一种高性能MnZn软磁铁氧体材料的制备方法

文档序号:1810172 发布日期:2021-11-09 浏览:17次 >En<

阅读说明:本技术 一种高性能MnZn软磁铁氧体材料的制备方法 (Preparation method of high-performance MnZn soft magnetic ferrite material ) 是由 王宏 窦海之 曾伟鑫 王鑫 于 2021-09-03 设计创作,主要内容包括:本发明属于铁氧体技术领域,具体涉及一种高性能MnZn软磁铁氧体材料的制备方法,包括以下的步骤:(1)备材;(2)成型:a.在模具上下压制方向边角设计倒角;b.在坯件的侧面内外拐角设计工艺圆角;c.设计模具收缩率为1.15~1.2mm,压制成型使生胚成型密度达到2.8~3.6g/cm~(3);(3)在露天放置24~72小时;(4)烧结:a.在升温段500℃内形成负压;b.升温至950~1050℃,通过添加氮气使平衡氧分压控制在6.5%以下;c.烧结温度为1200~1400℃,保温2~10h,冷却出炉得到MnZn软磁铁氧体材料。本发明可有效改善MnZn软磁铁氧体材料电磁性能,显著提高磁芯烧结密度和机械强度。(The invention belongs to the technical field of ferrite, and particularly relates to a preparation method of a high-performance MnZn soft magnetic ferrite material, which comprises the following steps: (1) preparing materials; (2) molding: a. designing chamfers at the corners in the upper and lower pressing directions of the die; b. designing process fillets at the inner corner and the outer corner of the side face of the blank; c. the shrinkage rate of the mold is designed to be 1.15-1.2 mm, and the green body is pressed and formed to have a forming density of 2.8-3.6 g/cm 3 (ii) a (3) Placing the mixture in the open air for 24-72 hours; (4) and (3) sintering: a. negative pressure is formed in the temperature rising section at 500 ℃; b. heating to 950-1050 ℃, and adding nitrogen to control the equilibrium oxygen partial pressure to be below 6.5%; c. and (4) keeping the sintering temperature at 1200-1400 ℃, preserving the heat for 2-10 h, cooling and discharging to obtain the MnZn soft magnetic ferrite material. The invention can haveEffectively improves the electromagnetic property of the MnZn soft magnetic ferrite material, and obviously improves the sintering density and the mechanical strength of the magnetic core.)

一种高性能MnZn软磁铁氧体材料的制备方法

技术领域

本发明属于铁氧体技术领域,具体涉及一种高性能MnZn软磁铁氧体材料的制备方法。

背景技术

MnZn软磁功率铁氧体磁芯是开关电源模块变换器/逆变器的心脏,广泛应用于通信、汽车电子、平板显示、光伏/风能等领域,是上述电子设备实现小型、高效、节能和高可靠性的关键支撑性电子信息磁性功能材料。

电子电力系统集成智能化、平面贴装化的迫切需求,推动了开关电源小型轻量化和高频化的发展。然而随着工作频率与温度的升高,常规的软磁铁氧体材料的磁芯损耗会急剧增大,进而引起开关电源恶性发热甚至烧毁;材料的高温Bs如果过低,磁芯会工作于趋近饱和阶段,电感剧降,电流激增,变压器烧毁;磁芯的机械强度如果达不到要求,在绕制线圈过程中或者电源移动/震动过程中,受外力作用时会破损开裂,导致自动绕制产线故障或电源系统失效。

软磁铁氧体磁芯脆性问题一直是行业难题。随着电子产品的小型化、扁平化和国内运输行业暴力作业问题,铁氧体磁芯元件破损客诉非常突出。同时,由于近几年人工成本大幅上升,很多电子企业都开始采用自动化磁芯元件装配设备,这都对铁氧体磁芯元件的机械强度和韧性提出了更高的要求。

发明内容

本发明目的在于克服现有技术的不足,提供一种高性能MnZn软磁铁氧体材料的制备方法,在有效改善MnZn软磁铁氧体材料综合电磁性能的同时,并显著提高磁芯的密度和机械强度。

为达到上述目的,本发明采用的技术方案如下:

一种高性能MnZn软磁铁氧体材料的制备方法,包括以下的步骤:

(1)备材:选取MnZn软磁功率铁氧体颗粒粉SSP-44材料1Kg;

(2)成型

a.在模具上下压制方向边角设计倒角;

b.在坯件的侧面内外拐角设计工艺圆角;

c.设计模具收缩率为1.15~1.2mm,压制成型为生胚,使生胚成型密度达到2.8~3.6g/cm3

(3)在露天放置24~72小时;

(4)烧结

a.发明人创造“负压-致密化-低温”烧结工艺新方法,在烧结工艺新增“压力-温度”曲线,在升温段500℃内形成负压,有利于坯件内的PVA及水分排出,尽量避免有氧环境中因胶体燃烧形成的薄层外壳;

b.升温至950~1050℃,大量补充氮气,通过添加氮气使平衡氧分压控制在6.5%以下,目的在于在缺氧环境中降低固相反应的速度,减少晶体内部空格或缺陷,使其致密化;

c.烧结温度为1200~1400℃,保温2~10h,冷却出炉得到MnZn软磁铁氧体材料。

优选的,步骤(2),磁芯规格为I45*10*10,采用45T机械压机、硬质合金模具。

优选的,步骤(2),所述倒角为45°,避免坯件及烧后磁芯相互碰撞造成缺损,同时利于提高坯件及磁芯密度;所述圆角的角弧为0.45,利于坯件及烧结时磁芯的应力分散,有效避免产品烧结开裂。

优选的,步骤(2),设计模具收缩率为1.17mm,压制成型为生胚,使生胚成型密度达到3.2g/cm3

优选的,步骤(3),生坯烧结前,在露天放置48小时,使坯件在空气中膨胀,释放其内部应力,并使坯件内部的颗粒自由舒展。

优选的,步骤(4),氧分压控制为4.5%,烧结温度为1300℃,保温6h,阻止ZnO挥发,使磁芯元件尽可能达到细晶、高密度的内部结构,冷却出炉,得到MnZn软磁铁氧体材料。

基于一个总的发明构思,本发明的另一个目的在于保护上述方法制备得到的高性能MnZn软磁铁氧体材料,其特征在于,所述高性能MnZn软磁铁氧体材料在25℃,100KHz,200mT的工作条件下,功率损耗低于582mw/cm3,在100℃,100KHz,200mT的工作条件下,功率损耗低于285mw/cm3;在H=1194A/m,25℃的工作条件下,饱和磁通密度高于519mT,在H=1194A/m,100℃的工作条件下,饱和磁通密度高于408mT;居里温度高于128℃,磁芯密度大于4.92g/cm3,抗弯强度不低于115MPa。

与现有技术相比,本发明的关键技术在于成型和烧结工艺新方法,具体优点和积极效果如下:

(1)有效改善MnZn软磁铁氧体材料及元件的综合电磁性能,如功率损耗、饱和磁感应强度、温度特性等;

(2)显著提高磁芯的烧结密度和机械强度,减少磁芯在自动化装配及运输过程中的破损,以及实际应用中受外力作用造成的磁芯断裂;

(3)提高成品合格率,保证磁芯尺寸精度,并使其具有优良的外观特性等。

本发明的工艺技术主要用于MnZn功率软磁铁氧体材料的烧结,相关技术也可考虑用于高磁导率软磁铁氧体材料的烧结。

附图说明

图1现有技术中的MnZn软磁铁氧体烧结工艺曲线;

图2本发明MnZn软磁铁氧体烧结工艺曲线;

图3磁芯I45*10*10抗弯强度测试方法。

具体实施方式

为使本发明的目的、技术方案和优点更加明白清楚,结合具体实施方式,对本发明做进一步描述,但是本发明并不限于这些实施例。需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。在本发明中,若非特指,所有的份、百分比均为质量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中的方法,如没有特别说明,均为本领域的常规方法。

下面结合附图对本发明的具体实施例做详细说明。

比较例

采用图1现有技术中的MnZn软磁铁氧体烧结工艺制备MnZn软磁铁氧体,其他步骤采用本领域的常规技术手段。

实施例

一种高性能MnZn软磁铁氧体材料的制备方法,包括以下的步骤:

(1)备材:选取MnZn软磁功率铁氧体颗粒粉SSP-44材料1Kg;

(2)成型:磁芯规格为I45*10*10,采用45T机械压机、硬质合金模具;

a.在模具上下压制方向边角设计45°倒角;

b.在坯件的侧面内外拐角设计工艺圆角,所述圆角的角弧为0.45;

c.设计模具收缩率为1.17mm,压制成型为生胚,使生胚成型密度达到3.2g/cm3

(3)生坯烧结前,在露天放置48小时;

(4)烧结

a.在升温段500℃内形成负压;

b.升温至1000℃,大量补充氮气,通过添加氮气使平衡氧分压控制为4.5%;

c.烧结温度为1500℃,保温6h,冷却出炉,得到MnZn软磁铁氧体材料。

实施效果对比如下:

(1)通过上述实施例烧结的MnZn功率软磁铁氧体材料电磁性能

结论:从测试结果可以看出,采用本发明烧结的磁芯功率损耗更低,饱和磁感应强度更高,并且磁芯密度明显提高。

(2)通过上述实施例制得的MnZn功率软磁铁氧体磁芯机械强度对比

备注:抗弯强度采用电子万能试验机,测试方法如图3所示。

结论:从测试结果可以看出,采用本发明烧结的磁芯抗弯强度有显著提高。

本发明与现有技术相比,最主要的是在改善软磁铁氧体材料现有电磁特性的情况下,显著提高了磁芯的烧结密度和机械强度,改善了车载电源中因震动有可能造成的磁芯断裂,并解决了在自动化装配中的磁芯断裂问题,减少了磁芯运输时的破损,提高了产品合格率。

上述实施例仅是本发明的较优实施方式,凡是依据本发明的技术实质对以上实施例所做的任何简单修饰、修改及替代变化,均属于本发明技术方案的范围内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高性能La-Co系锶永磁铁氧体材料的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!