直流配网开关特性测试系统及方法

文档序号:1814636 发布日期:2021-11-09 浏览:1次 >En<

阅读说明:本技术 直流配网开关特性测试系统及方法 (DC distribution network switch characteristic test system and method ) 是由 王晨清 高磊 罗飞 李鹏 孔祥平 杨毅 张弛 郑俊超 林金娇 于 2021-08-20 设计创作,主要内容包括:本发明公开了一种直流配网开关特性测试系统及方法,所述测试系统包括第一就地采集单元,用于与直流配网开关中的机械开关支路相连;第二就地采集单元,用于与直流配网开关中的转移支路相连;第三就地采集单元,用于与直流配网开关中的耗能支路相连;测试主机,分别所述第一就地采集单元、第二就地采集单元和第三就地采集单元相连,还用于与直流配网开关中电子式电流互感器和直流开关控保模块相连。本发明通过在直流配网开关内部加装非接触式传感器,如TMR(隧道磁阻式)传感器或开口霍尔,搭建直流配网开关的测试系统,采用电流阶跃时刻作为开关的动作完成时刻,测试直流配网开关内部多条支路的开断时序,为直流配网开关提供灵活且全面的测试手段。(The invention discloses a system and a method for testing the switch characteristics of a direct-current distribution network, wherein the test system comprises a first local acquisition unit, a second local acquisition unit and a third local acquisition unit, wherein the first local acquisition unit is used for being connected with a mechanical switch branch in a direct-current distribution network switch; the second local acquisition unit is used for being connected with a transfer branch in the direct-current distribution network switch; the third local acquisition unit is used for being connected with an energy consumption branch in the direct-current distribution network switch; and the test host is respectively connected with the first local acquisition unit, the second local acquisition unit and the third local acquisition unit and is also used for connecting an electronic current transformer and a direct current switch control protection module in the direct current distribution network switch. According to the invention, the non-contact sensor, such as a TMR (tunnel magneto-resistance) sensor or an open Hall sensor, is additionally arranged in the DC distribution network switch, so that a test system of the DC distribution network switch is built, the current step time is used as the action completion time of the switch, the on-off time sequence of a plurality of branches in the DC distribution network switch is tested, and a flexible and comprehensive test means is provided for the DC distribution network switch.)

直流配网开关特性测试系统及方法

技术领域

本发明属于直流配网测试技术领域,具体涉及一种直流配网开关特性测试系统及方法。

背景技术

随着电力电子技术的不断发展,直流配电网是未来交直流混连电网的主要表现形式。直流配电网是相对于交流配电网而言的,其提供给负荷的是直流母线,直流负荷可以直接由直流母线供电,而交流负荷需要经过逆变设备后供电,如果负荷中直流负荷比例较大,则直流配电将会有较大优势。

直流配网开关是直流配电网发展主要技术瓶颈,目前直流配网开关一般都是采用混合式直流断路器,如图1所示,包括一次电路和二次部分。一次电路为机械开关支路、转移支路和耗能支路三部分组成,二次部分由电子式电流互感器和直流开关控保单元组成。电子式电流互感器将电流采样值送至直流开关控保和直流配电网控保。直流开关的控分动作逻辑为:接收到直流开关控制单元分闸指令后,由转移支路率先闭合,然后机械开关支路打开,将电流转移至转移支路中,再将转移支路关断,将电流消耗至耗能支路中,整个过程涉及到三条直流的配合关系。现有技术中直流配网开关的测试只能依靠观测电子式电流互感器的电流变化,来测量开关的动作时间,而对于直流配网开关的整体动作特性、动作逻辑、工作方式都没有很好的测试手段。

发明内容

针对上述问题,本发明提出一种直流配网开关特性测试系统及方法,通过在直流配网开关内部各支路加装非接触式传感器,如TMR(隧道磁阻式)传感器或开口霍尔,搭建直流配网开关的测试系统,采用电流阶跃时刻作为开关的动作完成时刻,测试直流配网开关内部多条支路的开断时序,为直流配网开关提供灵活且全面的测试手段。

为了实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:

第一方面,本发明提供了一种直流配网开关特性测试系统,包括:

第一就地采集单元,用于与直流配网开关中的机械开关支路相连;

第二就地采集单元,用于与直流配网开关中的转移支路相连;

第三就地采集单元,用于与直流配网开关中的耗能支路相连;

测试主机,分别所述第一就地采集单元、第二就地采集单元和第三就地采集单元相连,还用于与直流配网开关中电子式电流互感器和直流开关控保模块相连。

可选地,所述测试主机基于预设的配网控保跳闸协议,发出跳闸命令至直流配网开关中直流开关控保模块,并记录跳闸命令的出门时刻t0

所述第一就地采集单元、第二就地采集单元、第三就地采集单元采集对应支路的电流,并发送至测试主机;

所述测试主机基于接收到的各支路电流,计算出各支路的阶跃时刻;

所述测试主机还基于接收到的直流配网开关中电子式电流互感器发送的电流数据,计算出电子式电流互感器的阶跃时刻;

所述测试主机基于各支路和电子式电流互感器的阶跃时刻,获得直流配网开关的动作逻辑、动作时间和动作时序。

可选地,各支路的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录各支路电流的突变时刻;

利用数据窗通过滤波算法,求取各支路电流的阶跃初值I0

对各支路电流进行多项式拟合,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

可选地,电子式电流互感器的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录电子式电流互感器发送的电流数据的突变时刻;

利用数据窗通过滤波算法,求取电子式电流互感器发送的电流数据的阶跃初值I0

对电子式电流互感器发送的电流数据进行三次样条插值计算,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

可选地,所述三次样条插值计算公式为:

其中,xi和xi+1均为原始采样点,yi为原始采样点xi对应的采样值,yi+1为原始采样点xi+1对应的采样值,x为插值点,y为插值量,y"i为yi的二阶导数;y"i+1为yi+1的二阶导数。

可选地,所述第一就地采集单元、第二就地采集单元和第三就地采集单元结构相同,均包括:顺次相连的非接触式传感器、调理回路、采样模块和第二光纤发送模块;所述非接触式传感器用于安装在对应的机械开关支路、转移支路或耗能支路中;所述第二光纤发送模块用于与测试主机进行通信。

可选地,所述测试主机包括上位机、第一光纤发送模块和光纤接收模块,所述上位机分别与所述第一光纤发送模块和光纤接收模块相连。

第二方面,本发明提供了一种直流配网开关特性测试方法,包括:

利用测试主机基于预设的配网控保跳闸协议,发出跳闸命令至直流配网开关中直流开关控保模块,并记录跳闸命令的出门时刻t0

利用第一就地采集单元、第二就地采集单元、第三就地采集单元采集直流配网开关中对应支路的电流,并发送至测试主机;

利用测试主机基于接收到的各支路电流,计算出各支路的阶跃时刻;

利用测试主机还基于接收到的直流配网开关中电子式电流互感器发送的电流数据,计算出电子式电流互感器的阶跃时刻;

利用测试主机基于各支路和电子式电流互感器的阶跃时刻,获得直流配网开关的动作逻辑、动作时间和动作时序。

可选地,各支路的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录各支路电流的突变时刻;

利用数据窗通过滤波算法,求取各支路电流的阶跃初值I0

对各支路电流进行多项式拟合,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

可选地,电子式电流互感器的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录电子式电流互感器发送的电流数据的突变时刻;

利用数据窗通过滤波算法,求取电子式电流互感器发送的电流数据的阶跃初值I0

对电子式电流互感器发送的电流数据进行三次样条插值计算,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

可选地,所述三次样条插值计算公式为:

其中,xi和xi+1均为原始采样点,yi为原始采样点xi对应的采样值,yi+1为原始采样点xi+1对应的采样值,x为插值点,y为插值量,y"i为yi的二阶导数;y"i+1为yi+1的二阶导数。

与现有技术相比,本发明的有益效果:

本发明提出了一种直流配网开关特性测试系统及方法,所述测试系统采用TMR传感器作为电流传感器,采用可开合设计,安装位置不会影响电流的响应速度;光纤传输,有效解决测试过程的耐压与抗干扰的问题;以原有的电子式电流互感器作为总体电流采样,无需在线路侧布置电流传感器;TMR传感器采样速率达到1MHz,不用进行插值算法,能够减轻测试系统的计算量;对原有电子式电流互感器进行三次样条插值,消除由于原有采样速率而带来的量化误差,可自适应不同采样速率的数据。

本发明通用性强,以电流的上升和下降沿作为开关动作逻辑时序依据,适应任何原理的直流配网开关测试,仅利用电流阶跃特性即可判断开关分合过程,简单实用。

附图说明

为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中:

图1为现有技术中直流配网开关的结构示意图;

图2为本发明一种实施例的直流配网开关特性测试系统的结构示意图;

图3为本发明一种实施例的直流配网开关特性测试系统与直流配网开关的结构示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明的保护范围。

下面结合附图对本发明的应用原理作详细的描述。

实施例1

本发明实施例中提供了一种直流配网开关特性测试系统,如图2所示,包括:

第一就地采集单元(即图2中的就地采集单元1),用于与图1中直流配网开关中的机械开关支路相连;

第二就地采集单元(即图2中的就地采集单元2),用于与图1中直流配网开关中的转移支路相连;

第三就地采集单元(即图2中的就地采集单元3),用于与图1中直流配网开关中的耗能支路相连;

测试主机,分别所述第一就地采集单元、第二就地采集单元和第三就地采集单元相连,还用于与图1中直流配网开关中电子式电流互感器和直流开关控保模块相连。在本发明实施例的一种具体实施方式中,所述第一就地采集单元、第二就地采集单元和第三就地采集单元结构相同,均包括:顺次相连的非接触式传感器(TMR传感器)、调理回路、采样模块和第二光纤发送模块;所述非接触式传感器用于安装在对应的机械开关支路、转移支路或耗能支路中;所述第二光纤发送模块用于与测试主机进行通信。所述测试主机包括上位机、第一光纤发送模块和光纤接收模块,所述上位机分别与所述第一光纤发送模块和光纤接收模块相连,所述光纤接收模块与所述第二光纤发送模块相连。

所述测试主机基于预设的配网控保跳闸协议,发出跳闸命令至直流配网开关中直流开关控保模块,并记录跳闸命令的出门时刻t0;具体地,所述测试主机中的上位机基于预设的配网控保跳闸协议,依次通过CPU、FPGA、第一光纤发送模块发出跳闸命令至直流配网开关中直流开关控保模块中;

所述第一就地采集单元、第二就地采集单元、第三就地采集单元采集对应支路的电流,并发送至测试主机;

所述测试主机基于接收到的各支路电流,计算出各支路的阶跃时刻;

所述测试主机还基于接收到的直流配网开关中电子式电流互感器发送的电流数据,计算出电子式电流互感器的阶跃时刻;

所述测试主机基于各支路和电子式电流互感器的阶跃时刻,获得直流配网开关的动作逻辑、动作时间和动作时序。

在本发明实施例的一种具体实施方式中,各支路的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录各支路电流的突变时刻;

利用数据窗通过滤波算法,求取各支路电流的阶跃初值I0

对各支路电流进行多项式拟合,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

在本发明实施例的一种具体实施方式中,电子式电流互感器的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录电子式电流互感器发送的电流数据的突变时刻;

利用数据窗通过滤波算法,求取电子式电流互感器发送的电流数据的阶跃初值I0

对电子式电流互感器发送的电流数据进行三次样条插值计算,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

其中,所述三次样条插值计算公式为:

其中,xi和xi+1均为原始采样点,yi为原始采样点xi对应的采样值,yi+1为原始采样点xi+1对应的采样值,x为插值点,y为插值量,y"i为yi的二阶导数;y"i+1为yi+1的二阶导数。

下面结合一本发明实施例中的直流配网开关特性测试系统的工作过程具体为:

(1)在试验开始前,将TMR传感器安装于直流配网开关相应支路中,开合式设计,无需动直流配网开关的主回路。

(2)上位机中配置电子式电流互感器的通信协议以及直流开关控保模块(见图1)的跳闸协议。

(3)一次回路(见图1)带电,监视各回路的电流正常。

(4)上位机发出跳闸命令,测试主机按照直流配电网的控制或保护装置的跳闸协议发出至直流开关控保模块,并记录下跳闸命令的出门时刻t0

(5)对电子式电流互感器以及三个TMR传感器的电流变化进行录波。

(6)对录波数据进行分析计算,记录各电流的突变时刻。取10ms数据窗通过滤波算法求取各支路电流的阶跃初值I0,在突变电流稳定后求取阶跃终值I1。以I1-I0的90%值时刻作为开关动作完成时刻。为了精确获得90%阶跃时刻,针对光纤数字信号离散采样值的量化误差,采用广义多项式拟合用来计算数字采样输出的阶跃初值I0和阶跃终值I1,消除掉初值值时的噪声误差,以及阶跃初期的过冲波动对阶跃终值的影响,为阶跃幅值计算以及后面的90%幅值计算提供精确依据。广义多项式拟合使数据拟合为由下列等式表示的多项式函数:

式中,fi为最佳多项式拟合的输出序列,xi是输入序列,aj是多项式系数,m是多项式阶数。

经过曲线拟合后获得精确的阶跃初值I0和阶跃终值I1,以及阶跃的90%值I90=(阶跃初值I0和阶跃终值I1)*0.9。

TMR传感器的采样率为1MHz,其时间离散误差为1us,无需进行插值计算,可直接获得其90%阶跃时刻t90。电子式电流互感器为直流配网开关系统自带其采样速率是不确定值,所以为了获得精确的90%阶跃时刻对电子式电流互感器的采样值进行三次样条插值计算。

其中,xi和xi+1均为原始采样点,yi为原始采样点xi对应的采样值,yi+1为原始采样点xi+1对应的采样值,x为插值点,y为插值量,y"i为yi的二阶导数;y"i+1为yi+1的二阶导数。经过三次样条插值计算后获得精确的阶跃90%时刻t90

(7)以发出开关跳闸命令时刻t0为时间基准,利用每条支路电流阶跃90%时刻t90为开关完成分合过程时间戳。从而获得直流配网开关的整体动作时序。

(8)将直流开关各支路的动作时序与相关标准比对,验证直流开关动作的正确性实施例2

本发明实施例中提供了一种直流配网开关特性测试方法,包括:

利用测试主机基于预设的配网控保跳闸协议,发出跳闸命令至直流配网开关中直流开关控保模块,并记录跳闸命令的出门时刻t0

利用第一就地采集单元、第二就地采集单元、第三就地采集单元采集直流配网开关中对应支路的电流,并发送至测试主机;

利用测试主机基于接收到的各支路电流,计算出各支路的阶跃时刻;

利用测试主机还基于接收到的直流配网开关中电子式电流互感器发送的电流数据,计算出电子式电流互感器的阶跃时刻;

利用测试主机基于各支路和电子式电流互感器的阶跃时刻,获得直流配网开关的动作逻辑、动作时间和动作时序。

在本发明实施例的一种具体实施方式中,各支路的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录各支路电流的突变时刻;

利用数据窗通过滤波算法,求取各支路电流的阶跃初值I0

对各支路电流进行多项式拟合,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

在本发明实施例的一种具体实施方式中,电子式电流互感器的阶跃时刻的计算过程包括:

以出门时刻t0为基准,记录电子式电流互感器发送的电流数据的突变时刻;

利用数据窗通过滤波算法,求取电子式电流互感器发送的电流数据的阶跃初值I0

对电子式电流互感器发送的电流数据进行三次样条插值计算,计算出各支路电流的阶跃终值I1

基于所述阶跃初值I0和阶跃终值I1,计算出各支路的阶跃时刻。

其中,所述三次样条插值计算公式为:

其中,xi和xi+1均为原始采样点,yi为原始采样点xi对应的采样值,yi+1为原始采样点xi+1对应的采样值,x为插值点,y为插值量,y"i为yi的二阶导数;y"i+1为yi+1的二阶导数。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种助力器测试设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类