NO:18和20中所述的氨基酸序列。

在上述方面中的任一方面的某些实施例中,抗体进一步包含恒定区(例如人或人源化恒定区)。在某些实施例中,恒定区是野生型人免疫球蛋白重链恒定区的变体,并且其中所述变异人类免疫球蛋白重链恒定区在pH 6下对人新生儿Fc受体(FcRn)的亲和力相对于所述野生型人免疫球蛋白重链恒定区在pH 6下对人FcRn的亲和力增加。

在某些实施例中,恒定区是人IgG的重链恒定区。在某些实施例中,恒定区是人IgG1、IgG2或IgG4的重链恒定区。在某些实施例中,恒定区在EU位置433、434和436处分别包含氨基酸K、F和Y。在某些实施例中,恒定区在EU位置252、254和256处分别包含氨基酸Y、T和E。在某些实施例中,恒定区在EU位置428和434处分别包含氨基酸L和S。在某些实施例中,恒定区包含选自由SEQ ID NO:22-24、37-39和42-47组成的群组的氨基酸序列。

在本文公开的方面中的任一方面的某些实施例中,ApoC3是人ApoC3。

在另一方面,本公开提供了一种药物组合物,其包含如本文公开的抗体和药学上可接受的载体。

在另一方面,本公开提供了一种多核苷酸,其编码如本文公开的抗体的重链可变区或轻链可变区。在另一方面,本公开提供了一种表达载体,其包含如本文公开的多核苷酸。在另一方面,本公开提供了一种宿主细胞,其包含如本文公开的表达载体。

在另一方面,本公开提供了一种用于产生结合于ApoC3的抗体的方法,所述方法包含在允许所述抗体表达的条件下培养如本文公开的宿主细胞。

在另一方面,本公开提供了一种抑制受试者中的ApoC3的活性的方法,所述方法包含向所述受试者施用有效量的如本文公开的抗体或药物组合物。在另一方面,本公开提供了一种降低受试者的血液中的三酸甘油酯水平的方法,所述方法包含向所述受试者施用有效量的如本文公开的抗体或药物组合物。在另一方面,本公开提供了一种抑制受试者的餐后脂血症的方法,所述方法包含向所述受试者施用有效量的如本文公开的抗体或药物组合物。在另一方面,本公开提供了一种治疗受试者的高三酸甘油酯血症的方法,所述方法包含向所述受试者施用有效量的如本文公开的抗体或药物组合物。在另一方面,本公开提供了一种治疗受试者的乳糜微粒血症的方法,所述方法包含向所述受试者施用有效量的如本文公开的抗体或药物组合物。

在另一方面,本公开提供了一种降低患有高三酸甘油酯血症的受试者中的心血管疾病风险的方法,所述方法包含向所述受试者施用有效量的如本文公开的抗体或药物组合物。在某些实施例中,心血管疾病是心肌梗塞。在某些实施例中,心血管疾病是心绞痛。在某些实施例中,心血管疾病是中风。在某些实施例中,心血管疾病是动脉粥样硬化。

在与治疗方法相关的上述方面的某些实施例中,抗体降低受试者的血液中的乳糜微粒或乳糜微粒残余物的水平。在某些实施例中,受试者正接受额外降脂剂。在某些实施例中,额外降脂剂是HMG-CoA还原酶抑制剂。在某些实施例中,HMG-CoA还原酶抑制剂是阿托伐他汀(atorvastatin)、氟伐他汀(fluvastatin)、洛伐他汀(lovastatin)、匹伐他汀(pitavastatin)、普伐他汀(pravastatin)、罗素他汀(rosuvastatin)或辛伐他汀(simvastatin)。在某些实施例中,额外降脂剂是PCSK9抑制剂。在某些实施例中,PCSK9抑制剂是阿利库单抗(alirocumab)、依伏库单抗(evolocumab)或博可珠单抗(bococizumab)。在某些实施例中,额外降脂剂是依泽替米贝(ezetimibe)。在某些实施例中,额外降脂剂是依泽替米贝与HMG-CoA还原酶抑制剂的组合。在某些实施例中,额外降脂剂是依泽替米贝、HMG-CoA还原酶抑制剂和PCSK9抑制剂的组合。

附图说明

图1A、1B和1C是展示5E5WT(图1A)、5E5VH5_VL8(图1B)和5E5VHWT_VL8(“VL8”)、5E5VH12_VLWT(“VH12”)、5E5VH5_VLWT(“VH5”)和5E5VH5_VL8(“VH5_VL8”)(图1C)抗体减弱ApoC3抑制HepG2细胞吸收极低密度脂蛋白(VLDL)的能力的一系列图。HepG2细胞与DiIVLDL和纯化的ApoC3一起单独或在如所指示的抗ApoC3抗体存在下培育。通过DiI染料的荧光光谱分析来测量HepG2细胞摄取的DiI VLDL。与单独DiI VLDL(“VLDL”)一起培育的HepG2细胞充当阳性对照,并且与DiI VLDL和纯化的ApoC3一起在不存在抗ApoC3抗体(“ApoC3”)下培育的HepG2细胞充当阴性对照。

图2A-2C是展示两种抗ApoC3抗体5E5和5E5VH5_VL8以及抗鸡蛋溶酶体人IgG1抗体(HyHel5)在AAV8-人ApoC3小鼠模型中的药物动力学和药效学的图。测试抗体经静脉内施用至表达转基因人ApoC3的小鼠。测量多个注射后时间的人IgG1(图2A)、人ApoC3(图2B)和小鼠ApoB(图2C)的血清含量,并绘制相比于时间0的绝对或相对水平。

图3A-3D是展示AAV8-人ApoC3小鼠模型中5E5VH5_VL8降低空腹三酸甘油酯水平和循环餐后三酸甘油酯水平的图(每个处理组n=6)。空腹过夜前后用5E5VH5_VL8或HyHel5抗体处理的小鼠中的血浆三酸甘油酯水平展示于图3A中。在橄榄油激发之后这些小鼠中的血浆三酸甘油酯水平展示于图3B中,并且计算出的曲线下面积值绘制在图3C中。整个抗体处理、空腹和橄榄油激发过程的ApoC3水平绘制在图3D中。

具体实施方式

本公开提供了特异性结合于ApoC3(例如人ApoC3)并抑制ApoC3功能的抗体。还提供了包含这些抗体的药物组合物、编码这些抗体的核酸、用于产生这些抗体的表达载体和宿主细胞以及使用这些抗体治疗受试者的方法。在某些实施例中,本文公开的抗ApoC3抗体在向受试者施用时可以减弱ApoC3抑制肝细胞吸收TRL的能力并且能够快速而持续地降低ApoC3和ApoB的血清水平。因此,所公开的抗ApoC3抗体可用于治疗和预防高三酸甘油酯血症和相关疾病(例如心血管疾病和胰腺炎)。

1.定义

如本文所用,术语“ApoC3”是指载脂蛋白C3蛋白。在某些实施例中,ApoC3是人ApoC3。一示例性人ApoC3氨基酸序列阐述于RefSeq登录号NP_000031.1中。NP_000031.1的成熟氨基酸序列如下∶

SEAEDASLLSFMQGYMKHATKTAKDALSSVQESQVAQQARGWVTDGFSSLKDYWSTVKDKFSEFWDLDPEVRPTSAVAA(SEQ ID NO:1)。

如本文所用,术语“抗体(antibody)”和“抗体(antibodies)”包括全长抗体、全长抗体的抗原结合片段以及包含抗体CDR、VH区或VL区的分子。抗体的实例包括单克隆抗体、以重组方式产生的抗体、单特异性抗体、多特异性抗体(包括双特异性抗体)、人类抗体、人源化抗体、嵌合抗体、免疫球蛋白、合成抗体、包含两个重链和两个轻链分子的四聚体抗体、抗体轻链单体、抗体重链单体、抗体轻链二聚体、抗体重链二聚体、抗体轻链-抗体重链对、内抗体、异源缀合抗体、单域抗体、单价抗体、单链抗体或单链Fv(scFv)、scFv-Fc、骆驼科抗体(例如美洲驼抗体)、骆驼化抗体、亲和体、Fab片段、F(ab')2片段、二硫键连接的Fv(sdFv)、抗独特型(抗Id)抗体(包括例如抗抗Id抗体)以及以上任一个的抗原结合片段。在某些实施例中,本文公开的抗体是指多克隆抗体群体。抗体可以属于免疫球蛋白分子的任何类型(例如IgG、IgE、IgM、IgD、IgA或IgY)、任何类别(例如IgG1、IgG2、IgG3、IgG4、IgA1或IgA2)或任何亚类(例如IgG2a或IgG2b)。在某些实施例中,本文公开的抗体是IgG抗体,或其类别(例如人IgG1或IgG4)或亚类。在一个特定实施例中,抗体是人源化单克隆抗体。

如本文所用,“分离的抗体”是指已经从天然环境的至少一种组分中鉴定和分离和/或回收的抗体。术语“分离的抗体”包括原位在重组宿主细胞内的抗体。

如本文所用,术语“CDR”或“互补决定区”意指在重链和轻链多肽的可变区内发现的非连续抗原结合位点。这些特定区域已经由以下描述:Kabat等人,《生物化学杂志(J.Biol.Chem.)》252,6609-6616(1977);和Kabat等人,《免疫学感兴趣的蛋白质的序列(Sequences of protein of immunological interest)》.(1991);Chothia等人,《分子生物学杂志(J.Mol.Biol.)》196:901-917(1987);以及MacCallum等人,《分子生物学杂志》262:732-745(1996),这些文献全部以全文引用的方式并入本文中,其中在彼此比较时,定义包括氨基酸残基的重叠或亚群。在某些实施例中,术语“CDR”是如由Kabat等人,《生物化学杂志》252,6609-6616(1977)和Kabat等人,《免疫学感兴趣的蛋白质的序列》(1991)定义的CDR。CDRH1、CDRH2和CDRH3表示重链CDR,并且CDRL1、CDRL2和CDRL3表示轻链CDR。

如本文所用,术语“框架(FR)氨基酸残基”是指在免疫球蛋白链的框架区中的那些氨基酸。如本文所用,术语“框架区”或“FR区”包括作为可变区的一部分,但不是CDR的一部分(例如使用CDR的Kabat定义)的氨基酸残基。

如本文所用,术语“可变区”和“可变域”可互换地使用并且是本领域中常见的。可变区通常是指抗体的一部分,一般是轻链或重链的一部分,通常是成熟重链中的约氨基端110至120个氨基酸或110至125个氨基酸和成熟轻链中的约90至115个氨基酸,其在抗体之间在序列上有很大差异并用于特定抗体对其特定抗原的结合和特异性中。序列可变性集中在被称作互补决定区(CDR)的那些区域中,而可变域中的更高度保守区被称作框架区(FR)。不希望受任何特定机制或理论的束缚,相信轻链和重链的CDR主要负责抗体与抗原的相互作用和特异性。在某些实施例中,可变区是人可变区。在某些实施例中,可变区包含啮齿动物或鼠CDR和人框架区(FR)。在特定实施例中,可变区是灵长类动物(例如非人灵长类动物)可变区。在某些实施例中,可变区包含啮齿动物或鼠CDR和灵长类动物(例如非人灵长类动物)框架区(FR)。

术语“VL”和“VL结构域”可互换用于指抗体的轻链可变区。

术语“VH”和“VH结构域”可互换用于指抗体的重链可变区。

如本文所用,术语“恒定区”和“恒定域”是可互换的并且是本领域中常见的。恒定区是不直接参与抗体与抗原的结合但可以展现各种效应功能,如与Fc受体的相互作用的抗体部分,例如轻链或重链的羧基端部分。免疫球蛋白分子的恒定区通常具有相对于免疫球蛋白可变域来说更为保守的氨基酸序列。

如本文所用,术语“重链”当关于抗体使用时可以指基于恒定域的氨基酸序列的任何不同类型,例如α(α)、δ(δ)、ε(ε)、γ(γ)和μ(μ),其分别产生抗体的IgA、IgD、IgE、IgG和IgM类别,包括IgG的亚类,例如IgG1、IgG2、IgG3和IgG4

如本文所用,术语“轻链”当关于抗体使用时可以指基于恒定域的氨基酸序列的任何独特类型,例如κ(κ)或λ(λ)。轻链氨基酸序列是本领域众所周知的。在特定实施例中,轻链是人轻链。

如本文所用,术语“EU位置”是指根据如以下所描述的EU编号惯例,抗体的恒定区的氨基酸位置:Edelman,G.M.等人,《美国国家科学院院刊(Proc.Natl.Acad.USA)》,63,78-85(1969)和Kabat等人,《免疫学感兴趣的蛋白质的序列》,美国卫生与公众服务部(U.S.Dept.Health and Human Services),第5版,1991,所述文献中的每一个以全文引用的方式并入本文中。

如本文所用,术语“特异性结合于”是指抗体能够以小于约1×10-6M、1×10-7M、1×10-8M、1×10-9M、1×10-10M、1×10-11M、1×10-12M或更少的解离常数(KD)结合于抗原,或以超过对非特异性抗原的亲和力至少两倍的亲和力结合于抗原。

如本文所用,“表位”是指抗体可以特异性结合的局部抗原区域。表位可以是例如多肽的连续氨基酸(线性或连续表位),或表位可以例如由一个或多个多肽的两个或更多个非连续区形成(构象、非线性、不连续或非连续表位)。在某些实施例中,抗体所结合的表位可以通过例如NMR光谱法、X射线衍射晶体学研究、ELISA分析法、氢/氘交换联合质谱法(例如液相色谱法电喷雾质谱法)、肽扫描分析法或诱变定位(例如定点诱变定位)确定。

如本文所用,术语“治疗(treat)”、“治疗(treating)”和“治疗(treatment)”是指本文公开的治疗性或预防性措施。“治疗”方法采用向患有疾病或病症或容易患这类疾病或病症的受试者施用抗ApoC3抗体,以便对所述疾病或病症或复发性疾病或病症进行预防、治愈、延迟、降低其严重程度、减小其显现的风险或改善其一种或多种症状,或是为了延长受试者的存活期,超过在没有这种治疗的情况下的预期存活期。

如本文所用,术语“有效量”在向受试者施用疗法的情形下是指实现所期望的预防或治疗作用的疗法的量。

如本文所用,术语“受试者”包括任何人或非人动物。

如本文所用,术语“或”意指和/或。

如本文所用,术语“约”和“大致”当用于修饰数值或数字范围时,指示比所述值或范围高5%至10%和低5%至10%的偏差保持在所叙述值或范围的预期含义内。

2.抗ApoC3抗体

本公开提供了特异性结合于ApoC3(例如人ApoC3)并且抑制ApoC3功能的分离的抗体。

在某些实施例中,分离的抗体结合于哺乳动物的ApoC3蛋白。在某些实施例中,分离的抗体结合于人ApoC3。在某些实施例中,分离的抗体结合于食蟹猴(食蟹猕猴)ApoC3。

在某些实施例中,分离的抗体在生理pH(例如pH 7.4)下结合于ApoC3(例如人ApoC3)的亲和力高于酸性pH(例如pH 5.5至pH 6)下。用于产生这类pH依赖性抗体的方法在本领域中众所周知。举例来说,在一种示例性方法中,抗ApoC3抗体的重链和/或轻链CDR中的一个或多个氨基残基经组氨酸残基取代,如以下中所述∶Igawa等人,《自然·生物技术(Nat Biotechnol.)》(2010)28(11):1203-1207;Chaparro-Riggers等人,《生物化学杂志》(2012)287(14):11090-11097;美国专利第9,096,651号和美国专利公开第US20110111406A1号,所述文献中的每一个以全文引用的方式并入本文中。然而,虽然此类方法是本领域中众所周知的,但熟练工人将了解对于任何给出的抗体来说,可以突变成组氨酸以在不破坏抗体对抗原的亲和力下实现依赖于pH值的与抗原的结合的确切CDR氨基酸只能凭经验确定(参见例如Edgcomb和Murphy,《蛋白质(Proteins)》(2002)49:1-6,其以全文引用的方式并入本文中)。

本领域的技术人员将了解,抗体对抗原的亲和力可以由解离常数(KD)指示,其中较小KD指示较高亲和力。因此,在某些实施例中,抗ApoC3抗体在pH 7.4下以第一KD和在pH5.5下以第二KD结合于ApoC3(例如人ApoC3),其中第二KD与第一KD之间的比率超过或至少为1(例如超过或至少为1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.5、3、3.5、4、4.5、5、6、7、8、9、10、11、12、13、14、15、20、25、30、35、40、45、50、60、70、80、90或100)。

在某些实施例中,第一KD小于100nM(例如小于50、20、10、5、2、1、0.5、0.2或0.1nM)。在某些实施例中,第二KD超过1nM(例如超过2、5、10、20或50nM,或超过0.1、0.2、0.5、1、2、5、10、20、50或100μM)。在某些实施例中,第一KD小于100nM(例如小于50、20、10、5、2、1、0.5、0.2或0.1nM),并且抗体在表达ApoC3(例如人ApoC3)的动物(例如人或小鼠)中的半衰期超过或至少约1天(例如超过或至少约2天、3天、4天、5天、6天或7天,或超过约1周、2周、3周、4周、6周或8周)。在某些实施例中,ApoC3是人ApoC3,并且表达ApoC3的动物是人。在某些实施例中,ApoC3是人ApoC3,并且表达ApoC3的动物是表达人ApoC3的小鼠。

在某些实施例中,本文公开的分离的抗体减弱ApoC3抑制肝细胞吸收TRL(例如VLDL)或TRL残余物(在体内或体外)的能力。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的分离的抗体减弱ApoC3抑制肝细胞吸收TRL(例如VLDL)或TRL残余物的能力达至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或99%。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的分离的抗体减弱ApoC3抑制肝细胞吸收TRL(例如VLDL)或TRL残余物的能力达至少约1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或100倍。

在某些实施例中,本文公开的分离的抗体在进餐前、进餐期间或进餐后施用至受试者时能够抑制受试者的餐后脂血症。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的抗ApoC3抗体能够抑制受试者的餐后脂血症达至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或99%。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的抗ApoC3抗体能够抑制受试者的餐后脂血症达至少约1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或100倍。

在某些实施例中,本文公开的分离的抗体在进餐前、进餐期间或进餐后施用至受试者时能够降低餐后乳糜微粒或乳糜微粒残余物的水平。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的抗ApoC3抗体能够降低受试者中餐后乳糜微粒或乳糜微粒残余物的水平达至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或99%。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的抗ApoC3抗体能够降低受试者中餐后乳糜微粒或乳糜微粒残余物的水平达至少约1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或100倍。

在某些实施例中,本文公开的分离的抗体能够增加ApoC3和/或ApoB(例如ApoB48和/或ApoB100)从受试者的血液中清除的速率。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,抗ApoC3抗体能够增加ApoC3和/或ApoB(例如ApoB48和/或ApoB100)从受试者的血液中清除的速率达至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或99%。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的抗ApoC3抗体能够增加ApoC3和/或ApoB(例如ApoB48和/或ApoB100)从受试者的血液中清除的速率达至少约1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或100倍。用于评估ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的清除的方法包括但不限于同位素示踪剂技术,其中同位素可以是放射性或稳定的。

在某些实施例中,本文公开的分离的抗体能够降低受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,抗ApoC3抗体能够降低受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平达至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或99%。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,本文公开的抗ApoC3抗体能够降低受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平达至少约1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或100倍。在某些实施例中,受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平的减少维持至少1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、15天、20天、25天、30天、35天、40天、45天或50天,或至少1周、2周、3周、4周、5周、6周、7周或8周。

在某些实施例中,本文公开的分离的抗体能够结合于脂质结合的ApoC3(例如结合于三酸甘油酯、TRL(例如VLDL)或TRL残余物的ApoC3)。在某些实施例中,本文公开的分离的抗体不抑制ApoC3与脂质或脂蛋白的结合。在某些实施例中,本文公开的抗体不与脂质或脂蛋白竞争结合ApoC3。在某些实施例中,脂质包含脂肪酸链。在某些实施例中,脂质包含磷脂酰基。在某些实施例中,脂质包含磷脂酰胆碱(例如DMPC)、磷脂酰丝氨酸、磷脂酰乙醇胺、磷脂酰肌醇或磷脂酰甘油。在某些实施例中,脂质是三酸甘油酯。在某些实施例中,脂蛋白是TRL(例如VLDL)或TRL残余物。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,在本文公开的抗ApoC3抗体存在下ApoC3结合于脂质和脂蛋白(例如三酸甘油酯、TRL(例如VLDL)或TRL残余物)的能力是在不存在抗ApoC3抗体下ApoC3结合于相同脂质和脂蛋白的能力的至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或99%。

在某些实施例中,本文公开的分离的抗体减弱ApoC3抑制肝细胞吸收TRL(例如VLDL)或TRL残余物的能力。在某些实施例中,在如本文公开的抗ApoC3抗体存在下肝细胞(例如HepG2细胞)对TRL(例如VLDL)或TRL残余物的吸收比在抗ApoC3抗体不存在下肝细胞(例如HepG2细胞)对TRL(例如VLDL)或TRL残余物的吸收高至少1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍或5倍。

在某些实施例中,本文公开的分离的抗体减弱ApoC3抑制肝细胞吸收TRL(例如VLDL)或TRL残余物的能力,并能够结合于脂质结合的ApoC3(例如结合于三酸甘油酯、TRL(例如VLDL)或TRL残余物的ApoC3)。

在某些实施例中,本文公开的分离的抗体结合于氨基酸序列FSEFWDLDPE(SEQ IDNO:2)内的ApoC3的表位。在某些实施例中,表位包含SEQ ID NO:2内的至少一个氨基酸,并且任选地包含来自与SEQ ID NO:2相邻的SEQ ID NO:1的一个或多个氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5、6、8或10处的氨基酸中的至少一个。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5、6、8或10处的氨基酸中的至少两个。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5、6、8或10处的氨基酸中的至少三个。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5、6、8或10处的氨基酸中的至少四个。在某些实施例中,表位包含处于SEQ ID NO:2的位置5和6处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5和6处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5和8处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置2、5、6和8处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置10处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置6和10处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置8和10处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置6和8处的氨基酸。在某些实施例中,表位包含处于SEQ ID NO:2的位置6、8和10处的氨基酸。在某些实施例中,抗体能够结合于脂质结合的ApoC3(例如结合于三酸甘油酯、TRL(例如VLDL)或TRL残余物的ApoC3)。在某些实施例中,抗体不能减弱ApoC3抑制脂蛋白脂肪酶介导的TRL(例如VLDL)脂肪分解的能力。在某些实施例中,抗体还减弱ApoC3抑制肝细胞吸收TRL(例如VLDL)或TRL残余物的能力。在某些实施例中,抗体在进餐前、进餐期间或进餐后施用至受试者时还能够抑制受试者的餐后脂血症。在某些实施例中,本文公开的抗体在进餐前、进餐期间或进餐后施用至受试者时还能够降低受试者中的餐后乳糜微粒或乳糜微粒残余物的水平。

任何合适的分析法都可以用于测量本文公开的抗体的上述功能活性。示例性分析法包括(但不限于)本文中的实例中所公开的功能分析法。

示例性抗ApoC3抗体的氨基酸序列阐述于本文表1-7中。

表1.示例性抗ApoC3抗体的重链CDR氨基酸序列.

表2.示例性抗ApoC3抗体的轻链CDR氨基酸序列.

表3.示例性抗ApoC3抗体的VH氨基酸序列

表4.示例性抗ApoC3抗体的VL氨基酸序列.

表5.示例性抗ApoC3抗体的VH和VL序列.

表6.示例性重链和轻链恒定区的序列.

表7.示例性抗ApoC3抗体的完整重链和轻链序列.

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包括包含本文表3中所述的VH结构域的CDR中的一个、两个或全部三个CDR的VH结构域。在某些实施例中,抗体包含表3中所述的VH结构域之一的CDRH1。在某些实施例中,抗体包含表3中所述的VH结构域之一的CDRH2。在某些实施例中,抗体包含表3中所述的VH结构域之一的CDRH3。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包括包含本文表4中所公开的VL结构域的CDR中的一个、两个或全部三个CDR的VL结构域。在某些实施例中,抗体包含表4中所公开的VL结构域之一的CDRL1。在某些实施例中,抗体包含表4中所述的VL结构域之一的CDRL2。在某些实施例中,抗体包含表4中所述的VL结构域之一的CDRL3。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包含具有互补决定区CDRH1、CDRH2和CDRH3的重链可变区和具有互补决定区CDRL1、CDRL2和CDRL3的轻链可变区,其中CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3分别包含表5中所述的抗体的CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3区的氨基酸序列。

在某些实施例中,抗体的CDR可以根据Kabat等人,《生物化学杂志》252,6609-6616(1977)和Kabat等人,《免疫学感兴趣的蛋白质的序列》(1991)确定。在某些实施例中,抗体的轻链CDR根据Kabat确定,并且抗体的重链CDR根据MacCallum(上述)确定。

在某些实施例中,抗体的CDR可以根据Chothia编号方案确定,所述编号方案提及免疫球蛋白结构环的位置(参见例如Chothia C与Lesk AM,(1987),《分子生物学杂志》196:901-917;Al-Lazikani B等人,(1997)《分子生物学杂志》273:927-948;Chothia C等人,(1992)《分子生物学杂志》227:799-817;Tramontano A等人,(1990)《分子生物学杂志》215(1):175-82;和美国专利第7,709,226号)。典型地,当使用Kabat编号惯例时,ChothiaCDRH1环存在于重链氨基酸26至32、33或34处,Chothia CDRH2环存在于重链氨基酸52至56处,并且Chothia CDRH3环存在于重链氨基酸95至102处,而Chothia CDRL1环存在于轻链氨基酸24至34处,Chothia CDRL2环存在于轻链氨基酸50至56处,并且Chothia CDRL3环存在于轻链氨基酸89至97处。当使用Kabat编号惯例编号时,Chothia CDRH1环的末端在H32与H34之间变化,这取决于环的长度(这是因为Kabat编号方案将***放在H35A和H35B;如果35A和35B都不存在,那么环末端在32;如果仅存在35A,那么环末端在33;如果35A和35B都存在,那么环末端在34)。

在某些实施例中,抗体的CDR可以根据IMGT编号系统确定,如Lefranc M-P,(1999)《免疫学家(The Immunologist)》7:132-136和Lefranc M-P等人,(1999)《核酸研究》27:209-212中所述。根据IMGT编号方案,CDRH1处于位置26至35处,CDRH2处于位置51至57处,CDRH3处于位置93至102处,CDRL1处于位置27至32处,CDRL2处于位置50至52处,并且CDRL3处于位置89至97处。

在某些实施例中,抗体的CDR可以根据AbM编号方案确定,所述编号方案提及AbM高变区,其代表Kabat CDR与Chothia结构环之间的折衷,并且由Oxford Molecular的AbM抗体建模软件(Oxford Molecular Group,Inc.)使用。

在某些实施例中,抗体的CDR可以根据MacCallum RM等人,(1996)《分子生物学杂志》262:732-745确定。还参见例如Martin A.《抗体可变域的蛋白质序列和结构分析(Protein Sequence and Structure Analysis of Antibody Variable Domains)》,《抗体工程(Antibody Engineering)》,Kontermann和Dübel编,第31章,第422-439页,Springer-Verlag,柏林(2001)。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其中所述抗体包括包含表3中所述的VH结构域的CDRH1、CDRH2和CDRH3区氨基酸序列的重链可变区和包含表4中所述的VL结构域的CDRH1、CDRH2和CDRH3区氨基酸序列的轻链可变区,其中每个CDR独立地根据如本文公开的CDR的Kabat、Chothia、IMGT、MacCallum或AbM定义界定。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包含具有互补决定区CDRH1、CDRH2和CDRH3的重链可变区和具有互补决定区CDRL1、CDRL2和CDRL3的轻链可变区,并且其中:

(a)CDRH1包含TYSMR(SEQ ID NO:3)的氨基酸序列;

(b)CDRH2包含SIX1TDGGGTAYRDSVKG的氨基酸序列,其中X1是S或H(SEQ ID NO:4);

(c)CDRH3包含X2GYSD的氨基酸序列,其中X2是A或H(SEQ ID NO:5);

(d)CDRL1包含KTSQGLVHSDGKTYFY(SEQ ID NO:6)的氨基酸序列;

(e)CDRL2包含QVSNRAS(SEQ ID NO:7)的氨基酸序列;和/或

(f)CDRL3包含AX3GTYYPHT的氨基酸序列,其中X3是Q或H(SEQ ID NO:8)。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包含具有互补决定区CDRH1、CDRH2和CDRH3的重链可变区和具有互补决定区CDRL1、CDRL2和CDRL3的轻链可变区,并且其中:

(a)CDRH1包含TYSMR(SEQ ID NO:3)的氨基酸序列;

(b)CDRH2包含SIX1TDGGGTAYRDSVKG的氨基酸序列,其中X1是S或H(SEQ ID NO:4);

(c)CDRH3包含X2GYSD的氨基酸序列,其中X2是A或H(SEQ ID NO:5);

(d)CDRL1包含KTSQGLVHSDGKTYFY(SEQ ID NO:6)的氨基酸序列;

(e)CDRL2包含QVSNRAS(SEQ ID NO:7)的氨基酸序列;并且

(f)CDRL3包含AX3GTYYPHT的氨基酸序列,其中X3是Q或H(SEQ ID NO:8),

并且其中X1、X2和X3中的至少一个是H。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包含:

(a)包含SEQ ID NO:3的氨基酸序列的CDRH1;

(b)包含SEQ ID NO:9或11的氨基酸序列的CDRH2;

(c)包含SEQ ID NO:10或12的氨基酸序列的CDRH3;

(d)包含SEQ ID NO:6的氨基酸序列的CDRL1;

(e)包含SEQ ID NO:7的氨基酸序列的CDRL2;和/或

(f)包含SEQ ID NO:13或14的氨基酸序列的CDRL3。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包含:

(a)包含SEQ ID NO:3的氨基酸序列的CDRH1;

(b)包含SEQ ID NO:9或11的氨基酸序列的CDRH2;

(c)包含SEQ ID NO:10或12的氨基酸序列的CDRH3;

(d)包含SEQ ID NO:6的氨基酸序列的CDRL1;

(e)包含SEQ ID NO:7的氨基酸序列的CDRL2;并且

(f)包含SEQ ID NO:13或14的氨基酸序列的CDRL3,

并且其中所述分离的抗体不包含分别在SEQ ID NO:3、9、10、6、7和13中所述的CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3序列。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其中所述抗体包括包含分别在以下中所述的CDRH1、CDRH2和CDRH3氨基酸序列的VH结构域:SEQ ID NO:3、9和10;SEQ ID NO:3、11和10;SEQ ID NO:3、9和12;或SEQ ID NO:3、11和12。在某些实施例中,所述VH结构域包含分别在SEQ ID NO:3、11和10中所述的CDRH1、CDRH2和CDRH3氨基酸序列。在某些实施例中,VH结构域包含分别在SEQ ID NO:3、9和12中所述的CDRH1、CDRH2和CDRH3氨基酸序列。在某些实施例中,所述VH结构域包含分别在SEQ IDNO:3、11和12中所述的CDRH1、CDRH2和CDRH3氨基酸序列。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其中所述抗体包括包含分别在以下中所述的CDRL1、CDRL2和CDRL3氨基酸序列的VL结构域:SEQ ID NO:6、7和13;或SEQ ID NO:6、7和14。在某些实施例中,所述VL结构域包含分别在SEQ ID NO:6、7和14中所述的CDRL1、CDRL2和CDRL3氨基酸序列。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其中所述抗体包括包含CDRH1、CDRH2和CDRH3区的重链可变区和包含CDRL1、CDRL2和CDRL3区的轻链可变区,其中CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3区包含分别在以下中所述的氨基酸序列:SEQ ID NO:3、11、10、6、7和13;SEQ ID NO:3、9、12、6、7和13;SEQ IDNO:3、9、10、6、7和14;SEQ ID NO:3、11、10、6、7和14;SEQ ID NO:3、9、12、6、7和14;SEQ IDNO:3、11、12、6、7和13;或SEQ ID NO:3、11、12、6、7和13。在某些实施例中,CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3区包含分别在SEQ ID NO:3、11、10、6、7和14中所述的氨基酸序列。在某些实施例中,CDRH1、CDRH2、CDRH3、CDRL1、CDRL2和CDRL3区包含分别在SEQ ID NO:3、9、12、6、7和14中所述的氨基酸序列。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其包含氨基酸序列与SEQ ID NO:15、16、17或18中所述的氨基酸序列至少75%、80%、85%、90%、95%或100%(例如至少86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%)同一的重链可变区。在某些实施例中,抗体包含具有SEQ IDNO:15、16、17或18中所述的氨基酸序列的重链可变区。在某些实施例中,抗体包含具有SEQID NO:16中所述的氨基酸序列的重链可变区。在某些实施例中,抗体包含具有SEQ ID NO:17中所述的氨基酸序列的重链可变区。在某些实施例中,抗体包含具有SEQ ID NO:18中所述的氨基酸序列的重链可变区。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其包含氨基酸序列与SEQ ID NO:19或20中所述的氨基酸序列至少75%、80%、85%、90%、95%或100%(例如至少86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%)同一的轻链可变区。在某些实施例中,抗体包含具有SEQ ID NO:20中所述的氨基酸序列的轻链可变区。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其包含氨基酸序列与SEQ ID NO:15、16、17或18中所述的氨基酸序列至少75%、80%、85%、90%、95%或100%(例如至少86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%)同一的重链可变区和氨基酸序列与SEQ ID NO:19或20中所述的氨基酸序列至少75%、80%、85%、90%、95%或100%(例如至少86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%)同一的轻链可变区。在某些实施例中,抗体包含具有SEQ ID NO:15、16、17或18中所述的氨基酸序列的重链可变区和具有SEQ ID NO:19或20中所述的氨基酸序列的轻链可变区。在某些实施例中,抗体包含具有分别在SEQ ID NO:16和19、SEQ ID NO:17和19、SEQ ID NO:18和19、SEQ ID NO:15和20、SEQ ID NO:16和20、SEQ ID NO:17和20或SEQ ID NO:18和20中所述的氨基酸序列的重链可变区和轻链可变区。在某些实施例中,抗体包含分别具有SEQ ID NO:16和20中所述的氨基酸序列的重链可变区和轻链可变区。在某些实施例中,抗体包含分别具有SEQ ID NO:17和20中所述的氨基酸序列的重链可变区和轻链可变区。

任何Ig恒定区都可以用于本文公开的分离的抗体中。在某些实施例中,Ig恒定区是人IgG、IgE、IgM、IgD、IgA或IgY免疫球蛋白(Ig)分子的恒定区,和/或免疫球蛋白分子的任何类别(例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2)或任何亚类(例如IgG2a和IgG2b)的恒定区。在某些实施例中,Ig恒定区是人或人源化Ig恒定区。

在某些实施例中,恒定区是野生型人Ig(例如IgG)重链恒定区的变体,并且其中变异人Ig重链恒定区在酸性pH(例如pH 5.5至pH 6)下对人新生儿Fc受体(FcRn)的亲和力相对于对应野生型人Ig重链恒定区在相同条件下对人FcRn的亲和力增加(例如增加至少1.5、2、2.5、3、4、5、6、7、8、9、10、15或20倍)。在某些实施例中,变异人Ig重链恒定区在生理pH(例如pH 7.4)下对人新生儿Fc受体(FcRn)的亲和力相对于野生型人Ig重链恒定区在相同条件下对人FcRn的亲和力类似或降低(例如增加至多1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍或2倍,相等或降低)。在某些实施例中,恒定区包含一个、两个或更多个来自野生型Ig(例如IgG)恒定域或其FcRn结合片段(例如Fc或铰链-Fc结构域片段)的氨基酸(例如具有一个或多个取代、***或缺失)。在某些实施例中,具有变异恒定区的抗体在体内的半衰期相对于具有野生型恒定域或其FcRn结合片段的对应抗体在体内的半衰期增加。关于延长抗体在体内的半衰期的突变的实例,参见例如国际公开第WO 02/060919号、第WO98/23289号和第WO 97/34631号以及美国专利第5,869,046号、第6,121,022号、第6,277,375号、第6,165,745号、第8,088,376号和第8,163,881号,所述文献全部以全文引用的方式并入本文中。在某一实施例中,一个或多个不同氨基酸是在第二恒定(CH2)域(人IgG1的残基231-340)和/或第三恒定(CH3)域(人IgG1的残基341-447),根据EU编号系统编号。在某些实施例中,本文公开的抗体的IgG(例如IgG1、IgG2或IgG4)的恒定区在位置252、254和256处分别包含氨基酸酪氨酸(Y)、苏氨酸(T)和谷氨酸(E),根据EU编号系统编号。参见美国专利第7,658,921号,其以全文引用的方式并入本文中。已经显示,与相同抗体的野生型型式相比,这一类型的IgG(称作“YTE IgG”)展现出半衰期延长四倍(参见Dall'Acqua WF等人,(2006)《生物化学杂志》281:23514-24,其以全文引用的方式并入本文中)。在某些实施例中,本文公开的抗体的IgG(例如IgG1)的恒定区在位置434处包含氨基酸丙氨酸(A)、丝氨酸(S)、酪氨酸(Y)或苯丙氨酸(F),根据EU编号系统编号。在某些实施例中,本文公开的抗体的IgG(例如IgG1、IgG2或IgG4)的恒定区在位置433、434和436处分别包含氨基酸赖氨酸(K)、苯丙氨酸(F)和酪氨酸(Y),根据EU编号系统编号。在某些实施例中,本文公开的抗体的IgG(例如IgG1、IgG2或IgG4)的恒定区在位置428和434处分别包含氨基酸亮氨酸(L)和丝氨酸(S),根据EU编号系统编号。在酸性条件下对FcRn的亲和力可能增加的额外IgG恒定区描述于Ward等人,分子免疫学(2015)67(200):131-41中,所述文献以全文引用的方式并入本文中。在某些实施例中,抗体包含在位置251-257、285-290、308-314、385-389和428-436(根据EU编号系统编号)处包含氨基酸残基的一个、两个、三个或更多个氨基酸取代的IgG恒定域。在某些实施例中,本文公开的分离的抗体包括包含SEQ ID NO:21、22、23、24、36、37、38、39、40、41、42、43、44、45、46或47中所述的氨基酸序列的重链恒定区。在某些实施例中,本文公开的分离的抗体包括包含SEQ ID NO:25或26中所述的氨基酸序列的轻链恒定区。

在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其包括包含SEQ ID NO:27、28、29、30、31、32、33或34中所述的氨基酸序列的重链。在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,所述抗体包括包含SEQ ID NO:35中所述的氨基酸序列的轻链。在某些实施例中,本公开提供了一种特异性结合于ApoC3(例如人ApoC3)的分离的抗体,其包括包含分别在SEQ ID NO:27和35、SEQ ID NO:28和35、SEQ ID NO:29和35、SEQ ID NO:30和35、SEQ ID NO:31和35、SEQ IDNO:32和35、SEQ ID NO:33和35或SEQ ID NO:34和35中所述的重链和轻链。

3.使用方法

ApoC3抑制肝细胞的TRL(例如VLDL)和TRL残余物吸收和其清除,并且抑制脂蛋白脂肪酶介导的TRL(例如VLDL)脂肪分解,由此增加受试者的血液中的三酸甘油酯水平。在某些实施例中,本文公开的抗ApoC3抗体可以减弱ApoC3抑制肝细胞的TRL(例如VLDL)和TRL残余物吸收和清除的能力或减弱ApoC3抑制脂蛋白脂肪酶介导的TRL(例如VLDL)脂肪分解的能力。因此,在某些实施例中,本公开提供了一种抑制受试者的血液中的ApoC3的活性的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。在某些实施例中,ApoC3的活性是抑制肝细胞的TRL(例如VLDL)和TRL残余物吸收和清除。在某些实施例中,ApoC3的活性是抑制脂蛋白脂肪酶介导的TRL脂肪分解。在某些实施例中,ApoC3的活性是抑制肝细胞的TRL(例如VLDL)和TRL残余物吸收和清除以及抑制脂蛋白脂肪酶介导的TRL脂肪分解。

本文公开的抗ApoC3抗体可用于增加ApoC3和/或ApoB(例如ApoB48和/或ApoB100)从受试者的血液中清除的速率。因此,在某些实施例中,本公开提供了一种增加ApoC3和/或ApoB(例如ApoB48和/或ApoB100)从受试者的血液中清除的速率的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。

本文公开的抗ApoC3抗体可用于降低受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平。因此,在某些实施例中,本公开提供了一种降低受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,所述方法降低受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平达至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%或99%。在某些实施例中,如通过本文公开的方法或本领域的技术人员已知的方法所评估,所述方法降低受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平达至少1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或100倍。在某些实施例中,受试者的血液中的ApoC3和/或ApoB(例如ApoB48和/或ApoB100)的水平的减少维持至少1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、15天、20天、25天、30天、35天、40天、45天或50天,或至少1周、2周、3周、4周、5周、6周、7周或8周。

本文公开的抗ApoC3抗体可用于降低受试者的血液中的三酸甘油酯水平。因此,在某些实施例中,本公开提供了一种降低受试者的血液中的三酸甘油酯水平的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。

本文公开的抗ApoC3抗体可用于治疗高三酸甘油酯血症。因此,在某些实施例中,本公开提供了一种治疗受试者的高三酸甘油酯血症的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。在某些实施例中,本公开提供了一种治疗受试者的乳糜微粒血症的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。在某些实施例中,本公开提供了一种治疗受试者的乳糜微粒血症综合征的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。

本文公开的抗ApoC3抗体可用于治疗和预防受试者的餐后脂血症。因此,在某些实施例中,本公开提供了一种抑制受试者的餐后脂血症的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。抗ApoC3抗体可以在进餐前、进餐期间或进餐后施用至受试者。

不希望受理论所束缚,申请者相信,在某些实施例中,本文公开的抗体在进餐前、进餐期间或进餐后施用至受试者时能够降低受试者中餐后乳糜微粒或乳糜微粒残余物的水平。因此,在某些实施例中,本公开提供了一种降低受试者中餐后乳糜微粒或乳糜微粒残余物的水平的方法,所述方法包含向受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。抗ApoC3抗体可以在进餐前、进餐期间或进餐后施用至受试者。

高三酸甘油酯血症患者的血液中的三酸甘油酯水平的减少可以降低显现胰腺炎的风险。因此,在某些实施例中,本公开提供了一种降低患有高三酸甘油酯血症的受试者中的胰腺炎风险的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。

本文公开的抗ApoC3抗体可用于降低受试者中的心血管疾病风险。因此,在某些实施例中,本公开提供了一种降低患有高三酸甘油酯血症的受试者中的心血管疾病风险的方法,所述方法包含向所述受试者施用有效量的本文公开的抗ApoC3抗体或药物组合物。显现与高三酸甘油酯血症或过度餐后高脂血相关联或由高甘油三酯血症或过度餐后高脂血引起的任何心血管疾病的风险可以通过施用本文公开的抗ApoC3抗体或药物组合物来降低。风险可以降低的心血管疾病包括但不限于冠状动脉疾病、动脉粥样硬化、心绞痛、心肌梗塞和中风。

本文公开的抗ApoC3抗体或药物组合物可以单独或与额外治疗剂组合施用。在某些实施例中,额外治疗剂是另一降脂剂。任一种或多种降脂剂可以与本文公开的抗ApoC3抗体或药物组合物组合使用。合适降脂剂包括但不限于HMG-CoA还原酶抑制剂(例如阿托伐他汀、氟伐他汀、洛伐他汀、匹伐他汀、普伐他汀、罗素他汀或辛伐他汀)、贝特类药、烟酸、胆汁酸螯合剂(例如消胆胺、考来替泼(colestipol)和考来维仑(colesevelam))、膳食胆固醇吸收抑制剂(例如依泽替米贝)、微粒体甘油三脂转运蛋白(MTP)抑制剂(例如洛美他派(lomitapide))、植物固醇、胰腺脂肪酶抑制剂(例如奥利司他(orlistat)、胆固醇酯转移蛋白抑制剂、角鲨烯合成酶抑制剂(例如TAK-475、萨拉哥酸(zaragozic acid)和RPR107393)、ApoA-1Milano、琥珀布可(succinobucol)(AGI-1067)、脱辅基蛋白-B抑制剂(例如米泊美生(Mipomersen))和前蛋白转化酶枯草杆菌蛋白酶/克新类型9(PCSK9)抑制剂(例如阿利库单抗(alirocumab)、依伏库单抗(evolocumab)和博可珠单抗(bococizumab))。在某些实施例中,额外降脂剂是依泽替米贝与HMG-CoA还原酶抑制剂的组合。在某些实施例中,降脂剂是依泽替米贝、HMG-CoA还原酶抑制剂和PCSK9抑制剂的组合。

本文公开的抗ApoC3抗体或药物组合物可以通过多种途径递送至受试者。这些途径包括但不限于肠胃外、皮内、肌肉内、腹膜内、静脉内和皮下途径。在某些实施例中,本文公开的抗体或药物组合物皮下或静脉内递送。

本文公开的抗ApoC3抗体或药物组合物有效治疗或预防病状的量将取决于疾病的性质,并且可以通过标准临床技术凭经验确定。组合物中所用的精确剂量还将取决于施用途径和感染或由其引起的疾病的严重性,并且应根据执业医生的判断和每个受试者的情况来决定。举例来说,有效剂量还可以取决于施用方式、目标部位、患者的生理状态(包括年龄、体重和健康状况)、患者是人还是动物、所施用的其它药剂或治疗是预防性还是治疗性而变化。本文公开的抗ApoC3抗体或药物组合物可以按任何频率(例如约每周、每两周、每三周、每四周、每个月或每两个月)施用。通常,患者是人,但也可以治疗非人哺乳动物,包括转基因哺乳动物。最优地滴定治疗剂量和方案以优化安全性和功效。

本文公开的抗ApoC3抗体还可以使用本领域技术人员已知的经典的免疫组织学方法,包括免疫分析法,例如酶联免疫吸附分析法(ELISA)、免疫沉淀法或蛋白质印迹法用于分析生物样品中的ApoC3(例如人ApoC3)蛋白质水平。合适的抗体分析标记是本领域中已知的,并且包括酶标记,如葡萄糖氧化酶;放射性同位素,如碘(125I、121I)、碳(14C)、硫(35S)、氚(3H)、铟(121In)和锝(99Tc);发光标记,如鲁米诺(luminol);和荧光标记,如荧光素和若丹明,和生物素。这类标记可以用于标记本文公开的抗体。可替代地,可以标记识别本文公开的抗ApoC3抗体的第二抗体并与抗ApoC3抗体组合使用以检测ApoC3(例如人ApoC3)蛋白质水平。

对ApoC3(例如人ApoC3)蛋白质的表达水平的分析意图包括直接(例如通过测定或评估绝对蛋白质水平)或相对(例如通过与第二生物样品中的疾病相关蛋白质水平比较)定性或定量测量或估计第一生物样品中的ApoC3(例如人ApoC3)蛋白质的水平。可以测量或估计第一生物样品中的ApoC3(例如人ApoC3)多肽表达水平,并与标准ApoC3(例如人ApoC3)蛋白质水平相比,标准取自从未患疾病的个体获得的第二生物样品,或通过将来自未患疾病的个体的群体的水平求平均值来确定。如本领域中了解,一旦已知“标准”ApoC3(例如人ApoC3)多肽水平,就可以重复使用其作为比较的标准。

如本文所用,术语“生物样品”是指从受试者、细胞系、组织或其它可能表达ApoC3(例如人ApoC3)的细胞来源获得的任何生物样品。从动物(例如人)获得组织活检体和体液的方法是本领域中众所周知的。生物样品包括外周单核血球。

本文公开的抗ApoC3抗体可以用于预后、诊断、监测和筛选应用,包括本领域技术人员众所周知和标准并基于本发明的描述的体外和体内应用。用于体外评估和评定免疫系统状态或免疫反应的预后、诊断、监测和筛选分析法和试剂盒可以用于预测、诊断和监测以评定患者样品,包括已知具有或疑似具有升高的ApoC活性的样品。在一个实施例中,抗ApoC3抗体可以用于活检样品的免疫组织化学中。在另一实施例中,抗ApoC3抗体可以用于检测ApoC3(例如人ApoC3)的水平,所述水平然后可以与某些疾病症状相关联。本文公开的抗ApoC3抗体可以携有可检测或功能性标记。当使用荧光标记时,本领域中已知的目前可用的显微术和荧光激活细胞分选仪分析(FACS)或两种方法程序的组合可以用于鉴别和定量特异性结合成员。本文公开的抗ApoC3抗体可以携有荧光标记。示范性荧光标记包括例如反应性和缀合探针,例如氨基香豆素(Aminocoumarin)、荧光素(Fluorescein)和德克萨斯红(Texas red)、Alexa Fluor染料、Cy染料和DyLight染料。抗ApoC3抗体可以携有放射性标记,例如同位素3H、14C、32P、35S、36Cl、51Cr、57Co、58Co、59Fe、67Cu、90Y、99Tc、111In、117Lu、121I、124I、125I、131I、198Au、211At、213Bi、225Ac和186Re。当使用放射性标记时,本领域中已知的目前可用的计数程序可以用以鉴别和定量抗ApoC3抗体与ApoC3(例如人ApoC3)的特异性结合。在标记是酶的情况下,检测可以通过如本领域中已知的当前利用的比色、分光光度、荧光分光光度、安培或气体定量技术中的任一种技术实现。这可以通过使样品或对照样品与抗ApoC3抗体在允许抗体与ApoC3(例如人ApoC3)之间形成复合物的条件下接触来实现。检测样品和对照中在抗体与ApoC3(例如人ApoC3)之间形成的任何复合物并进行比较。本文公开的抗体还可以用于经由免疫亲和力纯化来纯化ApoC3(例如人ApoC3)。本文中还包括一种分析系统,其可以制备成检验试剂盒的形式,用于定量分析例如ApoC3(例如人ApoC3)的存在程度。系统或检验试剂盒可以包含标记的组分,例如标记的ApoC抗体,以及一种或多种额外免疫化学试剂。

4.药物组合物

本文提供了药物组合物,其在生理学上可接受的载体、赋形剂或稳定剂中包含具有所需纯度的本文公开的抗ApoC3抗体(《雷明顿药物科学(Remington's PharmaceuticalSciences)》(1990)Mack Publishing Co.,宾夕法尼亚州伊斯顿(Easton,PA))。可接受的载体、赋形剂或稳定剂在所用剂量和浓度下对接受者来说无毒性,并且包括缓冲剂,如磷酸盐、柠檬酸盐和其它有机酸;抗氧化剂,包括抗坏血酸和甲硫氨酸;防腐剂(如十八烷基二甲基苯甲基氯化铵;氯化六羟季铵;苯扎氯铵(benzalkonium chloride)、苄索氯铵(benzethonium chloride);苯酚、丁醇或苯甲醇;对羟基苯甲酸烷酯,如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯;儿茶酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(少于约10个残基)多肽;蛋白质,如血清白蛋白、明胶或免疫球蛋白;亲水性聚合物,如聚乙烯吡咯烷酮;氨基酸,如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、双糖和其它碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂,如EDTA;糖,如蔗糖、甘露糖醇、海藻糖或山梨糖醇;成盐相对离子,如钠;金属复合物(例如Zn-蛋白质复合物);或非离子表面活性剂,如TWEENTM、PLURONICSTM或聚乙二醇(PEG)。

在一特定实施例中,药物组合物在药学上可接受的载体中包含本文公开的抗ApoC3抗体和任选地一种或多种额外的预防剂或治疗剂。在一特定实施例中,药物组合物在药学上可接受的载体中包含有效量的本文公开的抗体和任选地一种或多种额外的预防剂或治疗剂。在一些实施例中,抗体是药物组合物中所包括的唯一活性成分。本文公开的药物组合物可用于抑制ApoC3活性并治疗例如癌症或感染性疾病等病状。

用于肠胃外制剂中的药学上可接受的载体包括水性媒剂、非水性媒剂、抗微生物剂、等渗剂、缓冲剂、抗氧化剂、局部麻醉剂、悬浮剂和分散剂、乳化剂、掩蔽剂或螯合剂和其它药学上可接受的物质。水性媒剂的实例包括氯化钠注射剂、林格氏注射剂(RingersInjection)、等渗右旋糖注射剂、无菌注射用水、右旋糖和乳酸化林格氏注射剂。非水性肠胃外媒剂包括植物来源的不挥发性油、棉籽油、玉米油、芝麻油和花生油。可以向封装于多剂量容器中的肠胃外制剂中加入抑制细菌或抑制真菌浓度的抗微生物剂,所述多剂量容器包括苯酚或甲酚、汞剂、苯甲醇、氯丁醇、对羟基苯甲酸甲酯和对羟基苯甲酸丙酯、硫柳汞、苯扎氯铵和苄索氯铵。等渗剂包括氯化钠和右旋糖。缓冲剂包括磷酸盐和柠檬酸盐。抗氧化剂包括硫酸氢钠。局部麻醉剂包括盐酸普鲁卡因(procaine hydrochloride)。悬浮剂和分散剂包括羧甲基纤维素钠、羟丙基甲基纤维素以及聚乙烯吡咯烷酮。乳化剂包括聚山梨醇酯80(80)。金属离子的掩蔽剂或螯合剂包括EDTA。药物载体还包括用于水可混溶的媒剂的乙醇、聚乙二醇和丙二醇;和用于调整pH值的氢氧化钠、盐酸、柠檬酸或乳酸。

可以针对向受试者施用的任何途径来配制药物组合物。施用途径的具体实例包括鼻内、口服、经肺、经皮、皮内以及肠胃外。本文还涵盖肠胃外施用,其特征在于皮下、肌肉内或静脉内注射。可注射剂可以呈常规形式,呈液体溶液或悬浮液形式、呈适合于在注射之前在液体中形成溶液或悬浮液的固体形式或呈乳液形式制备。可注射剂、溶液和乳液还可以含有一种或多种赋形剂。合适的赋形剂是例如水、盐水、右旋糖、甘油或乙醇。另外,必要时,待施用的药物组合物还可以含有少量的无毒辅助物质,如润湿剂或乳化剂、pH缓冲剂、稳定剂、溶解性增强剂和其它这类试剂,如乙酸钠、脱水山梨糖醇单月桂酸酯、三乙醇胺油酸酯和环糊精。

用于肠胃外施用抗体的制剂包括可以立即用于注射的无菌溶液;准备在临用前与溶剂组合的无菌干燥可溶性产品,如冻干粉末,包括皮下注射片剂;备用于注射的无菌悬浮液;准备在临用前与媒剂组合的无菌干燥不溶性产品;以及无菌乳液。溶液可以是水性或非水性的。

如果静脉内施用,那么合适的载体包括生理盐水或磷酸盐缓冲盐水(phosphatebuffered saline,PBS),以及含有增稠剂和增溶剂的溶液,所述增稠剂和增溶剂例如葡萄糖、聚乙二醇和聚丙二醇以及其混合物。

如针对局部和全身施用所述制备包含抗体的局部混合物。所得混合物可以是溶液、悬浮液、乳液等并且可以被配制成乳膏、凝胶、软膏、乳液、溶液、酏剂、洗剂、悬浮液、酊剂、糊剂、泡沫剂、气溶胶、冲洗剂、喷雾剂、栓剂、绷带、皮肤贴片或任何其它适合局部施用的配制物。

本文公开的抗ApoC3抗体可以被配制成用于局部施加,例如通过吸气来施加的气溶胶(参见例如美国专利第4,044,126号、第4,414,209号和第4,364,923号,其描述用于递送可用于治疗炎性疾病、尤其哮喘的类固醇的气溶胶)。用于向呼吸道施用的这些配制物可以呈用于喷雾器的气溶胶或溶液形式,或呈用于吹入的微细粉末形式,单独或与如乳糖的惰性载体组合。在这种情况下,配制物的颗粒在一个实施例中将具有小于50微米,在一个实施例中小于10微米的直径。

本文公开的抗ApoC3抗体可以被配制用于局部或表面施加,如表面施加于皮肤和粘膜,如在眼睛中,呈凝胶、乳膏和洗剂的形式,并且被配制成用于施加于眼睛或用于脑池内或脊柱内施加。预期局部施用用于经皮递送以及用于施用于眼睛或粘膜,或用于吸入疗法。还可以施用单独的或与其它药学上可接受的赋形剂组合的抗体的鼻用溶液。

经皮贴片,包括离子导入和电泳装置,是本领域技术人员众所周知的,并且可以用于施用抗体。举例来说,这类贴片公开于美国专利第6,267,983号、第6,261,595号、第6,256,533号、第6,167,301号、第6,024,975号、第6,010715号、第5,985,317号、第5,983,134号、第5,948,433号和第5,860,957号中。

在某些实施例中,包含本文公开的抗体的药物组合物是冻干粉末,其可以被复原用于呈溶液、乳液和其它混合物形式施用。它也可以进行复原并被配制成固体或凝胶。冻干粉末是通过将本文公开的抗体或其药学上可接受的衍生物溶解于合适溶剂中制备的。在一些实施例中,冻干粉末是无菌的。溶剂可以含有能够改善粉末或由粉末制备的复原溶液的稳定性或其它药理学组分的赋形剂。可以使用的赋形剂包括(但不限于)右旋糖、山梨糖醇、果糖、玉米糖浆、木糖醇、甘油、葡萄糖、蔗糖或其它合适试剂。溶剂还可以含有缓冲剂,如柠檬酸盐、磷酸钠或磷酸钾、或本领域的技术人员已知的其它这类缓冲剂,在一个实施例中,缓冲剂约呈中性pH。随后无菌过滤溶液,然后在本领域的技术人员已知的标准条件下冻干,得到所需配制物。在一个实施例中,将所得溶液分配至小瓶中进行冻干。每个小瓶将含有单剂量或多剂量的化合物。可以将冻干粉末储存在适当的条件下,如在约4℃至室温下。用注射用水复原这种冻干粉末,得到用于肠胃外施用的配制物。为了复原,将冻干粉剂加入无菌水或其它适合的载体中。精确的量取决于选定的化合物。这个量可以凭经验确定。

本文公开的抗ApoC3抗体和本文所提供的其它组合物还可以被配制成靶向具体组织、受体或待治疗受试者身体的其它区域。许多这类靶向方法是本领域的技术人员众所周知的。本文涵盖所有这类靶向方法用于本发明组合物。关于靶向方法的非限制性实例,参见例如美国专利第6,316,652号、第6,274,552号、第6,271,359号、第6,253,872号、第6,139,865号、第6,131,570号、第6,120,751号、第6,071,495号、第6,060,082号、第6,048,736号、第6,039,975号、第6,004,534号、第5,985,307号、第5,972,366号、第5,900,252号、第5,840,674号、第5,759,542号和第5,709,874号。

待用于体内施用的组合物可以是无菌的。这易于通过例如无菌过滤膜过滤来实现。

5.产生抗ApoC3抗体的多核苷酸、载体和方法

在另一方面,本文提供了包含编码本文公开的抗ApoC3抗体(例如轻链可变区或重链可变区)的核苷酸序列的多核苷酸,以及载体,例如用于在宿主细胞(例如大肠杆菌和哺乳动物细胞)中重组表达的包含这类多核苷酸的载体。

如本文所用,“分离的”多核苷酸或核酸分子是与核酸分子的天然来源中(例如小鼠或人类中)存在的其它核酸分子分离的多核苷酸或核酸分子。此外,“分离的”核酸分子,例如cDNA分子,当通过重组技术产生时基本上不含其它细胞物质或培养基,或者当化学合成时基本上不含化学前体或其它化学物质。举例来说,措辞“基本上不含”包括具有少于约15%、10%、5%、2%、1%、0.5%或0.1%(具体地说,少于约10%)的其它物质(例如细胞物质、培养基、其它核酸分子、化学前体或其它化学物质)的多核苷酸或核酸分子制剂。在一特定实施例中,编码本文公开的抗体的核酸分子是分离或纯化的。

在具体方面,本文提供了包含编码特异性结合于ApoC3(例如人ApoC3)多肽并包含如本文公开的氨基酸序列的抗体以及与这类抗体竞争结合于ApoC3(例如人ApoC3)多肽(例如以剂量依赖性方式)或结合于与这类抗体所结合相同的表位的抗体的核苷酸序列的多核苷酸。

在某些方面,本文提供了多核苷酸,其包含编码本文公开的抗体的轻链或重链的核苷酸序列。多核苷酸可以包含编码本文公开的抗体的VH、VL或CDR(参见例如本文中表1-4)的核苷酸序列。

本文还提供了编码抗ApoC3(例如人ApoC3)抗体的多核苷酸,其例如通过密码子/RNA优化、用异源信号序列置换和消除mRNA不稳定元件来优化。通过引入密码子变化或消除mRNA中的抑制区域来产生编码抗ApoC3(例如人ApoC3)抗体(例如轻链、重链、VH结构域或VL结构域)的优化核酸以进行重组表达的方法可以通过采用例如相应地在美国专利第5,965,726号、第6,174,666号、第6,291,664号、第6,414,132号和第6,794,498号中所述的优化方法进行。举例来说,RNA内的潜在剪接位点和不稳定元件(例如富含A/T或A/U的元件)可以在不改变由核酸序列编码的氨基酸的情况下突变以提高RNA对于重组表达的稳定性。所述改变利用遗传密码的简并,例如将替代密码子用于一致氨基酸。在一些实施例中,可能需要改变一个或多个密码子以编码保守突变,例如与原始氨基酸具有类似化学结构和特性或功能的类似氨基酸。这类方法可以使抗ApoC3抗体的表达相对于由未进行优化的多核苷酸编码的抗ApoC3抗体的表达增加至少1倍、2倍、3倍、4倍、5倍、10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或100倍或更多倍。

在某些实施例中,编码本文公开的抗ApoC3抗体(例如VL结构域或VH结构域)的优化的多核苷酸序列可以与编码本文公开的抗ApoC3抗体(例如VL结构域或VH结构域)的未优化的多核苷酸序列的反义(例如互补)多核苷酸杂交。在特定实施例中,编码本文公开的抗ApoC3抗体的优化的核苷酸序列在高严格性条件下与编码本文公开的抗ApoC3抗体的未优化的核苷酸序列的反义多核苷酸杂交。在一特定实施例中,编码本文公开的抗ApoC3抗体的优化的核苷酸序列在高严格性、中等或较低严格性杂交条件下与编码本文公开的抗ApoC3抗体的未优化的核苷酸序列的反义多核苷酸杂交。已经描述关于杂交条件的信息,参见例如美国专利申请公开第US 2005/0048549号(例如段落72-73),其以引用的方式并入本文中。

通过本领域中已知的任何方法,可以获得多核苷酸,并且确定多核苷酸的核苷酸序列。编码本文公开的抗体(例如表1中所述的抗体)和这些抗体的修饰型式的核苷酸序列可以使用本领域中众所周知的方法测定,即已知编码特定氨基酸的核苷酸密码子以产生编码抗体的核酸的方式装配。编码抗体的这类多核苷酸可以由化学合成的寡核苷酸装配(例如如Kutmeier G等人,(1994),《生物技术(BioTechniques)》17:242-6中所描述),简单来说,其涉及合成含有编码抗体的序列的部分的重叠寡核苷酸,退火和连接那些寡核苷酸,并且然后通过PCR来扩增连接的寡核苷酸。

可替代地,编码本文公开的抗体的多核苷酸可以使用本领域中众所周知的方法(例如PCR和其它分子克隆方法)从来自合适来源(例如杂交瘤)的核酸产生。举例来说,使用可与已知序列的3'和5'末端杂交的合成引物的PCR扩增可以使用从产生所关注抗体的杂交瘤细胞获得的基因组DNA进行。这类PCR扩增方法可以用于获得包含编码抗体的轻链或重链的序列的核酸。这类PCR扩增方法可以用于获得包含编码抗体的可变轻链区或可变重链区的序列的核酸。扩增的核酸可以克隆至用于在宿主细胞中表达和用于进一步克隆的载体中,例如以产生嵌合和人源化抗体。

如果含有编码特定抗体的核酸的克隆不可用,但已知抗体分子的序列,那么编码免疫球蛋白的核酸可以化学合成,或者通过使用可与序列的3'和5'末端杂交的合成引物进行PCR扩增或通过使用对于特定基因序列具有特异性的寡核苷酸探针进行克隆以鉴别例如来自编码抗体的cDNA文库的cDNA克隆而从合适来源(例如抗体cDNA文库或由表达抗体的任何组织或细胞,如被选择用以表达本文公开的抗体的杂交瘤细胞产生的cDNA文库,或由其分离的核酸,优选聚A+RNA)获得。通过PCR产生的扩增的核酸然后可以使用本领域中众所周知的任何方法克隆至可复制克隆载体中。

编码本文公开的抗ApoC3(例如人ApoC3)抗体的DNA容易使用常规程序(例如通过使用能够特异性结合于编码抗ApoC3(例如人ApoC3)抗体的重链和轻链的基因的寡核苷酸探针)分离和测序。杂交瘤细胞可以充当这类DNA的来源。一旦分离,DNA就可以放至表达载体中,然后被转染至例如大肠杆菌细胞、猿COS细胞、中国仓鼠卵巢(CHO)细胞(例如来自CHOGS SystemTM(Lonza)的CHO细胞)或不另外产生免疫球蛋白的骨髓瘤细胞等宿主细胞中,实现重组宿主细胞中抗ApoC3(例如人ApoC3)抗体的合成。

为了产生全抗体,包括VH或VL核苷酸序列、限制位点和保护限制位点的侧接序列的PCR引物可以用于扩增scFv克隆中的VH或VL序列。利用本领域技术人员已知的克隆技术,通过PCR扩增的VH结构域可以克隆至表达重链恒定区(例如人γ4恒定区)的载体中,并且通过PCR扩增的VL结构域可以克隆至表达轻链恒定区(例如人κ或λ恒定区)的载体中。在某些实施例中,用于表达VH或VL结构域的载体包含EF-1α启动子、分泌信号、用于可变区的克隆位点、恒定域和选择标志物(如新霉素(neomycin))。VH和VL结构域也可以克隆至表达必需恒定区的一个载体中。接着使用本领域技术人员已知的技术将重链转换载体和轻链转换载体共转染至细胞系中,产生表达全长抗体,例如IgG的稳定或短暂细胞系。

DNA也可以例如通过用人类重链和轻链恒定域的编码序列替代鼠序列或者通过共价接合非免疫球蛋白多肽的全部或部分编码序列至免疫球蛋白编码序列进行修饰。

还提供了在高严格性、中等或较低严格性杂交条件下与编码本文公开的抗体的多核苷酸杂交的多核苷酸。在特定实施例中,本文公开的多核苷酸在高严格性、中等或较低严格性杂交条件下与编码本文所提供的VH结构域或VL结构域的多核苷酸杂交。

杂交条件已经在本领域中描述并且是本领域技术人员已知的。举例来说,在严格条件下的杂交可以包括在约45℃下在6×氯化钠/柠檬酸钠(SSC)中与过滤器结合的DNA杂交,随后在约50-65℃下在0.2×SSC/0.1%SDS中一次或多次洗涤;在高度严格条件下的杂交可以包括在约45℃下在6×SSC中与过滤器结合的核酸杂交,随后在约68℃下在0.1×SSC/0.2%SDS中一次或多次洗涤。在其它严格杂交条件下的杂交是本领域技术人员已知的并且已经予以描述,参见例如Ausubel FM等人编,(1989)《现代分子生物学实验技术(Current Protocols in Molecular Biology)》,第I卷,Green Publishing Associates,Inc.和John Wiley&Sons,Inc.,纽约(New York)第6.3.1-6.3.6页和第2.10.3页。

在某些方面,本文提供了表达(例如以重组方式)特异性结合于ApoC3(例如人ApoC3)的本文公开的抗体的细胞(例如宿主细胞)和相关多核苷酸和表达载体。本文提供了包括包含编码抗ApoC3(例如人ApoC3)抗体或片段的核苷酸序列的多核苷酸的载体(例如表达载体),用于在宿主细胞中,优选在哺乳动物细胞重组表达。本文还提供了包含这类载体以重组表达本文公开的抗ApoC3(例如人ApoC3)抗体(例如人类或人源化抗体)的宿主细胞。在一具体方面,本文提供了用于产生本文公开的抗体的方法,其包含由宿主细胞表达这类抗体。

本文公开的特异性结合于ApoC3(例如人ApoC3)的抗体(例如全长抗体、抗体的重链或轻链或本文公开的单链抗体)的重组表达一般涉及含有编码所述抗体的多核苷酸的表达载体的构建。在获得编码本文公开的抗体分子、抗体的重链或轻链(例如重链或轻链可变区)的多核苷酸后,用于产生抗体分子的载体可以通过重组DNA技术使用本领域中众所周知的技术产生。因此,本文中公开了通过表达含有编码抗体或抗体片段(例如轻链或重链)的核苷酸序列的多核苷酸制备蛋白质的方法。本领域技术人员众所周知的方法可以用于构建含有抗体或抗体片段(例如轻链或重链)编码序列和适宜的转录和翻译控制信号的表达载体。这些方法包括例如体外重组DNA技术、合成技术和体内基因重组。还提供了包含可操作地连接于启动子的编码本文公开的抗体分子、抗体的重链或轻链、抗体的重链或轻链可变区或者重链或轻链CDR的核苷酸序列的可复制载体。这类载体可以例如包括编码抗体分子的恒定区的核苷酸序列(参见例如国际公开第WO 86/05807号和第WO 89/01036号;以及美国专利第5,122,464号),并且抗体的可变区可以克隆至这类载体中用于表达整个重链、整个轻链或整个重链和轻链两条链。

表达载体可以通过常规技术转移至细胞(例如宿主细胞)并且所得细胞然后可以通过常规技术培养以产生本文公开的抗体。因此,本文提供了含有编码本文公开的抗体、或其重链或轻链或其片段、或本文公开的单链抗体的多核苷酸的宿主细胞,所述多核苷酸可操作地连接于用于在宿主细胞中表达这类序列的启动子。在某些实施例中,为了表达双链抗体,单独地编码重链和轻链两条链的载体可以在宿主细胞中共表达以表达整个免疫球蛋白分子,如以下所详述。在某些实施例中,宿主细胞含有包含编码本文公开的抗体的重链和轻链两条链的多核苷酸的载体。在特定实施例中,宿主细胞含有两个不同载体,第一载体包含编码本文公开的抗体或其片段的重链或重链可变区的多核苷酸,并且第二载体包含编码本文公开的抗体或其片段的轻链或轻链可变区的多核苷酸。在其它实施例中,第一宿主细胞包括包含编码本文公开的抗体或其片段的重链或重链可变区的多核苷酸的第一载体,并且第二宿主细胞包括包含编码本文公开的抗体的轻链或轻链可变区的多核苷酸的第二载体。在特定实施例中,由第一细胞表达的重链/重链可变区与第二细胞的轻链/轻链可变区缔合,形成本文所公开的抗ApoC3抗体。在某些实施例中,本文提供了包含这类第一宿主细胞和这类第二宿主细胞的宿主细胞群体。

在一具体实施例中,本文提供了包含第一载体和第二载体的载体群体,所述第一载体包含编码本文公开的抗ApoC3抗体的轻链/轻链可变区的多核苷酸,所述第二载体包含编码本文公开的抗ApoC3抗体的重链/重链可变区的多核苷酸。

多种宿主表达载体系统可以用于表达本文公开的抗体分子(参见例如美国专利第5,807,715号)。这类宿主表达系统代表了可以产生所关注的编码序列并且随后进行纯化的媒剂,而且还代表了在用适宜的核苷酸编码序列转化或转染时可以原位表达本文公开的抗体分子的细胞。这些包括(但不限于)用含有抗体编码序列的重组噬菌体DNA、质粒DNA或粘粒DNA表达载体转化的微生物,如细菌(例如大肠杆菌和枯草芽孢杆菌(B.subtilis));用含有抗体编码序列的重组酵母表达载体转化的酵母(例如毕赤酵母(SaccharomycesPichia));用含有抗体编码序列的重组病毒表达载体(例如杆状病毒)感染的昆虫细胞系统;用重组病毒表达载体(例如花椰菜花叶病毒,CaMV;烟草花叶病毒,TMV)感染的或用含有抗体编码序列的重组质粒表达载体(例如Ti质粒)转化的植物细胞系统(例如绿藻,如莱茵衣藻(Chlamydomonas reinhardtii));或携带含有来源于哺乳动物细胞基因组的启动子(例如金属硫蛋白启动子)或来源于哺乳动物病毒的启动子(例如腺病毒晚期启动子;牛痘病毒7.5K启动子)的重组表达构建体的哺乳动物细胞系统(例如COS(例如COS1或COS)、CHO、BHK、MDCK、HEK 293、NS0、PER.C6、VERO、CRL7O3O、HsS78Bst、HeLa和NIH 3T3、HEK-293T、HepG2、SP210、R1.1、B-W、L-M、BSC1、BSC40、YB/20和BMT10细胞)。在一特定实施例中,用于表达本文公开的抗体的细胞是CHO细胞,例如来自CHO GS SystemTM(Lonza)的CHO细胞。在一具体实施例中,用于表达本文公开的抗体的细胞是人细胞,例如人细胞系。在一特定实施例中,哺乳动物表达载体是pOptiVECTM或pcDNA3.3。在一具体实施例中,尤其用于表达完整重组抗体分子的细菌细胞如大肠杆菌或真核细胞(例如哺乳动物细胞)用于表达重组抗体分子。举例来说,与载体(如来自人巨细胞病毒的主要中早期基因启动子元件)结合的哺乳动物细胞(如中国仓鼠卵巢(CHO)细胞)是抗体的有效表达系统(Foecking MK与Hofstetter H(1986)《基因(Gene)》45:101-5;和Cockett MI等人,(1990)《生物技术》8(7):662-7)。在某些实施例中,本文公开的抗体由CHO细胞或NS0细胞产生。在一特定实施例中,编码本文公开的特异性结合于ApoC3(例如人ApoC3)的抗体的核苷酸序列的表达由组成型启动子、诱导型启动子或组织特异性启动子调控。

在细菌系统中,多种表达载体宜依据所表达的抗体分子预期的用途来选择。举例来说,当待产生大量的这类抗体用于生成抗体分子的药物组合物时,指导高水平的容易纯化的融合蛋白产物的表达的载体可能是所希望的。这类载体包括(但不限于)大肠杆菌表达载体pUR278(Ruether U与Mueller-Hill B(1983)EMBO J 2:1791-1794),其中抗体编码序列可以单独地与lac Z编码区同框连接至载体中,从而产生融合蛋白;pIN载体(Inouye S与Inouye M(1985)《核酸研究》13:3101-3109;Van Heeke G与Schuster SM(1989)《生物化学杂志》24:5503-5509等等)。举例来说,pGEX载体还可以用于将外源多肽作为与谷胱甘肽5-转移酶(GST)的融合蛋白表达。一般来说,这类融合蛋白是可溶性的并且可以通过吸附和结合基质谷胱甘肽琼脂糖珠而从裂解的细胞纯化,随后在游离谷胱甘肽的存在下洗脱。pGEX载体被设计为包括凝血酶或因子Xa蛋白酶裂解位点以使得克隆的靶基因产物可以从GST部分释放出来。

在昆虫系统中,例如苜蓿银纹夜蛾(Autographa californica)核多角体病毒(AcNPV)可以用作表达外源基因的载体。病毒在草地贪夜蛾(Spodoptera frugiperda)细胞中生长。抗体编码序列可以单独地克隆至病毒的非必需区(例如多角体蛋白基因)中并且放在AcNPV启动子(例如多角体蛋白启动子)的控制下。

在哺乳动物宿主细胞中,可以使用多种基于病毒的表达系统。在腺病毒用作表达载体的情况下,所关注的抗体编码序列可以连接至腺病毒转录/翻译控制复合物,例如晚期启动子和三联体前导序列。这一嵌合基因然后可以通过体外或体内重组***腺病毒基因组中。在病毒基因组的非必需区(例如E1或E3区)中的***将产生活的并且能够在感染的宿主中表达抗体分子的重组病毒(例如参见Logan J与Shenk T(1984)PNAS 81(12):3655-9)。特定的起始信号也可能是***的抗体编码序列的高效翻译所需的。这些信号包括ATG起始密码子和相邻序列。此外,起始密码子必须与所需编码序列的阅读框同相以确保整个***片段的翻译。这些外源翻译控制信号和起始密码子可以是多种来源的,天然的和合成的。表达的效率可以通过包括适宜的转录增强子元件、转录终止子等增强(参见例如Bitter G等人,(1987)《酶学方法》153:516-544)。

另外,可以选择调节所***序列的表达或以所需特定方式修饰并加工基因产物的宿主细胞品系。蛋白质产物的这类修饰(例如糖基化)和加工(例如裂解)对于蛋白质的功能来说可能是重要的。不同的宿主细胞具有用于蛋白质和基因产物的翻译后加工和修饰的特征性并且特定的机制。可以选择适宜的细胞系或宿主系统以确保所表达的外源蛋白的正确修饰和加工。为此,可以使用具有用于初级转录物的适当加工、基因产物的糖基化和磷酸化的细胞机制的真核宿主细胞。这类哺乳动物宿主细胞包括(但不限于)CHO、VERO、BHK、Hela、MDCK、HEK 293、NIH 3T3、W138、BT483、Hs578T、HTB2、BT20和T47D、NS0(不内源地产生任何免疫球蛋白链的鼠骨髓瘤细胞系)、CRL7O3O、COS(例如COS1或COS)、PER.C6、VERO、HsS78Bst、HEK-293T、HepG2、SP210、R1.1、B-W、L-M、BSC1、BSC40、YB/20、BMT10和HsS78Bst细胞。在某些实施例中,本文公开的抗ApoC3(例如人ApoC3)抗体在哺乳动物细胞,例如CHO细胞中产生。

在一特定实施例中,本文公开的抗体具有降低的岩藻糖含量或没有岩藻糖含量。这类抗体可以使用本领域技术人员已知的技术产生。举例来说,抗体可以在岩藻糖基化能力缺陷或缺乏的细胞中表达。在一特定实例中,敲除α1,6-岩藻糖基转移酶的两个等位基因的细胞系可以用于产生具有减少的岩藻糖含量的抗体。系统(Lonza)是可以用于产生具有减少的岩藻糖含量的抗体的这类系统的一实例。

为长期、高产率地产生重组蛋白,可以生成稳定表达细胞。举例来说,稳定表达本文公开的抗ApoC3抗体的细胞系可以工程化。在特定实施例中,本文所提供的细胞稳定地表达轻链/轻链可变区和重链/重链可变区,缔合形成本文公开的抗体。

在某些方面,替代使用含有病毒复制起点的表达载体,宿主细胞可以用通过适宜的表达控制元件(例如启动子、增强子、序列、转录终止子、多腺苷酸化位点等)控制的DNA和可选标志物转化。在引入外源DNA/多核苷酸之后,可以允许工程化的细胞在富集培养基中生长1-2天,并且然后换成选择培养基。重组质粒中的可选标志物赋予对选择的抗性并且允许细胞稳定地整合质粒至其染色体中并生长形成基因座,其随后可以克隆和扩增至细胞系中。这种方法可以有利地用于将表达本文公开的抗ApoC3抗体的细胞系工程化。这类工程化的细胞系尤其可用于筛选和评估直接或间接地与抗体分子相互作用的组合物。

可以使用多种选择系统,包括(但不限于)分别在tk-、hgprt-或aprt-细胞中的单纯疱疹病毒胸苷激酶(Wigler M等人,(1977)《细胞(Cell)》11(1):223-32)、次黄嘌呤鸟嘌呤磷酸核糖基转移酶(Szybalska EH与Szybalski W(1962)PNAS 48(12):2026-2034)和腺嘌呤磷酸核糖基转移酶(Lowy I等人,(1980)《细胞》22(3):817-23)基因。此外,抗代谢物抗性可以用作以下基因的选择基础:dhfr,其赋予对甲氨蝶呤的抗性(Wigler M等人,(1980)PNAS 77(6):3567-70;O'Hare K等人,(1981)PNAS 78:1527-31);gpt,其赋予对霉酚酸的抗性(Mulligan RC与Berg P(1981)PNAS 78(4):2072-6);neo,其赋予对氨基糖苷G-418的抗性(Wu GY与Wu CH(1991)《生物疗法(Biotherapy)》3:87-95;Tolstoshev P(1993)《药理学与毒理学年度评论(Ann Rev Pharmacol Toxicol)》32:573-596;Mulligan RC(1993)《科学》260:926-932;和Morgan RA与Anderson WF(1993)《生物化学年度评论(Ann RevBiochem)》62:191-217;Nabel GJ与Felgner PL(1993)《生物技术趋势(TrendsBiotechnol)》11(5):211-5);和hygro,其赋予对潮霉素的抗性(Santerre RF等人,(1984)《基因》30(1-3):147-56)。重组DNA技术领域中通常已知的方法可以常规地应用于选择所需的重组克隆并且这类方法描述于例如Ausubel FM等人,(编),《现代分子生物学实验技术》,John Wiley&Sons,纽约州(NY)(1993);Kriegler M,《基因转移和表达,实验室手册(GeneTransfer and Expression,A Laboratory Manual)》,Stockton Press,纽约州(1990);和第12和13章,Dracopoli NC等人,(编),《人类遗传学实验室指南(Current Protocols inHuman Genetics)》,John Wiley&Sons,纽约州(1994);Colbère-Garapin F等人,(1981)《分子生物学杂志》150:1-14中,所述文献以全文引用的方式并入本文中。

抗体分子的表达水平可以通过载体扩增来提高(关于综述,参见Bebbington CR与Hentschel CCG,《在DNA克隆中使用基于基因扩增的载体在哺乳动物细胞中表达克隆基因(The use of vectors based on gene amplification for the expression of clonedgenes in mammalian cells in DNA cloning)》,第3卷(Academic Press,纽约,1987))。当表达抗体的载体系统中的标志物是可扩增的时,宿主细胞培养物中存在的抑制剂水平的提高将增加标志物基因的拷贝数。因为扩增的区域与抗体基因相关,所以抗体的产生也增加(Crouse GF等人,(1983)《分子细胞生物学(Mol Cell Biol)》3:257-66)。

宿主细胞可以与本文所述的两种或更多种表达载体共转染,第一载体编码重链来源的多肽并且第二载体编码轻链来源的多肽。两种载体可以含有一致的可选标志物,这使得重链和轻链多肽能够等同地表达。宿主细胞可以用不同量的两种或更多种表达载体共转染。举例来说,宿主细胞可以用以下比率中的任一比率的第一表达载体与第二表达载体转染∶1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:12、1:15、1:20、1:25、1:30、1:35、1:40、1:45或1:50。

可替代地,可以使用编码并且能够表达重链和轻链多肽两者的单一载体。在这类情况下,轻链应当放在重链之前以避免过量的毒性游离重链(Proudfoot NJ(1986)《自然(Nature)》322:562-565;和 G(1980)PNAS 77:2197-2199)。重链和轻链的编码序列可以包含cDNA或基因组DNA。表达载体可以是单顺反子的或多顺反子的。多顺反子的核酸构建体可以编码2个、3个、4个、5个、6个、7个、8个、9个、10个或更多个基因/核苷酸序列或者2-5个、5-10个或10-20个范围内的基因/核苷酸序列。举例来说,双顺反子的核酸构建体可以按以下顺序包含启动子、第一基因(例如本文公开的抗体的重链)和第二基因(例如本文公开的抗体的轻链)。在这类表达载体中,两个基因的转录可以由启动子驱动,而来自第一基因的mRNA的翻译可以是通过帽依赖性(cap-dependent)的扫描机制并且来自第二基因的mRNA的翻译可以是通过非帽依赖性的机制,例如通过IRES。

在本文公开的抗体分子已经通过重组表达产生时,其可以通过本领域已知用于免疫球蛋白分子纯化的任何方法进行纯化,所述方法例如通过色谱法(例如离子交换色谱法、亲和色谱法,特别是通过蛋白A后对特定抗原的亲和力,和尺寸排阻柱色谱法)、离心、差异溶解度或通过任何其它用于蛋白质纯化的标准技术。此外,本文公开的抗体可以与本文公开的或本领域中另外已知的异源多肽序列融合以促进纯化。

在特定实施例中,分离或纯化本文公开的抗体。一般来说,分离的抗体是基本上不含具有与分离的抗体不同的抗原特异性的其它抗体的抗体。举例来说,在一具体实施例中,本文公开的抗体的制剂基本上不含细胞物质或化学前体。措辞“基本上不含细胞物质”包括其中抗体与分离的或以重组方式产生的细胞的细胞组分分离的抗体的制剂。因此,基本上不含细胞物质的抗体包括具有少于约30%、20%、10%、5%、2%、1%、0.5%或0.1%(以干重计)的异源蛋白质(本文中也称为“污染蛋白质”)或抗体的变体,例如抗体的不同翻译后修饰形式或抗体的其它不同形式(例如抗体片段)的抗体制剂。当抗体重组产生时,它通常也基本上不含培养基,即培养基占蛋白质制剂体积少于约20%、10%、2%、1%、0.5%或0.1%。当抗体通过化学合成产生时,它通常基本上不含化学前体或其它化学物质,即它与参与蛋白质合成的化学前体或其它化学物质分离。因此,这类抗体制剂具有少于约30%、20%、10%或5%(以干重计)的除所关注抗体以外的化学前体或化合物。在一特定实施例中,分离或纯化本文公开的抗体。

特异性结合于ApoC3(例如人ApoC3)的抗体可以通过本领域中已知的用于合成抗体的任何方法,例如通过化学合成或通过重组表达技术来产生。除非另有指示,否则本文公开的方法采用分子生物学、微生物学、遗传分析、重组DNA、有机化学、生物化学、PCR、寡核苷酸合成和修饰、核酸杂交以及本领域技术范围内的相关领域的常规技术。这些技术描述于例如本文所引用的参考文献中并在文献中有充分说明。参见例如Maniatis T等人,(1982)《分子克隆:实验指南(Molecular Cloning:A Laboratory Manual)》,Cold Spring HarborLaboratory Press;Sambrook J等人,(1989),《分子克隆:实验指南》,第二版,Cold SpringHarbor Laboratory Press;Sambrook J等人,(2001)《分子克隆:实验指南》,Cold SpringHarbor Laboratory Press,纽约州冷泉港(Cold Spring Harbor,NY);Ausubel FM等人,《现代分子生物学实验技术》,John Wiley&Sons(1987和年度更新);《免疫学实验室指南(Current Protocols in Immunology)》,John Wiley&Sons(1987和年度更新);Gait(编)(1984)《寡核苷酸合成:实用方法(Oligonucleotide Synthesis:A PracticalApproach)》,IRL Press;Eckstein(编)(1991)《寡核苷酸和类似物:实用方法(Oligonucleotides and Analogues:A Practical Approach)》,IRL Press;Birren B等人,(编)(1999)《基因组分析:实验室手册(Genome Analysis:ALaboratory Manual)》,ColdSpring Harbor Laboratory Press。

在一特定实施例中,本文公开的抗体是通过涉及DNA序列产生(例如经由合成)、基因工程的任何方式制备、表达、产生或分离的抗体(例如重组抗体)。在某些实施例中,这类抗体包含不天然存在于动物或哺乳动物(例如人)体内的抗体胚系谱中的序列(例如DNA序列或氨基酸序列)。

在一方面,本文提供了一种制造特异性结合于ApoC3(例如人ApoC3)的抗体的方法,其包含培养本文公开的细胞或宿主细胞。在某一方面,本文提供了一种制造特异性结合于ApoC3(例如人ApoC3)的抗体的方法,其包含使用本文公开的细胞或宿主细胞(例如包含编码本文公开的抗体的多核苷酸的细胞或宿主细胞)表达(例如以重组方式表达)抗体。在一具体实施例中,细胞是分离的细胞。在一具体实施例中,外源多核苷酸已经被引入细胞中。在一具体实施例中,所述方法进一步包含纯化从细胞或宿主细胞获得的抗体的步骤。

用于产生多克隆抗体的方法是本领域中已知的(参见例如《精编分子生物学实验指南(Short Protocols in Molecular Biology)》,(2002)第5版,Ausubel FM等人编,JohnWiley&Sons,纽约中的第11章)。

单克隆抗体可以使用本领域中已知的各种技术制备,包括使用杂交瘤、重组和噬菌体展示技术或其组合。举例来说,单克隆抗体可以使用杂交瘤技术产生,包括本领域中已知的和例如在以下中传授的那些:Harlow E与Lane D,《抗体:实验室手册》,(Cold SpringHarbor Laboratory Press,第2版1988);Hammerling GJ等人,《单克隆抗体和T细胞杂交瘤(Monoclonal Antibodies and T-Cell Hybridomas)》563 681(爱思唯尔(Elsevier),纽约州,1981)。如本文所用的术语“单克隆抗体”不限于通过杂交瘤技术产生的抗体。举例来说,单克隆抗体可以从外源表达本文公开的抗体(例如这类抗体的轻链或重链)的宿主细胞重组产生。

在特定实施例中,如本文所用,“单克隆抗体”是由单细胞(例如产生重组抗体的杂交瘤或宿主细胞)产生的抗体,其中如例如通过ELISA或本领域中或本文提供的实例中已知的其它抗原结合或竞争性结合分析所测定,所述抗体特异性结合于ApoC3(例如人ApoC3)。在具体实施例中,单克隆抗体可以是嵌合抗体或人源化抗体。在某些实施例中,单克隆抗体是单价抗体或多价(例如二价)抗体。在具体实施例中,单克隆抗体是单特异性或多特异性抗体(例如双特异性抗体)。举例来说,本文公开的单克隆抗体可以例如通过如Kohler G与Milstein C(1975)《自然》256:495中所述的杂交瘤方法产生,或可以例如使用如本文公开的技术从噬菌体文库分离。克隆细胞系和由此表达的单克隆抗体的其它制备方法是本领域中众所周知的(参见例如《精编分子生物学实验指南》第11章,(2002)第5版,Ausubel FM等人,上述)。

使用杂交瘤技术产生和筛选特异性抗体的方法是常规的和本领域中众所周知的。举例来说,在杂交瘤方法中,小鼠或其它适宜的宿主动物,例如绵羊、山羊、兔、大鼠、仓鼠或猕猴,进行免疫接种,以引发淋巴细胞产生或能够产生用于免疫接种的特异性结合于蛋白质(例如ApoC3(例如人ApoC3))的抗体。可替代地,淋巴细胞可以体外免疫接种。然后使用合适的融合剂(如聚乙二醇)将淋巴细胞与骨髓瘤细胞融合以形成杂交瘤细胞(Goding JW(编),《单克隆抗体:原理和实践(Monoclonal Antibodies:Principles and Practice)》,第59-103页(Academic Press,1986))。另外,RIMMS(多位点重复免疫)技术可以用于对动物进行免疫接种(Kilpatrick KE等人,(1997)《杂交瘤》16:381-9,其以全文引用的方式并入本文中)。

在一些实施例中,小鼠(或其它动物,如大鼠、猴、驴、猪、绵羊、仓鼠或狗)可以用抗原(例如ApoC3(例如人ApoC3))免疫接种并且在检测到免疫反应时,例如在小鼠血清中检测到对抗原具有特异性的抗体时,收获小鼠脾脏并且分离脾细胞。然后脾细胞通过众所周知的技术与任何合适的骨髓瘤细胞融合,例如与来自可从美国菌种保藏中心(American TypeCulture Collection,)(弗吉尼亚州马纳萨斯(Manassas,VA))获得的细胞系SP20的细胞融合,形成杂交瘤。选择杂交瘤并且通过有限稀释法克隆。在某些实施例中,收集已免疫接种的小鼠的***并将其与NS0骨髓瘤细胞融合。

如此制备的杂交瘤细胞在优选含有抑制未融合的亲本骨髓瘤细胞的生长或存活的一种或多种物质的合适培养基中接种和生长。例如,如果亲本骨髓瘤细胞缺乏酶次黄嘌呤鸟嘌呤磷酸核糖转移酶(HGPRT或HPRT),那么杂交瘤的培养基通常将包括次黄嘌呤、氨基喋呤(aminopterin)和胸苷(HAT培养基),这些物质防止HGPRT缺陷型细胞的生长。

特定的实施例采用有效融合,通过所选择的产抗体细胞支持稳定的高水平抗体产生,并且对例如HAT培养基等培养基敏感的骨髓瘤细胞。在这些骨髓瘤细胞系中有鼠骨髓瘤系,如NS0细胞系,或来源于可从美国加利福尼亚州圣地亚哥(San Diego,CA,USA)的索尔克研究所细胞分配中心(Salk Institute Cell Distribution Center)获得的MOPC-21和MPC-11小鼠肿瘤的骨髓瘤细胞系,以及可从美国马里兰州罗克维尔(Rockville,MD,USA)的美国菌种保藏中心获得的SP-2或X63-Ag8.653细胞。也已经描述了人骨髓瘤和小鼠-人杂交骨髓瘤细胞系用于产生人单克隆抗体(Kozbor D(1984)《免疫学杂志》133:3001-5;Brodeur等人,《单克隆抗体产生技术和应用(Monoclonal Antibody Production Techniques andApplications)》,第51-63页(Marcel Dekker,Inc.,纽约,1987))。

分析使杂交瘤细胞生长的培养基的针对ApoC3(例如人ApoC3)的单克隆抗体的产生。由杂交瘤细胞产生的单克隆抗体的结合特异性通过本领域中已知的方法,例如免疫沉淀来测定,或通过体外结合分析法,如放射免疫分析法(RIA)或酶联免疫吸附分析法(ELISA)来测定。

在鉴定了产生具有所期望的特异性、亲和力或活性的抗体的杂交瘤细胞之后,克隆可以通过有限稀释程序进行亚克隆并通过标准方法生长(Goding JW(编),《单克隆抗体:原理和实践》,上述)。用于达成这一目的合适的培养基包括例如D-MEM或RPMI 1640培养基。另外,杂交瘤细胞可以在动物中作为腹水瘤在体内生长。

可以通过常规免疫球蛋白纯化程序,例如蛋白质A-琼脂糖凝胶、羟磷灰石色谱法、凝胶电泳、透析或亲和色谱法,将亚克隆分泌的单克隆抗体与培养基、腹水液或血清适当地分离。

本文公开的抗体包括识别特异性ApoC3(例如人ApoC3)并且可以通过本领域技术人员已知的任何技术产生的抗体片段。举例来说,本文公开的Fab和F(ab')2片段可以使用酶,如木瓜蛋白酶(用以产生Fab片段)或胃蛋白酶(用以产生F(ab')2片段),通过免疫球蛋白分子的蛋白水解裂解产生。Fab片段对应于抗体分子的两个一致臂之一并且含有与重链的VH和CH1结构域配对的完整轻链。F(ab')2片段含有通过铰链区中的二硫键连接的抗体分子的两个抗原结合臂。

此外,本文公开的抗体还可以使用本领域中已知的各种噬菌体展示方法产生。在噬菌体展示方法中,功能性抗体结构域展示在携带编码其的多核苷酸序列的噬菌体颗粒的表面上。具体来说,编码VH和VL结构域的DNA序列从动物cDNA文库(例如受影响组织的人或鼠cDNA文库)扩增。编码VH和VL结构域的DNA通过PCR与scFv连接子重组在一起并且克隆至噬粒载体中。将载体在大肠杆菌中电穿孔并用辅助噬菌体感染大肠杆菌。用于这些方法中的噬菌体典型地是丝状噬菌体,包括fd和M13,并且VH和VL结构域通常与噬菌体基因III或基因VIII重组融合。表达结合于特定抗原的抗原结合域的噬菌体可以用抗原,例如使用标记的抗原或者结合或捕获至固体表面或珠粒的抗原进行选择或鉴别。可以用于制备本文公开的抗体的噬菌体展示方法的实例包括Brinkman U等人,(1995)《免疫学方法杂志》182:41-50;Ames RS等人,(1995)《免疫学方法杂志》184:177-186;Kettleborough CA等人,(1994)《欧洲免疫学杂志(Eur J Immunol)》24:952-958;Persic L等人,(1997)《基因》187:9-18;Burton DR与Barbas CF(1994)《免疫学进展(Advan Immunol)》57:191-280;PCT申请第PCT/GB91/001134号;国际公开第WO 90/02809号、第WO 91/10737号、第WO 92/01047号、第WO 92/18619号、第WO 93/1 1236号、第WO 95/15982号、第WO 95/20401号和第WO 97/13844号;和美国专利第5,698,426号、第5,223,409号、第5,403,484号、第5,580,717号、第5,427,908号、第5,750,753号、第5,821,047号、第5,571,698号、第5,427,908号、第5,516,637号、第5,780,225号、第5,658,727号、第5,733,743号和第5,969,108号中公开的那些。

如以上参考文献中所描述,在噬菌体选择之后,来自噬菌体的抗体编码区可以分离并用于产生全抗体(包括人类抗体),或任何其它所需抗原结合片段,并且在任何所需宿主(包括哺乳动物细胞、昆虫细胞、植物细胞、酵母和细菌)中表达,例如如下文所描述。重组产生抗体片段如Fab、Fab'和F(ab')2片段的技术也可以使用本领域中已知的方法来利用,如以下中公开的那些方法:PCT公开第WO 92/22324号;Mullinax RL等人,(1992)《生物技术》12(6):864-9;Sawai H等人,(1995)《美国生殖免疫学杂志(Am J Reprod Immunol)》34:26-34;和Better M等人,(1988)《科学》240:1041-1043。

在某些实施例中,为了产生全抗体,包括VH或VL核苷酸序列、限制位点和保护限制位点的侧接序列的PCR引物可以用于从模板(例如scFv克隆)扩增VH或VL序列。利用本领域技术人员已知的克隆技术,通过PCR扩增的VH结构域可以克隆至表达VH恒定区的载体中,并且通过PCR扩增的VL结构域可以克隆至表达VL恒定区(例如人κ或λ恒定区)的载体中。VH和VL结构域也可以克隆至表达必需恒定区的一个载体中。接着使用本领域技术人员已知的技术将重链转换载体和轻链转换载体共转染至细胞系中,产生表达全长抗体,例如IgG的稳定或短暂细胞系。

嵌合抗体是抗体的不同部分来源于不同免疫球蛋白分子的分子。例如,嵌合抗体可以含有与人类抗体的恒定区融合的小鼠或大鼠单克隆抗体的可变区。产生嵌合抗体的方法是本领域中已知的。参见例如Morrison SL(1985)《科学》229:1202-7;Oi VT与MorrisonSL(1986)《生物技术》4:214-221;Gillies SD等人,(1989)《免疫学方法杂志》125:191-202;以及美国专利第5,807,715号、第4,816,567号、第4,816,397号和第6,331,415号。

人源化抗体能够结合于预定抗原并且包含基本上具有人免疫球蛋白的氨基酸序列的框架区和基本上具有非人免疫球蛋白(例如鼠免疫球蛋白)的氨基酸序列的CDR。在具体实施例中,人源化抗体还包含免疫球蛋白恒定区(Fc)的至少一部分,典型地人免疫球蛋白的恒定区的一部分。抗体还可以包括重链的CH1、铰链、CH2、CH3和CH4区。人源化抗体可以选自免疫球蛋白的任何类别,包括IgM、IgG、IgD、IgA和IgE,和任何同种型,包括IgG1、IgG2、IgG3和IgG4。人源化抗体可以使用本领域中已知的多种技术产生,包括(但不限于)CDR-移植(欧洲专利第EP 239400号;国际公开第WO 91/09967号;和美国专利第5,225,539号、第5,530,101号和第5,585,089号)、镶嵌(veneering)或表面重塑(resurfacing)(欧洲专利第EP592106号和第EP 519596号;Padlan EA(1991)《分子免疫学》28(4/5):489-498;StudnickaGM等人,(1994)《蛋白质工程(Prot Engineering)》7(6):805-814;和Roguska MA等人,(1994)PNAS 91:969-973)、链改组(美国专利第5,565,332号)和例如美国专利第6,407,213号、美国专利第5,766,886号、国际公开第WO 93/17105号;Tan P等人,(2002)《免疫学杂志》169:1119-25;Caldas C等人,(2000)《蛋白质工程》13(5):353-60;Morea V等人,(2000)《方法》20(3):267-79;Baca M等人,(1997)《生物化学杂志》272(16):10678-84;Roguska MA等人,(1996)《蛋白质工程》9(10):895 904;Couto JR等人,(1995)《癌症研究》.55(23增刊):5973s-5977s;Couto JR等人,(1995)《癌症研究》55(8):1717-22;Sandhu JS(1994)《基因》150(2):409-10;和Pedersen JT等人,(1994)《分子生物学杂志》235(3):959-73中公开的技术。还参见美国申请公开第US 2005/0042664 A1号(2005年2月24日),其以全文引用的方式并入本文中。

已经描述了制造多特异性抗体(例如双特异性抗体)的方法,参见例如美国专利第7,951,917号、第7,183,076号、第8,227,577号、第5,837,242号、第5,989,830号、第5,869,620号、第6,132,992号和第8,586,713号。

单域抗体,例如缺乏轻链的抗体,可以通过本领域中众所周知的方法产生。参见Riechmann L与Muyldermans S(1999)《免疫学杂志》231:25-38;Nuttall SD等人,(2000)《当今药物生物技术(Curr Pharm Biotechnol)》1(3):253-263;Muyldermans S,(2001)《生物技术杂志(J Biotechnol)》74(4):277-302;美国专利第6,005,079号;和国际公开第WO94/04678号、第WO 94/25591号和第WO 01/44301号。

此外,特异性结合于ApoC3(例如人ApoC3)抗原的抗体又可以使用本领域的技术人员众所周知的技术用以产生“模拟”抗原的抗个体基因型抗体。(参见例如Greenspan NS与Bona CA(1989)FASEB J 7(5):437-444;和Nissinoff A(1991)《免疫学杂志》147(8):2429-2438)。

在具体实施例中,结合于与本文公开的抗ApoC3抗体相同的ApoC3(例如人ApoC3)表位的本文公开的抗体是人类抗体。在具体实施例中,竞争性阻断(例如以剂量依赖性方式)本文公开的任一抗体结合于ApoC3(例如人ApoC3)的本文公开的抗体是人类抗体。人类抗体可以使用本领域中已知的任何方法产生。举例来说,可以使用不能表达功能性内源免疫球蛋白,但是可以表达人类免疫球蛋白基因的转基因小鼠。具体来说,人重链和轻链免疫球蛋白基因复合物可以随机地或通过同源重组引入小鼠胚胎干细胞中。可替代地,除了人重链和轻链基因之外,还可以将人可变区、恒定区和多样性区域引入小鼠胚胎干细胞中。可以与通过同源重组引入人免疫球蛋白基因座分开或同时,使小鼠重链和轻链免疫球蛋白基因不具功能性。具体来说,JH区的纯合缺失阻止内源抗体产生。使经修饰的胚胎干细胞扩增并显微注射至囊胚中以产生嵌合小鼠。接着饲养嵌合小鼠以产生表达人类抗体的纯合子代。以正常方式,用所选抗原,例如抗原(例如ApoC3(例如人ApoC3))的全部或一部分对转基因小鼠进行免疫接种。可以使用常规杂交瘤技术,从进行免疫接种的转基因小鼠获得针对所述抗原的单克隆抗体。转基因小鼠所携带的人免疫球蛋白转基因在B细胞分化期间重排,并且随后经历类别转换和体细胞突变。因此,使用这类技术,有可能产生治疗上有用的IgG、IgA、IgM和IgE抗体。关于用于产生人类抗体的这种技术的综述,参见Lonberg N与Huszar D(1995)《国际免疫学评论(Int Rev Immunol)》13:65-93。关于用于产生人类抗体和人类单克隆抗体的这种技术和用于产生这类抗体的方案的详细论述,参见例如国际公开第WO 98/24893号、第WO 96/34096号和第WO 96/33735号;以及美国专利第5,413,923号、第5,625,126号、第5,633,425号、第5,569,825号、第5,661,016号、第5,545,806号、第5,814,318号和第5,939,598号中。能够产生人类抗体的小鼠的实例包括XenomouseTM(Abgenix,Inc.;美国专利第6,075,181号和第6,150,184号)、HuAb-MouseTM(Mederex,Inc./Gen Pharm;美国专利第5,545,806号和第5,569,825号)、Trans Chromo MouseTM(Kirin)和KM MouseTM(Medarex/Kirin)。

特异性结合于ApoC3(例如人ApoC3)的人类抗体可以通过包括上述噬菌体展示方法在内的本领域中已知的多种方法,使用来源于人免疫球蛋白序列的抗体文库来制备。还参见美国专利第4,444,887号、第4,716,111号和第5,885,793号;以及国际公开第WO 98/46645号、第WO 98/50433号、第WO 98/24893号、第WO 98/16654号、第WO 96/34096号、第WO96/33735号和第WO 91/10741号。

在一些实施例中,人类抗体可以使用小鼠-人杂交瘤产生。举例来说,用埃-巴二氏病毒(EBV)转化的人外周血淋巴细胞可以与小鼠骨髓瘤细胞融合以产生分泌人类单克隆抗体的小鼠-人杂交瘤,并且可以对这些小鼠-人杂交瘤进行筛选以确定分泌特异性结合于靶抗原(例如ApoC3(例如人ApoC3))的人类单克隆抗体的小鼠-人杂交瘤。这类方法是已知的并且本领域中予以描述,参见例如Shinmoto H等人,(2004)《细胞工程技术(Cytotechnology)》46:19-23;Naganawa Y等人,(2005)《人类抗体(Human Antibodies)》14:27-31。

6试剂盒

还提供了试剂盒,其包含本文公开的一种或多种抗体或其药物组合物或缀合物。在一特定实施例中,本文提供了一种药包或试剂盒,其包含一个或多个容器,所述一个或多个容器填充有本文公开的药物组合物的成分中的一种或多种,例如本文所提供的一种或多种抗体。在一些实施例中,试剂盒含有本文公开的药物组合物和任何预防剂或治疗剂,例如本文公开的那些。任选地与所述容器相关联的可以是呈由管理医药或生物产品的制造、使用或销售的政府机构规定的形式的注意事项,所述注意事项反映了所述机构批准制造、使用或销售供人施用。

还提供了可以用于以上方法的试剂盒。在一个实施例中,试剂盒在一个或多个容器中包含本文公开的抗体,优选纯化的抗体。在一特定实施例中,本文公开的试剂盒含有基本上分离的ApoC3(例如人ApoC3)抗原作为对照。在另一特定实施例中,本文公开的试剂盒进一步包含不与ApoC3(例如人ApoC3)抗原反应的对照抗体。在另一特定实施例中,本文公开的试剂盒含有用于检测抗体与ApoC3(例如人ApoC3)抗原的结合的一个或多个元件(例如抗体可以缀合于可检测底物,例如荧光化合物、酶底物、放射性化合物或发光化合物,或识别第一抗体的第二抗体可以缀合于可检测底物)。在特定实施例中,本文提供的试剂盒可以包括重组产生或化学合成的ApoC3(例如人ApoC3)抗原。试剂盒中提供的ApoC3(例如人ApoC3)抗原还可以附接至固体载体。在一更特定实施例中,上述试剂盒的检测装置包括附接ApoC3(例如人ApoC3)抗原的固体载体。这类试剂盒还可以包括非附接的报告子标记的抗人抗体或抗小鼠/大鼠抗体。在此实施例中,抗体与ApoC3(例如人ApoC3)抗原的结合可以通过所述报告子标记的抗体的结合来检测。

实例

先前鉴别的抗体纯系5E5在pH 7.4下以高亲和力以及在pH 5.5下以略微减少的亲和力结合于ApoC3(参见美国临时申请62/360,084)。本公开提供了纯系5E5的新颖衍生物,其在pH 7.4下展现高亲和力结合于ApoC3,但在pH 5.5下相对于5E5对ApoC3的亲和力大大减少。以下实例描述了新颖5E5衍生物的表征。5E5的氨基酸序列阐述于美国临时申请62/360,084,并且新颖5E5衍生物的氨基序列阐述于本文表1-7中。

虽然提供此章节中的实例以进一步阐明本申请的优点和特征,但并不意图限制本申请的范围。实例只用于说明性目的。

实例1∶抗ApoC3 scFv-Fc抗体的体外表征

本实例描述了基于表面等离子体共振(SPR)的实验,以确定抗ApoC3 scFv-Fc抗体在pH 7.4和pH 5.5下的抗原结合动力学。

通过用组氨酸取代5E5的VH和/或VL中的一个或多个CDR氨基酸产生抗体纯系5E5的一组新颖衍生物。使用以下阐述的基于SPR的方法,评估每种5E5衍生物在pH 7.4和pH5.5下的抗原结合动力学,且选择在pH 7.4下展示高亲和力结合于ApoC3,但在pH 5.5下相对于5E5对ApoC3的亲和力大大减少的纯系用于进一步表征。示例性5E5衍生物5E5VH5_VLWT、5E5VH12_VLWT和5E5VHWT_VL8的结合动力学阐述于表8中。

测试抗体由转染的HEK293细胞以50ml小规模培养物产生,并且通过蛋白A色谱法使用纯色谱系统来纯化。纯化的抗体片段的品质和产率通过分光光度法和SDS-PAGE来确定。

采用基于SPR的方法,其中生物素化人ApoC3捕捉在涂布抗生蛋白链菌素(SA)的芯片上,并且在pH 7.4和pH 5.5下测量测试抗体对涂布的芯片的结合动力学。简单来说,20μl生物素化人ApoC3以10μg/ml的浓度注射以达到大约500RU的表面密度。将60μl每种测试抗体在HBS-EP缓冲液(GE,目录号BR-1008-26;0.010M HEPES、0.150M NaCl、3mM EDTA、0.05%(v/v)表面活性剂P20pH 7.4)中稀释,并以1-100nM的浓度注射。测试抗体以30μl/min的流动速率通过流槽,接着在pH 7.4或pH 5.5下解离速率洗涤5分钟。使用BIAevaluation 4.1软件,应用朗格缪尔1:1结合模型分析所得传感图,以导出结合动力学。数据进行零调整并减去参考槽传感图。

表8.pH 7.4和pH 5.5下抗ApoC3 scFv-Fc抗体的结合动力学

所有测试的scFv-Fc抗体均展示在pH 7.4下对ApoC3的亲和力比pH 5.5下高,其中抗体5E5VH12_VLWT展示出最显著的pH依赖性结合(参见表8)。pH依赖性结合的幅度与在酸性条件下的解离速率正相关。

实例2∶抗ApoC3人IgG1抗体的体外表征

基于实例1中的结果,测试scFv-Fc抗体作为人IgG1抗体产生。采用基于SPR的分析法,其中人ApoC3蛋白固定于CM5芯片上,并且在pH 7.4和pH 5.5下测量测试抗体与涂布的芯片的结合动力学。简单来说,制备50μg/ml天然人ApoC3于10mM乙酸盐缓冲液pH 4.5中的溶液并注射,直至表面密度达到大约500RU。将60μl每种测试抗体在HBS-EP缓冲液(GE,目录号BR-1008-26;0.010M HEPES、0.150M NaCl、3mM EDTA、0.05%(v/v)表面活性剂P20pH7.4)中稀释,并以如表9中所述的浓度注射。测试抗体以30μl/min的流动速率通过流槽,接着在pH 7.4或pH 5.5下解离速率洗涤5分钟。使用BIAevaluation 4.1软件,应用朗格缪尔1:1结合模型分析所得传感图,以导出结合动力学。数据进行零调整并减去参考槽传感图。

表9.pH 7.4和pH 5.5下抗ApoC3人IgG1抗体的结合动力学

所有测试的抗体在pH 7.4下结合于人ApoC3,并且在pH 5.5下对ApoC3的亲和力减少(参见表9)。5E5VH5_VLWT、5E5VH12_VLWT、5E5VH5_VL8和5E5VH12_VL8展示尤其显著的pH值依赖性。

实例3∶抗ApoC3抗体对肝细胞吸收VLDL的作用

在此实例中,测定抗ApoC3抗体减弱肝细胞吸收VLDL的能力。

简单来说,HepG2细胞(ATCC HB-8065)在聚-d-赖氨酸涂布的表面上于补充有10%FCS的完全最低必需培养基(MEM)中培养24小时,并在补充有0.0125%牛血清白蛋白的完全MEM(MEM-BSA培养基)中再培养24小时。将细胞预先与3μM人ApoC3蛋白质(Athens Researchand Technology)和3μM呈IgG1格式的测试抗体一起于新鲜MEM-BSA培养基中培育15分钟,并将30μg/mL ApoC3耗尽的DiI标记的VLDL(Kalen Biomedical,LLC#770130-9)加入至培养基中。培育4小时后,将细胞进一步与补充有1%脱利匹特(intralipid)的新鲜完全MEM一起培育20分钟。细胞对DiI标记的VLDL吸收的量通过以下来确定:在室温下用异丙醇溶解细胞15分钟,测量溶解产物中DiI标记的荧光(ex=520nm;em=580),使用标准曲线计算DiI标记的VLDL的量,并基于溶解产物中总蛋白质的数量将数据标准化。使用GraphPad Prism 6将数据绘图并以平均值+/-SEM报导。使用GraphPad Prism 6计算单因素ANOVA与多重比较。

如图1A、1B和1C中所示,5E5WT、5E5VHWT_VL8、5E5VH5_VLWT、5E5VH12_VLWT和5E5VH5_VL8抗体增加HepG2细胞对VLDL的吸收。具体地说,5E5VHWT_VL8、5E5VH5_VLWT、5E5VH12_VLWT和5E5VH5_VL8抗体在ApoC3存在下都完全恢复VLDL吸收。

实例4∶抗ApoC3抗体的药物动力学和药效学

本实例描述了使用由于人ApoC3的转基因表达而使得三酸甘油酯清除受损的小鼠模型对5E5VH5_VL8抗体进行体内表征。

4.1小鼠模型的产生

通过腹膜内施用,将维持标准饮食的60-63日龄野生型C57BL/6雄性小鼠用含有可操作地连接于甲状腺素结合球蛋白(TBG)启动子的人ApoC3基因(RegenXBio)的AAV8载体的3×1011病毒粒子感染。在施用后十二天,从眶后窦收集血液样品,并通过ELISA使用初级抗ApoC3抗体(Abcam兔多克隆抗人ApoC3#ab21032)和二级ApoC3抗体(Abcam山羊多克隆生物素-缀合物ApoC3#ab21024)测量血液样品中的人ApoC3的水平。在感染小鼠中,人ApoC3的平均血清水平是9.9μM。在这些小鼠中空腹四小时后的平均循环三酸甘油酯是163mg/dL,而对照小鼠中的平均循环三酸甘油酯水平是109mg/dL(p=0.0065)。

接着对小鼠分组,使得所有组在第12天具有类似的平均ApoC3水平。在AAV感染后十四天,从眶后窦收集血液样品以建立基线(T=0)ApoC3水平。通过注射至背侧皮下空间中将25mg/kg测试抗ApoC3人IgG1抗体施用至每只小鼠。抗鸡蛋溶酶体人IgG1抗体(HyHEL5)用作同型对照。在施用测试抗体后0、2、4、8和24小时,以及随后大约每2天,从眶后窦收集血液样品,历时30天。根据美国国家卫生研究院实验动物护理和使用指南(Guide for the Careand Use of Laboratory Animals of the National Institutes of Health)中的建议进行所有动物研究。所有程序都经过Vascumab LLC的机构动物护理和使用委员会(Institutional Animal Care and Use Committee,IACUC)批准。

4.2抗ApoC3抗体的药物动力学

如章节4.1中所述产生和处理表达人ApoC3的小鼠。用ELISA分析法确定人IgG1抗体的血浆水平。具体地说,在4℃下将96孔板(Griener#655061)用50μL在PBS中稀释的初级IgG抗体(Fitzgerald 41-XG57山羊抗人IgG Fc多克隆)涂布过夜。将板用200μL TBS-T洗涤4次,并在30℃下用PBS中200μL由3%BSA(Roche BSA第V部分无蛋白酶#03 117 332 001)加清牛奶(Pierce清牛奶阻断剂#37587)组成的阻断缓冲液阻断90分钟。去除阻断缓冲液,并加入在阻断缓冲液中稀释的50μL测试样品并在室温下在300rpm旋转下培育2小时。将板用200μL TBS-T洗涤四次,并加入在阻断缓冲液中稀释的50μL二级抗体(Abcam山羊抗人IgG-Fc(生物素)多克隆#ab97223)并在室温下在300rpm旋转下培育1小时。将板用TBS-T洗涤一次,并加入在PBS中稀释100倍的50μL SA-HRP(Abcam#64269)并在室温下在300rpm旋转下培育30分钟。接着将板用200μL TBS-T洗涤4次,并用80μL TMB显影。由50μL 0.5N HCl终止显色反应。在450nm波长下读取吸光度。由使用纯化的测试抗体构建的标准曲线的4参数拟合(Molecular Devices)计算测试孔中人IgG的量。这种方法特异性地检测人ApoC3,并且不与小鼠ApoC3交叉反应。

如图2A中所示,5E5抗体在表达人ApoC3的小鼠中迅速降解。这可以通过ApoC3经由含ApoC3的脂质粒子的吸收而快速周转来解释。在较低pH下对ApoC3的亲和力减少的5E5VH5_VL8抗体在酸性细胞器中可以从ApoC3解离并经由内体再循环返回至血流。5E5VH5_VL8的半衰期约一周,这与同型对照抗体HyHel5(不结合于小鼠中的特异性抗原的抗体)的半衰期类似。5E5VH5_VL8的血浆水平在注射后约一个月返回至基线。5E5VH5_VL8的延长半衰期使得这种抗体成为临床应用的极佳候选物,因为维持抗体在血清中的治疗水平需要的施用频率低。

4.3抗ApoC3抗体的药效学

如章节4.1中所述产生和处理表达人ApoC3的小鼠。用ELISA分析法测定人ApoC3和ApoB的血浆水平。具体地说,在4℃下将96孔板(Griener#655061)用50μL在PBS中稀释的初级ApoC3抗体(Abcam兔多克隆抗人ApoC3#ab21032)或50μL初级ApoB抗体(Meridian LifeSciences山羊多克隆抗人ApoB#K45253G)涂布过夜。将板用200μL TBS-T洗涤4次,并在30℃下用200μL阻断缓冲液(Pierce清牛奶阻断剂#37587)阻断90分钟。去除阻断缓冲液,并加入在阻断缓冲液中稀释的50μL测试样品并在室温下在300rpm旋转下培育2小时。将板用200μLTBS-T洗涤四次,并加入在阻断缓冲液中稀释的50μL二级ApoC3抗体(Abcam山羊多克隆生物素-缀合物ApoC3#ab21024)或二级ApoB抗体(Meridian Life Sciences山羊多克隆生物素-缀合物ApoB48/100#34003G)并在室温下在300rpm旋转下培育1小时。将板用TBS-T洗涤一次,并加入在PBS中稀释100倍的50μL SA-HRP(Abcam#64269)并在室温下在300rpm旋转下培育30分钟。接着将板用200μL TBS-T洗涤4次,并用80μL TMB(Thermo Ultra-TMB ELISA#34028)、接着50μL 0.5N HCl显影。在450nm下读取吸光度。由使用纯化的ApoC3(AthensResearch and Technology)构建的标准曲线的4参数拟合(Molecular Devices)计算测试孔中ApoC3的量。由使用通过离心分离的小鼠VLDL构建的标准曲线的4参数拟合(MolecularDevices)计算测试孔中ApoB的量(ApoB含量假定为总蛋白含量的20%)。计算数据并作为相对于用HyHel5对照抗体处理的小鼠中的对应水平的百分比值绘制。

如图2B和2C中所示,5E5抗体最初减少人ApoC3和ApoB的血浆水平,但约2天后水平返回至正常。相比之下,5E5VH5_VL8减少人ApoC3和ApoB的血浆水平达约一个月。此较长的功效持续时间与5E5VH5_VL8的较长半衰期相一致,并证实5E5VH5_VL8将为极佳的临床候选物。

实例5∶抗ApoC3抗体降低空腹三酸甘油酯水平和循环餐后三酸甘油酯水平

本实例使用由于人ApoC3的转基因表达而使得三酸甘油酯清除受损的小鼠模型,描述了5E5VH5_VL8抗体降低空腹三酸甘油酯水平和循环餐后三酸甘油酯水平。

通过腹膜内施用,将维持标准饮食的60-63日龄野生型C57BL/6雄性小鼠将含有可操作地连接于甲状腺素结合球蛋白(TBG)启动子的人ApoC3基因(RegenXBio)的AAV8载体的3×1011病毒粒子感染。在施用后十四天,从眶后窦收集血液样品,并通过ELISA使用初级抗ApoC3抗体(Abcam兔多克隆抗人ApoC3#ab21032)和二级ApoC3抗体(Abcam山羊多克隆生物素-缀合物ApoC3#ab21024)测量血液样品中的人ApoC3的水平。接着对小鼠分组,使得所有组在第14天具有类似的平均ApoC3水平。

第17天,从眶后窦收集血液样品,并在进食状态下向小鼠皮下注射30mg/kg5E5VH5_VL8或HyHel5对照抗体(t=-24小时)。在又提供饮食6小时之后,小鼠空腹18小时,并从眶后窦收集t=0的血液样品。接着口服10mL/kg橄榄油激发小鼠。在橄榄油激发后1、2、3和4小时获得眶后窦血液样品。

通过比色分析法,使用Thermo ScientificTM三酸甘油酯试剂(TR22421)确定血浆三酸甘油酯的水平。简单来说,将10μL稀释的血浆样品与180μL三酸甘油酯试剂一起在透明96孔板(Corning Costar 9017)中在37℃下培育10分钟。在Spectramax M2(MolecularDevices)上读取540nm下的吸光度,并由甘油标准曲线的线性拟合(Softmax Pro,Molecular Devices)计算三酸甘油酯浓度。使用GraphPad Prism 6计算血浆三酸甘油酯的曲线下面积(AUC)值。通过以上章节4.2中所述的方法来确定ApoC3的水平。

如图3A中所示,用5E5VH5_VL8处理24小时的小鼠中的空腹三酸甘油酯水平显著低于(达22%,p=0.004)用HyHel5对照抗体处理的小鼠中的水平。在橄榄油激发后,用5E5VH5_VL8处理的小鼠显示血浆三酸甘油酯水平较低程度的增加(图3B),并且与用HyHel5对照抗体处理的小鼠相比,平均AUC值减少47%(p=0.04)(图3C)。用5E5VH5_VL8处理的小鼠中的人ApoC3的循环水平相对于用HyHel5对照抗体处理的小鼠也显著降低(给与橄榄油后t=0、1、2、3和4小时p值<0.001)(图3D)。

***

本发明的范围不限于本文公开的特定实施例。实际上,除了所描述的那些之外,本发明的各种修改对于本领域技术人员来说将从前面的描述和附图中变得显而易见。希望这些修改属于所附权利要求书的范围内。

本文引用的所有参考文献(例如公开或专利或专利申请)以全文引用的方式并出于所有目的并入本文中,并入程度如同每个单独的参考文献(例如公开或专利或专利申请)明确地并且单独地指示出于所有目的以全文引用的方式并入本文中一般。

其它实施例在所附权利要求书内。

56页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:ALPHA突触核蛋白抗体及其应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!