绝缘膜的成膜方法、绝缘膜的成膜装置及基板处理系统

文档序号:1786218 发布日期:2019-12-06 浏览:26次 >En<

阅读说明:本技术 绝缘膜的成膜方法、绝缘膜的成膜装置及基板处理系统 (Method for forming insulating film, apparatus for forming insulating film, and substrate processing system ) 是由 村松诚 斋藤祐介 源岛久志 藤井宽之 于 2018-03-13 设计创作,主要内容包括:本发明的课题是提供一种技术:在基板上形成包含氧化硅的绝缘膜作为涂布膜时,可获得良好的膜质。本发明的成膜方法的特征在于,将包含聚硅氮烷的涂布液涂布在晶圆W上,并使涂布液的溶剂挥发后,在进行固化工序之前,在氮气气氛下对前述涂布膜照射紫外线。因此,在聚硅氮烷的被水解的部位容易生成悬挂键。因此,由于在作为预先被水解的部位的硅中生成悬挂键,因此羟基的生成效率变高。即,由于水解所需的能量降低,因此,即使在将固化工序的温度设为350℃时,未被水解而残留的部位也会变少。其结果,由于有效地发生脱水缩合,因此交联率提高,从而能够成膜致密的(为良好的膜质)绝缘膜。(The subject of the invention is to provide a technology: when an insulating film containing silicon oxide is formed as a coating film on a substrate, good film quality can be obtained. The film forming method of the present invention is characterized in that a coating liquid containing polysilazane is applied to a wafer W, a solvent of the coating liquid is volatilized, and then the coating film is irradiated with ultraviolet rays in a nitrogen atmosphere before a curing step is performed. Therefore, dangling bonds are easily formed at the hydrolyzed portion of polysilazane. Therefore, dangling bonds are formed in silicon as sites hydrolyzed in advance, and therefore, the generation efficiency of hydroxyl groups is increased. That is, since the energy required for hydrolysis is reduced, even when the temperature in the curing step is 350 ℃, the remaining portions that are not hydrolyzed are reduced. As a result, since dehydration condensation occurs efficiently, the crosslinking rate is increased, and a dense (good film quality) insulating film can be formed.)

绝缘膜的成膜方法、绝缘膜的成膜装置及基板处理系统

技术领域

本发明涉及一种成膜绝缘膜的技术,所述绝缘膜是基板上包含氧化硅的涂布膜,通过交联反应被固化。

背景技术

在半导体装置的制造工序中,有成膜氧化硅膜等绝缘膜的工序,绝缘膜可通过例如等离子体CVD、基于涂布液的涂布等方法来成膜。通过等离子体CVD而成膜的绝缘膜具有可获得致密且良好的膜的优点,但嵌入性差。因此不适于例如被称为STI(浅沟槽隔离(Shallow trench isolation))的在微细的槽中嵌入绝缘物的情况,需要重复进行等离子体CVD和回蚀刻,缓慢地进行嵌入以使其不出现间隙等,成膜工艺变得繁杂,为了进行真空处理而需要大型的装置。

另外,例如,通过旋涂等将涂布液涂布于半导体晶圆(以下称为“晶圆”),并将涂布膜固化而成膜绝缘膜的方法的嵌入性良好,且即使是STI等微细的图案,也容易填充绝缘膜。进而具有能够在常压气氛下进行处理的优点,但存在膜的强度变得比较低的的课题。因此,通常在例如600℃~800℃下对涂布膜进行热处理(固化)而提高膜的强度。

然而,随着图案的微细化,要求尽可能将对所制造的半导体装置的热历程控制在较低水平,例如,在成膜层间绝缘膜时,从铜(Cu)布线的迁移、Cu的扩散等观点考虑,温度不能高于450℃。因此,通过涂布液的涂布来成膜绝缘膜的方法因固化温度较高而不能应用于层间绝缘膜。

专利文献1中记载的技术是,在涂布膜的涂布后,在低温下对涂布膜进行加热,其后在水蒸气气氛下、高温下进行处理,由此成膜绝缘膜,但该技术并不解决本发明的课题。

现有技术文献

专利文献

专利文献1:日本特开2012-174717号公报

发明内容

发明要解决的问题

本发明是在上述情况下完成的,其目的在于,提供一种技术:在基板上形成包含氧化硅的绝缘膜作为涂布膜时,可获得良好的膜质。

用于解决问题的方案

本发明的绝缘膜的成膜方法的特征在于,包括如下工序:

形成涂布膜的工序,将涂布液涂布在基板上而形成涂布膜,所述涂布液是使用于形成包含氧化硅的绝缘膜的前体溶解于溶剂中而成的;

溶剂挥发工序,使前述涂布膜中的溶剂挥发;

能量供给工序,在上述工序之后,为了使构成前述前体的分子团生成悬挂键,在氧浓度比空气低的低氧气氛下向前述涂布膜供给能量;及

固化工序,在能量供给工序之后,对前述基板进行加热,使前述前体交联,从而形成绝缘膜。

本发明的绝缘膜的成膜装置的特征在于,具备:

涂布模块,用于将涂布液涂布在基板上而形成涂布膜,所述涂布液是使用于形成包含氧化硅的绝缘膜的前体溶解于溶剂中而成的;

溶剂挥发模块,用于使前述涂布膜中的溶剂挥发;

能量供给模块,用于在氧浓度比空气低的低氧气氛下对溶剂挥发后的涂布膜供给能量,以使前述前体活化;

固化模块,用于对通过前述能量供给模块处理后的基板进行加热,使前述前体交联,从而形成绝缘膜;及

基板运送机构,用于在各模块之间运送基板。

本发明的基板处理系统的特征在于,具备:

基板处理装置,其具备:运入/运出口,用于将基板装入运送容器而运入/运出;涂布模块,用于将涂布液涂布在基板上而形成涂布膜,所述涂布液是使用于形成包含氧化硅的绝缘膜的前体溶解于溶剂中而成的;溶剂挥发模块,用于使前述涂布膜中的溶剂挥发;能量供给模块,用于在氧浓度比空气低的低氧气氛下对溶剂挥发后的涂布膜供给能量,以使前述前体活化;及,基板运送机构,用于在各模块及前述运入/运出口之间运送基板;

固化装置,用于对通过前述能量供给模块处理后的基板进行加热,使前述前体交联而形成绝缘膜;

容器运送机构,用于在前述基板处理装置的前述运入/运出口与前述固化装置之间运送前述运送容器。

发明的效果

根据本发明,在将含有包含氧化硅的绝缘膜的前体的涂布液涂布在基板上并使涂布液的溶剂挥发之后,在进行固化工序之前,在低氧气氛下对前述涂布膜供给能量。因此,在前体中的被水解的部位容易生成悬挂键。在固化工序中,首先通过水解而使羟基键合于构成前体的分子团的硅,接着,分子团彼此的羟基发生脱水缩合而进行交联,由于在作为预先被水解的部位的硅中生成悬挂键,因此羟基的生成效率变高。即,由于水解所需的能量降低,因此即使在低温下进行固化工序,未被水解而残留的部位也会变少。其结果,由于有效地发生脱水缩合,因此交联率提高,可期待制造致密的(良好的)绝缘膜。

附图说明

图1是对以往的绝缘膜的固化工序进行说明的说明图。

图2是对本发明的绝缘膜的固化工序进行说明的说明图。

图3是对本发明的实施方式的绝缘膜的成膜工序进行说明的说明图。

图4是对本发明的实施方式的绝缘膜的成膜工序进行说明的说明图。

图5是对本发明的实施方式的绝缘膜的成膜工序进行说明的说明图。

图6是对本发明的实施方式的绝缘膜的成膜工序进行说明的说明图。

图7是对本发明的实施方式的绝缘膜的成膜工序进行说明的说明图。

图8是对以往的成膜处理中的聚硅氮烷的反应路径进行说明的说明图。

图9是对本发明的成膜方法的聚硅氮烷的反应路径进行说明的说明图。

图10是表示绝缘膜的表面平坦化的说明图。

图11是表示绝缘膜的成膜装置的平面图。

图12是绝缘膜的成膜装置的纵剖视图。

图13是表示设置于前述成膜系统的涂布模块的剖视图。

图14是表示设置于前述成膜系统的溶剂挥发模块的剖视图。

图15是表示设置于前述成膜系统的紫外线照射模块剖视图。

图16是表示设置于前述成膜系统的固化处理模块的剖视图。

图17是表示本发明的实施方式的基板处理系统的平面图。

图18是对本发明的实施方式的其它例子的绝缘膜的成膜工序进行说明的说明图。

图19是对本发明的实施方式的其它例子的绝缘膜的成膜工序进行说明的说明图。

图20是对本发明的实施方式的其它例子的绝缘膜的成膜工序进行说明的说明图。

图21是对本发明的实施方式的其它例子的绝缘膜的成膜工序进行说明的说明图。

图22是对本发明的实施方式的其它例子的绝缘膜的成膜工序进行说明的说明图。

图23是对本发明的实施方式的其它例子的绝缘膜的成膜工序进行说明的说明图。

图24是表示本发明的实施方式的其它例子的晶圆的表面结构的剖视图。

具体实施方式

[发明概要]

在对本发明的实施方式的详细内容进行说明之前,预先对本发明的概要进行说明。作为本发明的绝缘膜的成膜方法的一个例子,可举出如下工序:将含有包含氧化硅的绝缘膜的前体的涂布液涂布在基板上,并对得到的涂布膜进行加热而使涂布膜中的溶剂挥发,接下来,对基板进行加热,从而进行涂布膜中的分子团的重新排列,其后,对涂布膜照射紫外线,然后,将涂布膜固化。

涂布液是使作为包含氧化硅的绝缘膜的前体的分子团的低聚物的组溶解于作为溶剂的溶剂中而制造的。在一般的固化工序中,通过将基板加热至例如500℃,如图1所示,通过低聚物的Si-H键与H2O(水分)的水解(反应)而生成Si-OH,接下来,发生脱水缩合(反应)而生成Si-O-Si键,低聚物彼此交联。

使用低聚物作为涂布液的成分的原因是由于前体整体连接时在溶剂中不溶解的缘故。因此,低聚物的状态、即已述的前体的水解前的状态稳定,水解是从该稳定状态向不稳定状态转变的工艺,因此,难以促进水解,需要提高固化温度或者使其在低温下反应较长的时间。

另一方面,脱水缩合反应在仅给予热能的条件下迅速地进行。因此,如果为了促进水解而提高固化温度,则与发生水解(Si-H成为Si-OH)相比,更容易发生脱水缩合(Si-OH成为Si-O-Si),因此,绝缘膜的致密性变低。对于其原因,概略而言,可推测是由于在一部分低聚物彼此因脱水缩合而交联时,会发生其它低聚物尚未进行水解的情况,该其它低聚物会掺入一部分低聚物彼此的交联物内。需要说明的是,在低温下进行长时间固化的方法因吞吐量变低而在生产线上难以接受。

因此,在本发明中,在进行固化工序之前对涂布膜照射例如紫外线,从而在发生水解的部位生成悬挂键(可以说将低聚物活化)。即,如图2所示,利用紫外线的能量来切断低聚物中的Si-H键而生成悬挂键。因此,由于在固化工序中水解所需的能量变低,因此羟基(OH基)的生成效率变高,其后的基于脱水缩合的交联率提高。这意味着即使在低温下进行固化工序,也可获得致密的(为良好的膜质)绝缘膜。

对涂布膜照射紫外线需要在固化工序之前进行。对于其原因,由于固化工序在即使称为低温也是例如350℃~450℃的加热气氛下进行,因此,当利用紫外线的能量如上所述生成悬挂键时,自生成悬挂键的部位起发生交联,因此,Si-H键尚未被切断的低聚物被封入交联后的低聚物组中,绝缘膜的致密性变低。

因此,对涂布膜照射紫外线的工序需要在可抑制上述现象的温度下进行,具体而言,考虑优选为例如350℃以下,例如能够在室温下进行。另外,对涂布膜照射紫外线的工序需要在氧浓度比空气气氛低的低氧浓度气氛下进行,例如在氧浓度为400ppm以下、优选50ppm以下的气氛下进行。可举出氮气等非活性气体气氛作为低氧浓度气氛的一个例子。

如果进行该工序的气氛中氧浓度较高,则具有通过紫外线的照射而生成的悬挂键的低聚物彼此瞬间键合,孤立的低聚物被封入键合后的低聚物中,结果绝缘膜的致密性变低。

[实施方式]

下面,对本发明的绝缘膜的成膜方法的实施方式进行详细说明。在该例中,对针对被处理基板进行STI的工艺进行说明。如图3所示,在作为被处理基板的晶圆W上,预先在硅膜100上形成槽部(沟槽)110,然后,将使SOG膜的前体溶解于有机溶剂中而成的涂布液涂布在晶圆W上,由此以填补沟槽110的方式形成涂布膜101。作为前体,可使用例如作为以-(SiH2NH)-为基本结构的聚合物的聚硅氮烷。对于涂布液,例如,为了使流动性良好而使聚硅氮烷的分子团以低聚物的状态溶解。因此,如图3所示,例如,在通过旋涂涂布在晶圆W上时,涂布液容易进入细细的沟槽110内而获得嵌入性良好的涂布膜101。需要说明的是,在图3~图10中,对涂布膜101记载为PSZ(聚硅氮烷)。

接下来,如图4所示,将晶圆W在100~250℃、例如150℃下加热3分钟。由此,涂布膜101中所含的作为溶剂的溶剂挥发。接着,如图5所示,将晶圆W在200~300℃、例如250℃下进行加热。此时,涂布膜101中所含的低聚物因热而被活化。因此,涂布膜101中的低聚物被重新排列,以填补间隙的方式排列(回流工序)。通过进行该回流工序且低聚物重新排列,低聚物间的间隙变窄。因此,在通过后段的固化处理而形成低聚物彼此的交联时,容易变成致密的膜。

其后,如图6所示,在氧浓度为400ppm、优选50ppm以下的气氛、例如氮气(N2)气氛下,对涂布膜101照射5000mJ/cm2以下、例如4000mJ/cm2的能量。作为能量,照射例如主波长为200nm以下的紫外线、例如主波长为172nm的紫外线(UV)。所谓主波长,是指谱图中对应于最大峰值或者其附近的波长。进而,在接下来的固化工序中,如图7所示,一边向晶圆W供给水蒸气,一边在350~450℃的温度下阶段性地加热处理,例如,在水蒸气气氛下于400℃和450℃阶段性地进行加热,进而在N2气气氛下于450℃进行加热。

图8表示在未照射紫外线的情况下对聚硅氮烷进行固化处理时的反应路径,图9表示在照射了紫外线的情况下对聚硅氮烷进行固化处理时的反应路径。当如图8所示对聚硅氮烷进行固化处理时,通过水解,与Si键合的H成为OH基,进而N-H基被氧化,成为氨气(NH3),由此形成Si-O键。然后,OH基彼此通过脱水缩合而形成交联。然而,如发明概要所述,在进行固化处理时不容易发生水解,成为致密性较低的膜。

与此相对,通过在固化处理前对包含聚硅氮烷的涂布膜101照射紫外线,如图9所示,Si-H键被切断而形成悬挂键,而且一部分Si-N键被切断而形成悬挂键。由此,在进行固化处理时,OH基容易地键合于悬挂键而生成Si-OH。另外,通过脱水缩合,OH基彼此交联而形成Si-O-Si键。进而,聚硅氮烷中的Si-N键被O取代而生成氧化硅。如上所述,通过预先形成悬挂键,OH基的生成效率较高,交联率提高,因此,可形成良好的膜质的绝缘膜(氧化硅膜)。

在绝缘膜固化后,如图10所示,对于晶圆W,例如,通过CMP(chemical Mechanicalpolishing(化学机械抛光))去除晶圆W表面的多余的涂布膜101。此时,在涂布膜101的强度较低的情况下,基于CMP的研磨变得困难,但由于涂布膜101成为致密性较高的氧化硅膜,强度充分提高,因此,通过CMP被研磨,从而使硅膜100在晶圆W的表面露出。

接下来,对用于进行上述的绝缘膜的成膜方法的绝缘膜的成膜装置进行说明。如图11、图12所示,绝缘膜的成膜装置的构成是将载体块S1、中继块S2、处理块S3连接成一列,所述载体块S1是用于从作为包含多片晶圆W的运送容器的载体C向装置内运入/运出的运入/运出口。

载体块S1具备:工作台11,在例如横向(X方向)载置有多个(例如3个)用于收纳多片晶圆W并进行运送的载体C;和,交接机构12,是用于针对载置于工作台11的载体C内进行晶圆W的交接的运送臂。交接机构12的构成为:晶圆W的保持部分进退自如地沿X方向移动自如、绕垂直轴旋转自如、升降自如。

中继块S2具有将在载体块S1中从载体C取出的晶圆W交接至处理块S3侧的作用。中继块S2具备:交接架13,上下配置有多个晶圆W的载置台;和,升降自如的移载机构14,用于在交接架13的各载置台之间进行晶圆W的移载。在交接架13中,在设置于处理块S3的主运送机构15a、15b能够进行晶圆W的交接的高度位置和交接机构42能够进行晶圆W的交接的高度位置配置有晶圆W的载置台。

处理块S3成为上下层叠有处理块B1、B2的两层结构。处理块B1、B2的构成大致相同,以处理块B1为例进行说明。处理块B1具备包括从各个中继块S2观察时沿前后方向(Y方向)延伸的例如导轨的沿运送路径16移动自如的主运送机构15a。在处理块B1中,在运送路径16的左右两侧配置有用于对晶圆W进行处理的模块。在处理块B1中,从例如运入/运出块S1观察时在右侧设置有用于涂布涂布液的涂布模块2。另外,在左侧,从中继块S2侧起,并列地配置有例如溶剂挥发模块3、回流模块4、紫外线照射模块5及2台固化模块6。

另外,在绝缘膜的成膜装置中,设置有例如包括计算机的控制部9。控制部9具有程序贮存部,程序贮存部贮存有以实施成膜装置内的晶圆W的运送或者各模块中的晶圆W的处理的顺序的方式编写有指令的程序。该程序利用例如软盘、光盘、硬盘、MO(磁光盘)、存储卡等存储介质来贮存并安装于控制部8。

简单地说明在绝缘膜的成膜装置中的晶圆W的流动,收纳有晶圆W的载体C被载置于工作台11时,经由交接机构12、交接架13及移载机构14被运送至处理块B1或B2。其后,晶圆W在涂布模块2被涂布涂布膜101,按照溶剂挥发模块3→回流模块4→紫外线照射模块5→固化模块6的顺序被运送而形成绝缘膜。其后,晶圆W被交接至交接架13,通过移载机构14及交接机构12回到载体C。

需要说明的是,绝缘膜的成膜装置可以具备进行CMP的研磨装置,例如可以取代一个固化模块6而设置研磨装置。而且,可以以通过CMP对在固化模块6进行了固化处理后的晶圆W进行研磨的方式来构成。

接下来,对涂布模块2进行说明。涂布模块2是通过公知的旋涂法对例如形成有图案的晶圆W涂布涂布液,所述涂布液是将成为绝缘膜的前体的聚硅氮烷溶解于有机溶剂而成的。如图13所示,涂布模块2具备吸附保持晶圆W并通过驱动机构22旋转自如、升降自如地构成的旋转卡盘21。另外,图13中的23为杯形模块。图13中24为向下方延伸的外周壁及内周壁形成为筒状的引导构件。

另外,在外杯25与前述外周壁之间,形成有排出空间,排出空间的下方成为可气液分离的结构。在导引构件24的周围,设置有以从外杯25的上端向中心侧伸出的方式设置的、接受从晶圆W上甩下的液体的液体接受部27。另外,涂布单元2具备涂布液喷嘴28,在从贮存有例如聚硅氮烷等涂布液的涂布液供给源29经由涂布液喷嘴28向晶圆W的中心部供给涂布液,并且使晶圆W绕垂直轴以规定的转速旋转,使涂布液在晶圆W的表面扩展而形成涂布膜。

接着对溶剂挥发模块3进行说明。如图14所示,溶剂挥发模块3具备由下构件31和盖部32构成的处理容器30,所述下构件31由在未图示的壳体内上表面开口的扁平的圆筒体构成;所述盖部32相对该下构件31上下移动来开关处理容器2。下构件32经由支撑构件41被壳体的底面部3a支撑。另外,在下构件31上载置晶圆W,并设置埋设有用于加热至例如100~250℃的加热机构34的加热板33。在壳体的底面部3a,设置有用于使升降销35升降的升降机构36,所述升降销35贯穿下构件25的底部及加热板21,且用于将晶圆W在与外部的主运送机构15a之间进行交接。

盖部32由下表面开口的扁平的圆筒体构成,在盖部32的顶板的中央部形成有排气口38,在该排气口38连接有排气管39。在使处理容器30侧为上游侧时,将该排气管39的下游端与工厂内布置的公共排气管道连接。

盖部32以使其与设置于下构件31的周壁部的上表面的销40接触的方式来载置,且以使在盖部32与下构件之间形成极小的间隙的方式来载置,形成对晶圆W进行加热的处理空间。而且,以通过从排气口38进行排气而使壳体内的气氛从盖部32与下构件25的间隙流入处理容器内的方式来构成。另外,在盖部32,以使盖部32在关闭处理容器2的状态的下降位置与对加热板21交接晶圆W时的上升位置之间能够升降的方式来构成。在该例中,通过驱动安装在盖部22的外周面的升降机构37来进行盖部22的升降动作。

另外,对于回流模块4,除了以利用加热机构34将晶圆W加热至200~300℃的方式来构成以外,与溶剂挥发模块3大致同样地构成。

如图15所示,作为能量供给模块的紫外线照射模块5具备扁平且前后方向细长的长方体形状的壳体50,在壳体50的前方侧的侧壁面,设置有用于运入/运出晶圆W的运入/运出口51和开关该运入/运出口51的开闭器52。

在壳体50的内部,从运入/运出口51观察时,在前侧设置有运送晶圆W的运送臂53。运送臂53以冷却板的形式来构成,例如,以在回流工序之后、且在紫外线照射处理之前能够将晶圆W冷却至常温(25℃)的方式来构成。从运入/运出口71观察时,在内侧配置有晶圆W的载置台54。在载置台54及运送臂53的下方分别设置有用于进行晶圆的交接的升降销56、58,以使升降销56、58通过各个升降机构57、59进行升降的方式来构成。

在载置台54的上方侧,设置有灯室70,所述灯室70收纳有用于对载置于载置台54的晶圆W照射紫外线光的例如照射主波长为172nm的紫外线的氙气灯等紫外线灯71。在灯室70的下表面设置有使由紫外线灯71照射的波长172nm的紫外线光透向晶圆W的光透过窗72。另外,在灯室70的下方的侧壁上,以相互对置的方式设置有气体供给部73与排气口74。在气体供给部73上,连接有用于将N2气供给至壳体50内的N2气供给源75。在排气口74上,经由排气管76连接有排气机构77。

而且,在对载置于载置台54的晶圆W照射紫外线时,在由气体供给部73供给N2气的同时进行排气,以使晶圆W的气氛成为例如400ppm以下、更优选50ppm以下的低氧气氛、例如N2气气氛的方式来构成。将通过运送臂53冷却至常温的晶圆W载置于载置台54时,由N2气供给源75供给N2气,在成为低氧气氛的状态下对晶圆W照射例如4000mJ/cm2的能量。

接下来,对固化模块6进行说明。如图16所示,固化模块6的构成为在未图示的壳体内设置有由盖部62及下构件61构成的处理容器60。在处理容器60内,设置有可载置晶圆W的载置台63,在载置台63上,设置有将载置于载置台63的晶圆W加热至例如350~450℃的加热机构65。另外,在盖部62的顶部设置有气体导入口65,气体供给管66的一端与气体导入口65连接。气体供给管66的另一端侧分支成2根,一个端部连接用于向处理容器60内供给水蒸气的水蒸气供给源67,另一个端部连接用于向处理容器60内供给N2气的N2气供给源68。需要说明的是,图16中的V67、V68是阀,M67、M68是流量调节部。

另外,在盖部62中的气体导入口65的下方,以与载置台63的上表面对置的方式设置有气体扩散板69。气体扩散板69由例如冲孔板构成,使由气体导入口65导入处理容器60内的气体扩散,并向载置于载置台63的晶圆W供给。另外,在下构件61上形成有排气口82,排气管83的一端与排气口连接,并且排气管83的另一端侧与排气部连接。

盖部62的构成为通过设置于壳体的底面部的升降机构81进行升降,在使盖部62上升的状态下,晶圆W被运入处理容器60内并被载置于载置台63。然后,通过使盖部62下降而使处理容器60密闭,形成用于一边对载置于载置台63的晶圆W进行加热一边供给水蒸气的处理空间。

然后,如上所述,在进行了紫外线照射处理的晶圆W被载置于载置台63时,在使处理容器60内充满水蒸气的同时,将晶圆W阶段性地在400℃下加热30分钟、在450℃下加热120分钟后,停止水蒸气的供给,在氮气气氛下、450℃下加热30分钟。

根据上述的实施方式,在将包含聚硅氮烷的涂布液涂布于晶圆W,并使涂布膜101中的溶剂挥发后,且在进行固化工序之前,在氮气气氛下对前述涂布膜101照射紫外线。因此,在聚硅氮烷中的被水解的部位容易生成悬挂键。因此,由于在作为预先被水解的部位的硅中生成悬挂键,因此羟基的生成效率变高。即,由于水解所需的能量降低,因此,即使在将固化工序的温度设为350℃时,未被水解而残留的部位也会变少。其结果,由于有效地发生脱水缩合,因此,交联率提高,从而能够成膜致密的(为良好的膜质)绝缘膜。

另外,本发明也可以是基板处理系统,所述基板处理系统具备进行从涂布处理至紫外线照射的工序的成膜装置和单独进行固化处理的热处理装置,并将通过成膜装置进行了紫外线照射的晶圆W运送至热处理装置来进行固化处理。如图17所示,基板处理系统具备:基板处理装置90,除了未设置固化处理装置以外,与图11、图12所示的绝缘膜的成膜装置同样地构成;和,热处理装置93,包含对晶圆W进行热处理的热处理炉97;在基板处理装置90与热处理装置93之间设置有作为运送载体C的容器运送机构的运送车(AVG)98。热处理装置93具备:载体块S1,可运送载体C;交接机构94,从载体C中取出晶圆;载置架96,载置从载体C中取出的晶圆W;及,移载机构95,将载置于载置架96的晶圆W移载至热处理炉97。热处理炉97可使用例如公知的热处理炉,将多片基板以架状配置于基板保持架后运入用加热器包围的纵型的反应管内来进行热处理(固化)。

而且,该基板处理系统具备上一级计算机99,所述上一级计算机99将控制信号发送至基板处理装置90的控制部91和具备用于执行热处理装置93中的晶圆W的运送及固化处理工序的程序的热处理装置93的控制部92,并且控制基于运送车98的载体C的运送。上一级计算机99中存储有用于执行已述的绝缘膜的成膜方法的程序,在基板处理装置90中进行从向晶圆W涂布涂布液至紫外线照射处理的工序,并将照射了紫外线的晶圆W收纳于载体C,然后通过运送车98运送至热处理装置93而进行固化处理。在这样的基板处理系统中也同样地能够应用绝缘膜的成膜方法。如此具有如下效果:即使使用包含热处理炉的基板处理系统,也能够成膜强度较高的绝缘膜。另一方面,由于能够使固化处理工序的温度较低,因此,还具有如下效果:在进行绝缘膜成膜工序时,无需包含用于进行高温处理的专用热处理炉的基板处理系统。

进而,在上述的实施方式中,在固化工序中,可以一边供给氨气一边进行加热而进行固化处理。或者也可以使固化处理时供给的气体为N2气。

另外,本发明还可以应用于低介电常数膜等层间绝缘膜的成膜。在进行层间绝缘膜的成膜时,为了抑制作为布线材料的铜的迁移、扩散,要求加热温度为450℃以下、例如400℃以下。另外,从以充分的硬度构成层间绝缘膜的观点考虑,优选为300℃以上。在本发明中,由于即使固化温度为低温也可得到良好的膜质的绝缘膜,因此可期待应用于层间绝缘膜的成膜。另外,也可以应用于例如作为在形成有细槽部的基板上形成绝缘膜的例子的PMD(金属前电介质(Pre Metal Dielectric))。

另外,本发明还可以多次涂布涂布液来成膜绝缘膜。例如,在图11、图12所示的绝缘膜的成膜装置中,首先将形成有沟槽110的晶圆W运送至涂布模块2,进行第一次涂布液的涂布。由此,例如如图18所示,形成涂布液进入了形成于硅膜100上的沟槽110的内部的状态的涂布膜101a。需要说明的是,在图18~图23中,用101a表示通过第一次涂布液的涂布而形成的涂布膜,用101b表示通过第二次涂布液的涂布而形成的涂布膜。

其后,将晶圆W与实施方式同样地运送至溶剂挥发模块3,使溶剂挥发后,运送至例如紫外线照射模块5,如图19所示,在低氧气氛下对涂布膜101a照射紫外线。接着,将晶圆W运送至涂布模块2,进行第二次涂布处理。由此,如图20所示,在晶圆W上进一步层叠涂布膜101b。其后,将晶圆W运送至溶剂挥发模块3,使溶剂挥发后,运送至紫外线照射模块5,如图21所示,在低氧气氛下对涂布膜101b照射紫外线。接下来,将晶圆W运送至固化模块6,如图22所示,例如,在水蒸气气氛下、400℃、450℃下阶段性地进行加热后,在N2气气氛下加热至450℃。其后,例如,将晶圆W运送至CMP装置,如图23所示,通过CMP去除表层的涂布膜101b。

在对涂布膜101a、101b照射紫外线时,由于紫外线从涂布膜101a、101b的表层侧逐渐透过至下层侧,因此,涂布膜101a、101b的下层侧比表层侧的紫外线容易变弱,有Si-H键不能充分地成为悬挂键之虞。因此,在对晶圆W进行固化处理时,在涂布膜101a、101b的下层侧,有时交联率变低,有时以膜整体计的交联率变低。另外,例如,在通过CMP去除表层的涂布膜时,有涂布膜中的膜质差的层露出之虞。

因此,通过多次重复涂布膜101a、101b的涂布和紫外线照射而成膜规定的膜厚的涂布膜101a、101b,能够在涂布膜101a、101b分别较薄的状态下进行紫外线照射处理,在涂布膜101a、101b的所有层上,变得容易形成悬挂键。因此,在进行固化处理时,在涂布膜101a、101b的所有层,变得容易形成交联,能够在所有层形成交联率高而致密的涂布膜101a、101b。由此,如后述的实施例2所示,能够成膜更致密且蚀刻强度较高的绝缘膜。

另外,可以在进行第一次涂布处理并使溶剂挥发,且在低氧气氛下对涂布膜101a照射紫外线后,进一步运送至固化模块6,例如在水蒸气气氛下加热至350℃。也可以在其后进行第二次涂布处理并使溶剂挥发后,在低氧气氛下对涂布膜101b照射紫外线,进一步进行固化处理。

进而,也可以在使第一次涂布处理及第二次涂布处理中的溶剂挥发后,进行例如在250℃下对晶圆W进行加热的回流工序。

另外,本发明也可以应用于例如成膜牺牲膜的工序。图24表示形成有牺牲膜的被处理基板的一个例子。如图24所示,晶圆W在SiO2膜102的上表面形成有多晶硅层103,进而以沿厚度方向贯穿多晶硅层103的方式形成有沟槽110。然后,在该晶圆W的上表面成膜成为牺牲膜的SiON膜104。图24示出了在成膜SiON膜104后、以规定图案蚀刻SiON膜104后的晶圆W的表层部的剖面的情形。在该晶圆W中,利用SiO2层102相对于SiON膜104及多晶硅层103的蚀刻选择比,对未被SiON膜104覆盖、濒临去除了SiON膜104的沟槽110的底部的SiO2层102进行蚀刻。

由于SiON膜104等牺牲膜成膜于形成了电路图案等凹凸的晶圆W上,因此,优选嵌入性良好。因此,优选通过涂布涂布液来成膜。另外,由于充分提高与成为蚀刻对象的膜、在此为SiO2膜102的蚀刻选择比,因此,优选蚀刻强度较高。

在成膜SiON膜104时,例如,向晶圆W涂布包含作为前体的聚硅氮烷的涂布液。其后,如图3~图6所示,将涂布膜101在例如150℃下加热3分钟而使涂布膜101中的溶剂挥发后,在250℃下进行加热而进行涂布膜101的回流。接着,在低氧气氛下向涂布膜101照射5000J/cm2以下的紫外线。其后,在固化模块6中,在N2气气氛下进行将晶圆W在400℃、450℃下阶段性进行加热的固化工序。

在作为前体所含的聚硅氮烷中,如上所述,在进行涂布膜101中所含的低聚物彼此的脱水缩合时,聚硅氮烷中所含的-Si(NH)Si-被Si-O-Si键取代。当从该-Si(NH)Si-向Si-O-Si键的取代率高时,接近于SiO2,通过以使-Si(NH)Si-更多地残留的方式进行成膜,成为N浓度高的SiON膜。因而,在对涂布膜101照射紫外线后,在固化工序中,例如在N2气气氛下加热至350℃。此时,通过在较低温度、例如350~450℃下进行固化处理,成为可抑制-Si(NH)Si-的取代的状态,并且,通过照射紫外线而形成的悬挂键如上所述进行水解及脱水缩合而生成Si-O-Si键。因而,使聚硅氮烷的低聚物交联而形成坚固的膜,并且可抑制氮的脱离,能够成膜含氮率较高的SiON膜。

另外,在照射紫外线的工序中,对于交联所进行的温度,例如在为聚硅氮烷的情况下,当提高至350~400℃时,有时悬挂键的形成、水解及脱水缩合会同时进行,孤立的低聚物被封入键合后的低聚物中,结果绝缘膜的致密性变低。

因此,照射紫外线的温度优选为350℃以下。另外,由于紫外线照射时的条件是不进行交联的温度,因此,也可以在回流工序中照射紫外线。然而,在溶剂挥发工序中,有作为溶剂的溶剂会因紫外线的照射而发生改性之虞。因此,需要在溶剂挥发工序以后进行紫外线照射。

另外,如果能量照射工序中的能量过大,则有时Si-H键以外的其它键会被切断。因此,能量的照射量优选为5000J/cm2以下,只要是足以切断Si-H键的末端的剂量以上的照射量即可。

另外,如后述的实施例3所示,通过使溶剂挥发工序中的晶圆W的加热温度为200~250℃来执行上述的绝缘膜的成膜方法,能够提升效果。可推测这是以下两种原因的协同效果:由于通过更可靠地去除涂布膜101中的溶剂,被溶剂吸收的能量变少;由于实施例3中未进行回流处理而产生了相当于回流处理中的低聚物重新排列的效果。

另外,从高效地形成悬挂键的观点考虑,优选未透过涂布膜而被涂布膜吸收的波长的能量。因此,在为紫外线的情况下,优选主波长为200nm以下,也可以使用例如ArF灯等波长为193nm的紫外线,另外,也可以使用氘灯等。进而,作为照射于涂布膜的能量,也可以使用电子束等。

另外,用于溶剂挥发工序的使涂布膜101中的溶剂挥发的装置可以是如下装置,例如,将密闭的处理容器内减压至例如大气压的一半,促进载置于处理容器内的晶圆W中的溶剂的挥发,从而使溶剂挥发。

实施例

<评价试验1>

为了验证本发明的实施方式的效果而进行了以下的试验。使用图17所示的基板处理系统,在评价用的晶圆W上成膜绝缘膜,对绝缘膜的蚀刻强度进行了评价。

[实施例1]

在绝缘膜的成膜方法中的紫外线照射工序中,在N2气气氛下以使剂量为2000mJ/cm2的方式照射主波长为172nm的紫外线,将该例设为实施例1-1。需要说明的是,对于晶圆W,在涂布实施方式所示的涂布液后,在溶剂挥发工序中,将晶圆W在150℃下加热3分钟,其后,在不进行回流工序的情况下进行紫外线照射工序。接下来,在固化工序中,在热处理炉内,在供给水蒸气的状态下,进行在400℃下加热30分钟、在450℃下加热120分钟的2阶段加热后,在N2气气氛下、450℃下加热30分钟。需要说明的是,涂布膜的目标膜厚设为100nm。

[比较例1、2]

另外,在紫外线照射工序中,在空气气氛下照射2000mJ/cm2的紫外线,除此以外,与实施例1-1同样地进行处理,将该例设为比较例1。另外,除了不进行紫外线照射以外,与实施例1-1同样地进行处理,将该例设为比较例2。

在实施例1、比较例1、2的各个例子中,利用0.5%稀氢氟酸进行湿式蚀刻,评价每单位时间的蚀刻量(蚀刻速率),求出在将相对0.5%稀氢氟酸的硅的热氧化膜的蚀刻速率设为1时各个例子中的相对蚀刻速率。在以下实施例中,利用该相对蚀刻速率来评价蚀刻强度。

比较例1、2中的相对蚀刻速率分别为3.74、5.55。与此相对,实施例1中的相对蚀刻速率为2.04。

根据该结果,可以说在将包含聚硅氮烷的涂布液涂布于晶圆W上并成膜绝缘膜时,通过在N2气气氛下对固化工序前的涂布膜照射紫外线的能量,能够提高蚀刻强度。

进而,在实施例1及比较例1的各个例子中,使用(FT-IR:傅里叶变换红外光谱仪),评价紫外线照射处理前后及固化处理后的原子键的量。在比较例1中,在紫外线照射处理后,Si-H键减少,Si-O键增加。另外,在实施例1中,在紫外线照射处理后,虽然可观察到Si-H键减少,但Si-O键未增加,在固化处理后Si-O键增加。

根据该结果推测,通过进行紫外线照射处理,Si-H键减少,能够形成悬挂键,认为在空气气氛下进行紫外线照射处理时,在固化处理之前,交联反应进行,在N2气气氛下进行紫外线照射处理时,能够抑制固化处理前的交联反应。而且,可推测,通过在固化处理前形成悬挂键,并且抑制交联反应,蚀刻强度变高。

另外,在将紫外线的剂量设定为3000J/cm2及4000mJ/cm2的情况下,评价相对蚀刻速率,结果分别为2.70、2.42,即使紫外线的剂量为4000mJ/cm2左右,也能够得到强度较高的绝缘膜。

<评价试验2>

另外,为了验证多次重复对晶圆W的涂布液的涂布和对涂布膜的紫外线照射处理后进行固化处理的效果,依照以下的实施例,使用图17所示的基板处理系统,在晶圆W上成膜绝缘膜,与实施例1同样地求出相对蚀刻速率,对绝缘膜的蚀刻强度进行评价。

[实施例2-1]

在评价用的晶圆W上第一次涂布涂布液后,在溶剂挥发工序中,将晶圆W在150℃下加热3分钟,其后,在不进行回流工序的情况下,与实施方式同样地进行紫外线照射工序。在紫外线照射工序中,将在N2气气氛下所照射的波长172nm的紫外线的剂量设定为4000mJ/cm2。进而,作为第二次涂布液的涂布,在涂布与第一次的涂布液等量的涂布液后,在溶剂挥发工序中,将晶圆W在150℃下加热3分钟,其后,在不进行回流工序的情况下,与实施方式同样地进行紫外线照射工序。其后,进行与实施例1同样的固化工序,将该例设为实施例2-1。需要说明的是,第一次涂布涂布液及第二次涂布液的涂布中的涂布液的供给量与实施例1大致相同,固化处理后的涂布膜的目标膜厚设为200nm。

[实施例2-2]

使涂布液的涂布量为实施例1的大约2倍的量,且以涂布膜的目标膜厚为200nm进行成膜,在紫外线照射工序中,将在N2气气氛下所照射的波长172nm的紫外线的剂量设定为4000mJ/cm2,除此以外,与实施例1同样地进行处理,将该例设为实施例2-2。

实施例2-1及2-2中的相对蚀刻速率分别为2.27、2.56。可知在实施例2-1及2-2的任一例中,相对蚀刻速率都变低,蚀刻强度较高。另外,与实施例2-2相比可知,实施例2-1中的相对蚀刻速率更低。

根据该结果,可以说通过多次重复对晶圆W的涂布液的涂布和对涂布膜的紫外线照射处理,能够得到更致密且良好的绝缘膜。

<评价试验3>

另外,为了验证溶剂挥发工序中的基于晶圆W的加热温度的效果,依照以下的实施例,使用图17所示的基板处理系统,在晶圆W上成膜绝缘膜,并对绝缘膜的蚀刻强度进行评价。

[实施例3-1]

对于晶圆W,在涂布实施方式所示的涂布液后,在溶剂挥发工序中,将晶圆W在150℃下加热3分钟,其后,在不进行回流工序的情况下进行紫外线照射工序。接下来,在固化工序中,在热处理炉内,在供给水蒸气的状态下,进行在400℃下加热30分钟、在450℃下加热120分钟的2阶段加热后,在N2气气氛下、450℃下加热30分钟。需要说明的是,涂布膜的目标膜厚设为100nm。

[实施例3-2、3-3]

将溶剂挥发工序中的晶圆W的加热温度设定为200℃、250℃,除此以外,与实施例3-1同样地进行处理,将这两个例子分别设为实施例3-2~3-3。

实施例3-1、3-2及3-3中的相对蚀刻速率分别为3.68、2.74及2.74。可以说通过提高溶剂挥发工序中的晶圆W的加热温度,能够得到更致密且良好的绝缘膜。

附图标记说明

2 涂布模块

3 溶剂挥发模块

4 回流模块

5 紫外线照射模块

6 固化模块

9、90、92 控制部

99 上一级计算机

100 硅膜

101 涂布膜

W 晶圆

32页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:外延硅晶片的杂质吸附能力的评价方法及外延硅晶片

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类