烧结体、基板、电路基板及烧结体的制造方法

文档序号:1759872 发布日期:2019-11-29 浏览:21次 >En<

阅读说明:本技术 烧结体、基板、电路基板及烧结体的制造方法 (The manufacturing method of sintered body, substrate, circuit substrate and sintered body ) 是由 门马旬 青木克之 高桥聪志 于 2018-04-17 设计创作,主要内容包括:本发明的烧结体具备包含氮化硅的晶粒和晶界相。在一边对烧结体施加交流电压一边使交流电压的频率从50Hz到1MHz连续地变化而测定烧结体的介质损耗时,800kHz~1MHz的频带下的上述介质损耗的平均值ε&lt;Sub&gt;A&lt;/Sub&gt;和100Hz~200Hz的频带下的上述介质损耗的平均值ε&lt;Sub&gt;B&lt;/Sub&gt;满足式:|ε&lt;Sub&gt;A&lt;/Sub&gt;-ε&lt;Sub&gt;B&lt;/Sub&gt;|≤0.1。(Sintered body of the invention has crystal grain and Grain-Boundary Phase comprising silicon nitride.When making the frequency of alternating voltage continuously change from 50Hz to 1MHz and measure the dielectric loss of sintered body while applying alternating voltage to sintered body, the average value ε of the above-mentioned dielectric loss under the frequency band of 800kHz~1MHz A With the average value ε of the above-mentioned dielectric loss under the frequency band of 100Hz~200Hz B Meet formula: | ε A ‑ε B |≤0.1。)

烧结体、基板、电路基板及烧结体的制造方法

技术领域

实施方式涉及烧结体、基板、电路基板及烧结体的制造方法。

背景技术

氮化硅烧结体作为具有高强度的材料而已知。近年来,开发了兼顾高热传导化和高强度的氮化硅烧结体。已知有例如通过控制厚度方向的晶界相的存在比例来减少绝缘性的不均而提高了热导率、强度、绝缘性的氮化硅烧结体。

氮化硅基板与包含电路的金属板接合而形成氮化硅电路基板。近年来的半导体元件伴随着高性能化而结温高达170℃以上。搭载有半导体元件的氮化硅电路基板即使结温上升也显示出优异的耐久性。

关于半导体元件,开发了Si元件、SiC元件、GaN元件等功率元件。伴随着功率元件的高性能化而开关频率变高。所谓开关频率是重复开关的周期。下一代功率元件的开关频率为从几10Hz到几100kHz的各种。认为开关频率上升至1MHz左右。若根据开关频率来重复开关,则根据其周期而电流流动或不流动。

像这样伴随着功率元件的高性能化,结温和开关频率变高。即使是上述氮化硅基板,绝缘性也提高。另一方面,因开关频率变大,要求广范围的频带中的绝缘性。

现有技术文献

专利文献

专利文献1:国际公开第2015/060274号

发明内容

本发明所要解决的课题是提供即使是交流电压的频率变化的情况下也显示出优异的绝缘性的烧结体。

实施方式的烧结体具备包含氮化硅的晶粒和晶界相。在一边对烧结体施加交流电压一边使交流电压的频率从50Hz到1MHz连续地变化而测定烧结体的介质损耗时,800kHz~1MHz的频带中的烧结体的介质损耗的平均值εA与100Hz~200Hz的频带中的烧结体的介质损耗的平均值εB满足式:|εAB|≤0.1。

附图说明

图1是表示烧结体的截面组织的一个例子的图。

图2是表示拉曼分光光谱的一个例子的图。

具体实施方式

以下,参照附图对实施方式进行说明。附图是示意图,例如各构成要素的厚度、宽度等尺寸有时与实际的构成要素的尺寸不同。在实施方式中,对实质上相同的构成要素标注相同的符号,有时省略说明。

图1是表示烧结体的截面组织的一个例子的图。图1中所示的烧结体1的截面组织具备包含氮化硅的晶粒2和晶界相3。截面组织为晶粒2与晶界相3混合存在的组织。

晶粒2为例如氮化硅粒子。

晶界相3具有晶界相化合物。晶界相化合物的存在表示烧结体为添加烧结助剂而形成的烧结体。这表示烧结体1为通过添加烧结助剂并进行液相烧结而形成的烧结体。虽然未图示但晶界相3也可以具有孔隙。

一边对烧结体1施加交流电压一边使交流电压的频率从50Hz到1MHz连续地变化而测定烧结体1的介质损耗时,800kHz~1MHz的频带中的介质损耗的平均值εA与100Hz~200Hz的频带中的介质损耗的平均值εB满足式:|εAB|≤0.1。

介质损耗通过下述的测定方法来测定。准备表面粗糙度Ra为1μm以下的烧结体1的基板(例如氮化硅基板)。在Ra超过1μm的情况下,通过喷砂等而将基板表面进行平坦化。接着,在常温下利用LCR测试仪(Hewlett-Packard Company制HP16451LCR测试仪或具有与其同等的性能的装置)对基板施加有效值为1V的交流电压。介质损耗使用环状电极来测定。基板被配置在环状电极内。将交流电压的频率从50Hz到1MHz进行扫描,测定介电常数和tanδ值,算出介质损耗。由所得到的介质损耗求出平均值εA、平均值εB

使频率连续地变化是为了评价晶粒与晶界相化合物的极化性。因此,一边使频率连续地变化一边测定介质损耗或介电常数的变化是重要的。

频率为从50Hz到1MHz的理由是由于功率元件的开关频率(工作频率)大概为该范围。

所谓介质损耗是在对电介体施加交流电场时,由于相位因交流电场偏移而引起极化从而作为热能消失的现象。若烧结体中产生极化则表现出作为导电成分被检测到的物性。由此,有可能绝缘性下降。因此,介质损耗小表示不易引起极化、绝缘性高(不易产生导电性)。

烧结体1满足式:|εAB|≤0.1表示即使频率发生变化而介质损耗的变化也小。烧结体1优选满足式:0≤|εAB|≤0.05。平均值εA及平均值εB分别优选为0.1以下。平均值εA优选为0.1以下、0.09以下、进一步为0.06以下。平均值εB优选为0.02以下、进一步为0.01以下。即使|εAB|的值小,在平均值εA及平均值εB为大的值的情况下,绝缘性也有可能下降(大大体现为导电性)。因此,平均值εA及平均值εB优选分别为0.1以下。

晶界相3优选具有设置于烧结体1的任意的截面中的100μm×100μm单位面积的区域、并且组成彼此不同的多种玻璃化合物相。玻璃化合物一般为绝缘物质。另一方面,极化性根据组成而不同。因此,就单一的玻璃化合物相而言,有可能绝缘性下降。

晶界相化合物是烧结助剂反应而形成的。晶界相化合物也有可能是氮化硅粉末的杂质元素与烧结助剂反应而形成的。作为氮化硅粉末的杂质元素,可列举出氧等。晶界相化合物成为玻璃相、玻璃相与晶体相混合而成的组织。晶体相的有无可以通过利用X射线衍射(X-ray diffraction:XRD)分析的晶体峰的有无来确认。

晶体相具有特定的晶格。由于具有晶格,所以成为离子或电子被拘束而不易移动的结构。因此,晶体相即使频率改变而介质损耗也不易变化。

另一方面,玻璃相为不具有特定的晶格的结构。因此,玻璃相也被称为非晶质相。烧结体的晶界相化合物主要是烧结助剂反应而形成的。烧结助剂主要以金属氧化物的形式添加。因此,玻璃相中金属氧化物(包含复合氧化物、氧氮化物)成为主体。玻璃相在常温下为绝缘体。即使是绝缘体有时也因电场的影响而载流子(阳离子或阴离子)从本来的位置发生位移。若产生位移则绝缘体的介质损耗变大,绝缘性下降。

在使用多个烧结助剂时,晶界相成为包含玻璃化合物相、玻璃化合物相与晶体化合物相的混在相的复杂的组织。即使部分地存在容易极化的成分(玻璃化合物相或晶体化合物相),也可以通过形成组成不同的玻璃化合物相而提高绝缘性。将晶界相的玻璃化合物相及晶体化合物相总称为晶界化合物相。

烧结体可以通过在任意的截面中在单位面积100μm×100μm的区域中具有包含组成不同的2种以上的玻璃化合物相的晶界化合物,从而不易引起载流子的位移。即,可以形成从低频区域到高频区域介质损耗小的氮化烧结体。通过在单位面积100μm×100μm这样的微小区域中,具有2种以上的玻璃相,能够减小介质损耗的变化。组成不同的玻璃化合物相的种类优选为2~10。进而,优选为2~7。若玻璃相的种类超过10,则有可能在微小区域中均匀地分散变得困难。进而烧结体整体的均匀性容易消失,产生抗折强度或部分的密度分布的差异,变得在表面磨削加工等中不易得到一定的状态。

所谓组成不同的玻璃化合物相表示构成元素不同的多种玻璃化合物相、即使构成元素相同而组成比也不同的多种玻璃化合物相。组成不同的玻璃化合物相的有无可以通过使用了拉曼分光分析的多变量解析进行分析。通过使用多变量解析,能够抽出各个玻璃化合物相的拉曼分光光谱波形数据。多变量解析通过单位面积20μm×20μm的面分析来进行。拉曼分光光谱在0cm-1~1500cm-1的拉曼位移的范围内被分析。作为光源,使用532nm的波长端的激光器。

组成不同的2种以上的玻璃化合物相的拉曼分光光谱中的至少1者优选具有440cm-1~530cm-1的拉曼位移的范围内的第1峰及990cm-1~1060cm-1的拉曼位移的范围内的第2峰。在440cm-1~530cm-1的拉曼位移的范围及990cm-1~1060cm-1的拉曼位移的范围内分别具有峰表示形成有氧化硅(SiO2)系的玻璃化合物相。

氧化硅系的玻璃化合物相主要是氮化硅粉末中的氧或氮化硅粉末表面的氧与烧结助剂反应而形成的。通过形成玻璃化合物相,能够减少晶粒2内的杂质氧的残存量。通过形成氧化硅系的玻璃化合物相,能够形成不易因频率的变化而引起极化的晶界相。由此,能够兼顾热导率的提高和绝缘性的提高。

多种玻璃化合物相的拉曼分光光谱各自的面积中,第一大的面积SM1相对于第二大的面积SM2的比SM1/SM2优选为1.1~3.0。

拉曼分光光谱的面积通过0cm-1~1500cm-1的拉曼位移的范围内的光谱波形的面积来定义。拉曼分光分析的光谱波形根据玻璃化合物相的分子结构来决定。SM1/SM2为1.1~3.0的范围内表示具有不同组成的玻璃化合物相彼此的分布状态的不均小。因此,不易产生部分的绝缘性的不均。由此,即使作为基板而薄型化也能够确保绝缘性。

图2表示烧结体的玻璃化合物相的拉曼分光光谱的例子。图2例示出显示最大的面积SM1的玻璃化合物相的光谱。作为拉曼分光光谱波形的面积,求出0cm-1~1500cm-1的拉曼位移的范围、计数为0个以上的范围的面积。

有时具备含有氟的晶界相化合物。氟是在成为烧结体的原料的氮化硅粉末中容易含有的元素。氮化硅粉末的制造方法主要通过酰亚胺分解法或直接氮化法来制作。酰亚胺分解法使用卤化硅作为原料。直接氮化法使用氟化合物作为将金属硅氮化的催化剂。因此,在氮化硅粉末中,氟是容易残存的元素。具备含有氟的晶界相化合物表示残存于氮化硅粉末中的氟移动至晶界相中。若氟残存于烧结体的晶粒内,则有可能晶粒变得容易极化。因此,通过使晶界相化合物中含有氟,能够防止晶粒极化。晶界相化合物中的氟的有无可以通过飞行时间型二次离子质量分析法(Time of Flight Secondary Ion MassSpectrometry:TOF-SIMS)来分析。

烧结体中的氟含量优选为600质量ppm以下。氟含量优选为500质量ppm以下。氟量的下限没有特别限定,但含有氟的晶界化合物相优选较少。含有氟的晶界化合物相中也可以有玻璃化合物相和晶体相。

烧结体优选热导率为50W/m·K以上。热导率优选为80W/m·K以上。热导率通过激光闪光法来测定。

烧结体优选3点弯曲强度为600MPa以上。3点弯曲强度优选为650MPa以上。3点弯曲强度依据JIS R1601(2008)来测定。

断裂韧性优选为5.5MPa·m1/2以上。断裂韧性优选为6.5MPa·m1/2以上。断裂韧性是进行依据JIS R1607的IF法的测定,使用新原的式子求出。如上所述,实施方式的烧结体能够抑制介质损耗相对于频率的变化,并且能够兼顾热导率、3点弯曲强度、断裂韧性。

这样的烧结体适于氮化硅基板。基板的厚度为0.4mm以下,进一步优选基板的厚度为0.3mm以下。实施方式的烧结体即使将基板变薄也能够保持优异的绝缘性。因此,即使半导体元件的开关频率被适用于广范围,也显示出优异的绝缘性。因此,由于能够使基板变薄,所以也能够降低作为部件的热电阻。基板并不限于单板,也可以具有立体的结构。基板也适于在其表面接合有金属板的电路基板。金属板可列举出Cu板、Al板或它们的合金。金属板与基板的接合方法可列举出活性金属接合法等各种方法。活性金属接合法可列举出使用了Ag-Cu-Ti系钎料、Al-Si系钎料的方法。电路基板也可以设置金属化层、金属薄膜层来代替金属板。也可以将基板用于使用了压接结构的两面冷却结构型的模块。

接着,对烧结体的制造方法进行说明。只要实施方式的烧结体具有上述构成,则其制造方法没有特别限定,但作为用于高效地得到的方法,可列举出以下的制造方法。

烧结体的制造方法具备以下工序:将氮化硅粉末、表面改性剂、高分子粘合剂和具有与高分子粘合剂的官能团相同的官能团并且平均分子量小于高分子粘合剂的有机化合物在溶剂中混合而制备混合溶液的工序;在混合溶液中添加烧结助剂粉末而制备原料溶液的工序;将原料溶液进行脱泡处理而制备原料浆料的工序;将原料浆料成型而形成片材的工序;将片材在1000℃以下的温度下加热而制备脱脂体的工序;和将脱脂体在1600℃~2000℃的温度下进行烧结的工序。

氮化硅粉末优选α化率为80质量%以上、平均粒径为0.4μm~2.5μm、杂质氧含量为2质量%以下。杂质氧含量优选为2质量%以下、进一步为1.0质量%以下、进一步为0.1质量%~0.8质量%。若杂质氧含量超过2质量%,则有可能热导率下降。

氮化硅粉末中含有的氟量以氟单体换算计为700质量ppm以下。若氟量超过700质量ppm,则变得不易将烧结体中的氟量控制在600质量ppm以下。

表面改性剂为改善氮化硅粉末表面的物性的成分。对于表面改性,可列举出利用涂敷的改性、利用偶联反应的改性等。作为表面改性剂,优选偶联剂。偶联剂可列举出硅烷偶联剂、钛酸酯偶联剂等。其中,优选硅烷偶联剂。硅烷偶联剂为通式(RO)3-SiR’所表示的化合物。RO基为通过水解而产生硅烷醇基(Si-OH)的官能团。R’基表示非水解基团、且具有与树脂的亲和性、反应性的官能团。由于硅烷偶联剂在构成元素中包含Si(硅),所以变得容易形成组成不同的2种以上的玻璃化合物相。

氮化硅通过多种烧结助剂溶解而形成的液相进行烧结。在该液相中,包含由作为烧结助剂而添加的氧化物和氮化硅中作为杂质而包含的硅的氧化物或氧氮化物生成的“玻璃相”。在液相中从各种烧结助剂溶入有多种阳离子,但在由该液相生成玻璃相时,根据所溶入的阳离子的浓度或组成而玻璃化的温度发生变化。这样的温度变化在玻璃中产生相的分离。作为相分离反应,可列举出例如失稳分解,通过进行这样的反应,在添加有多种烧结助剂的氮化硅中,在烧结体的晶界相中逐渐生成组成不同的2种以上的玻璃相。

高分子粘合剂为树脂粘合剂(所谓的粘结剂)。高分子粘合剂优选丙烯酸树脂。关于具有与高分子粘合剂相同的官能团并且平均分子量小于高分子粘合剂的有机化合物,可列举出具有羧基的表面活性剂等表面活性剂。

表面活性剂为在分子内兼具具有亲水性的部分和具有亲油性的部分的有机化合物。作为表面活性剂,可列举出阴离子系表面活性剂、阳离子系表面活性剂、非离子(nonionic)系表面活性剂等各种材料。通过使用表面活性剂,能够使界面的自由能(界面张力)下降。由此,能够使作为氧化物的烧结助剂粉末、表面吸附有水或氨的氮化硅粉末等各种原料均匀混合。通过将各种原料进行均匀混合,能够在单位面积100μm×100μm的微小区域中,形成组成不同的2种以上的玻璃化合物相。

氮化硅粉末为容易吸附水分(或氨)的粉末。通过吸附大气中包含的水分,从而在氮化硅粉末表面吸附羟基(OH基)。若引起水分的吸附,则在吸附的部分和未吸附的部分在表面物性方面产生变化。通过在表面改性剂与高分子粘合剂反应之前,使表面改性剂与原料粉末表面的羟基反应,能够在烧结后的氮化硅的晶体的表面形成氧化膜。若添加具有与高分子粘合剂(binder)相同的官能团、且平均分子量小于高分子粘合剂的有机化合物,则能够防止:在脱脂反应时表面改性剂与高分子粘合剂发生反应、粘合剂的分子量变大而变得不易脱脂。

在高分子粘合剂为丙烯酸树脂的情况下,相同的官能团优选为羧基。羧基以“-COOH”表示。具有羧基的材料容易准备在丙烯酸系高分子粘合剂及非离子系表面活性剂这两者中满足条件的组合。表面活性剂的平均分子量优选平均分子量小于高分子粘合剂。作为表面活性剂,优选具有与高分子粘合剂相同的官能团、并且平均分子量小于高分子粘合剂的材料。这样变得容易促进表面改性剂与表面活性剂的反应。

对于氮化硅粉末、表面活性剂、表面改性剂、高分子粘合剂,优选在溶剂中混合增塑剂。增塑剂可以使用邻苯二甲酸酯类、己二酸酯类、其他表面活性物质、高分子增塑剂等。溶剂可以使用醇类、酮类、甲苯类、醚类、酯类等各种溶剂。优选为醇类与酮类或甲苯类的1种或2种的混合溶剂。通过制成混合溶剂,能够改善高分子粘合剂的溶解性。

烧结助剂粉末优选为平均粒径为0.5μm~3.0μm的金属氧化物粉末。作为金属氧化物粉末,可列举出稀土类元素、镁、钛、铪等氧化物。通过以金属氧化物的形式添加烧结助剂,变得容易在烧结工序中形成液相成分。作为烧结助剂,以氧化物换算计合计添加1质量%~14质量%的选自稀土类元素、镁、钛、铪中的1种或2种以上。特别优选添加2种以上。通过添加2种以上,变得容易形成组成不同的2种以上的玻璃化合物相。

接着,将原料溶液进行脱泡处理而制备原料浆料。脱泡处理是通过在真空中搅拌原料溶液而除掉原料溶液中的气泡的处理。通过减少原料溶液中的气泡,也能够减少烧结体中的气泡。通过进行脱泡处理,能够进行提高粘度的浆料化。

接着,将原料浆料成型而制备片材。片材成型优选刮刀法。若为刮刀法,则量产性提高。作为除刮刀法以外的片材成型方法,可列举出模具压制法、冷等静压(Coldisostatic pressing:CIP)法、辊成型法等。通过片材成型,变得容易制备基板的厚度。在进行脱脂工序之前将片材切断,加工成目标尺寸。

接着,进行将片材在1000℃以下的温度下加热而制备脱脂体的工序。脱脂工序的气氛优选氮气、氩气等不活泼气氛。也可以设定为使不活泼气氛含有氧的含氧气氛。

脱脂温度优选为1000℃以下、进一步为500℃~800℃的范围。由于通过在该范围内进行脱脂工序,能够控制高分子粘合剂的热分解速度,所以能够防止:因伴随脱脂的热分解气体的放出而成型体断裂。

若脱脂温度超过1000℃,则高分子粘合剂急速烧毁,成型体容易破损。另一方面,低于500℃时,有可能高分子粘合剂的热分解变得不充分,变得无法将烧结体致密化。因此,优选在1000℃以下、进而500℃~800℃的温度下使高分子粘合剂等有机物发生热分解。通过在含氧气氛中进行脱脂工序,能够使高分子粘合剂等有机物的热分解成为氧化分解。所谓氧化分解是燃烧反应。

表面改性剂的反应性高,在脱脂工序中容易与高分子粘合剂的官能团反应。若表面改性剂与高分子粘合剂发生反应,则高分子粘合剂彼此进行交联,由于分子结构变大,所以变得不易进行热分解。其结果是,由于变得在高温下急剧地产生热分解,热分解气体的放出也变得急剧,所以变得容易产生成型体的变形。通过添加具有与高分子粘合剂的官能团相同的官能团的表面活性剂,能够使表面改性剂与表面活性剂先反应而防止高分子粘合剂的交联。由此,能够抑制高分子粘合剂的热分解温度的上升,能够抑制成型体的变形。如上所述,羧基为高分子粘合剂及表面活性剂这两者中存在的官能团。若换而言之,则优选使用具有羧基的高分子粘合剂及表面活性剂。

接着,将脱脂体在1600℃~2000℃的温度下进行烧结。烧成炉内压力优选为加压气氛。烧结温度低于1600℃时,烧结体的致密化不充分。若超过2000℃,则在炉内气氛压力低的情况下,有可能分解成Si和N2。烧结温度优选为1700℃~1900℃的范围。若为该范围,则通过烧结助剂和杂质氧生成组成不同的多种玻璃化合物而氮化硅的液相烧结容易进行。由于也产生氮化硅中包含的杂质氟的分解,所以减少氟含量,同时变得容易将氟封入晶界化合物相中。

烧结工序后的烧结体优选以100℃/h(小时)以下的冷却速度被冷却。通过将冷却速度设定为100℃/小时以下、进而50℃/小时以下而缓慢地进行冷却,能够将晶界相进行晶体化,能够增大晶界相中的晶体化合物的比例。在烧结助剂的添加量合计为6质量%以上的情况下,通过使晶界相晶体化而提高热导率的效果大。若换而言之,则在烧结助剂的添加量低于6质量%的情况下,即使不将晶界相晶体化也能够提高热导率。

通过以上的工序,能够制造烧结体。在形成具备烧结体的基板的情况下,通过根据需要对烧结体表面实施珩磨处理或研磨加工等表面加工,制作薄的片材状的成型体,从而容易制作板厚为0.4mm以下、进一步为0.3mm以下的基板。在作为电路基板使用的情况下,进行将金属板等接合的工序。

实施例

(实施例1~6、比较例1)

通过准备表1中所示的氮化硅粉末、表面改性剂、高分子粘合剂、表面活性剂、增塑剂、溶剂的组合,在溶剂中进行混合,制备了混合溶液(试样1~4)。

作为表面活性剂,使用具有与高分子粘合剂的官能团相同的官能团并且平均分子量小于高分子粘合剂的材料。增塑剂使用高分子增塑剂。试样1及试样2的溶剂是将正丁醇、甲乙酮、甲苯按照以摩尔比计成为6:54:40的方式混合。试样3没有使用表面改性剂。试样4中没有使用表面活性剂。

表1

接着,在混合溶液试样1~4中添加烧结助剂,制备成为实施例1~6、比较例1~2的氮化硅烧结体的原料溶液。烧结助剂的添加量按照与氮化硅粉末的合计量成为100质量%的方式表示。将其比例示于表2中。

表2

将上述实施例及比较例的原料溶液进行脱泡处理而进行浆料化。脱泡处理是一边将原料溶液搅拌一边进行真空脱泡处理。将所得到的浆料通过刮刀法进行成型而制备片材。分别加工成规定的尺寸,进行脱脂工序、烧结工序。脱脂工序在600℃~800℃的温度、氮气氛中进行。将其结果示于表3中。

表3

对于由实施例及比较例的氮化硅烧结体制成的氮化硅基板,测定热导率、3点弯曲强度、气孔率。热导率的测定通过激光闪光法来进行。3点弯曲强度依据JIS-R-1601(2008)来测定。气孔率通过汞压入法来测定。调查氮化硅烧结体中的氟含量。将烧结体粉碎而制成中心粒径为150μm以下的粉末状,基于JIS-R-1603,通过离子色谱法对热水解后的产生氟量进行定量分析。将其结果示于表4中。

表4

如由表获知的那样,实施例及比较例的氮化硅基板显示出热导率、3点弯曲强度均优异的特性。接着,对于各氮化硅基板,调查组成不同的2种以上的玻璃化合物相的有无、含有氟的玻璃化合物相的有无。

组成不同的多种玻璃化合物相的有无通过在氮化硅基板的任意的截面中,将测定视野设定为单位面积100μm×100μm并进行拉曼分光分析来评价。拉曼分光分析通过多变量解析(面分析)来进行。在0cm-1~1500cm-1的拉曼位移的范围内测定拉曼分光光谱。通过各个拉曼分光光谱,测定组成不同的多种玻璃化合物的有无。在玻璃化合物相的光谱波形中,还调查了440cm-1~530cm-1的拉曼位移的范围及990cm-1~1060cm-1的拉曼位移的范围内的峰的有无。还求出SM1/SM2。含有氟的晶界相化合物的有无通过TOF-SIMS来求出。将其结果示于表5中。

表5

如由表获知的那样,实施例的氮化硅基板确认到组成不同的2种以上的玻璃化合物相。均在440cm-1~530cm-1的拉曼位移的范围及990cm-1~1060cm-1的拉曼位移的范围内确认到峰。SM1/SM2为1.1~3.0。还确认到含有氟的晶界相化合物。图1是表示实施例1的玻璃化合物相中最大的拉曼光光谱SM1的图。

与此相对,在比较例1及比较例2中,无法确认组成不同的2种以上的玻璃化合物相。

接着,调查实施例及比较例的氮化硅基板的绝缘性。关于绝缘性,调查了绝缘击穿电压。调查了介质损耗的频率依赖性。

绝缘击穿电压(绝缘强度)依据JIS-C-2141并通过2端子法测定。测定端子使用了前端为直径20mm的圆柱状电极。绝缘强度的测定在Fluorinert中进行。将交流电压的频率设定为50Hz。

介质损耗的频率依赖性在常温下利用LCR测试仪(Hewlett-Packard Company制HP16451)施加有效值为1V的交流电压来进行。一边施加交流电压(1V)一边使交流电压的频率从50Hz到1MHz连续地变化而测定介质损耗,求出|εAB|。介质损耗使用环状电极来测定。从50Hz到1MHz扫描频率,测定介电常数和tanδ值,算出介质损耗。将其结果示于表6中。

表6

如由表获知的那样,实施例及比较例的氮化硅基板在绝缘强度方面没有大的差别。另一方面,关于频率依赖性产生差别。因此,关于半导体元件的开关频率变高时的|εAB|,实施例的氮化硅基板较小。这是由于,高频区域中的介质损耗值(平均值εA)和低频区域中的介质损耗(平均值εB)两者均低。与此相对,比较例成为特别高的值。因此,获知实施例的氮化硅基板即使半导体元件的工作频率域变广也能够确保绝缘性。因此,可以用于各种电路基板。

以上,例示出了本发明的几个实施方式,但这些实施方式是作为例子提出的,并不意图限定发明的范围。这些新颖的实施方式可以以其他各种形态实施,在不脱离发明的主旨的范围内,可以进行各种省略、置换、变更等。这些实施方式和其变形例包含于发明的范围、主旨中,同时包含于权利要求书记载的发明和其均等的范围内。另外,上述的各实施方式可以相互组合而实施。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:形成蒸发矿物产品及其作为肥料的使用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!