易于分散的活性纳米碳粉末及其制备方法

文档序号:1840789 发布日期:2021-11-16 浏览:20次 >En<

阅读说明:本技术 易于分散的活性纳米碳粉末及其制备方法 (Easily dispersed active nano carbon powder and preparation method thereof ) 是由 王延青 郭明易 桑军 黄铮 于 2021-08-18 设计创作,主要内容包括:本发明公开了在有机溶剂中易分散的活性纳米碳粉末及其制备方法,得到的纳米碳粉末中的纳米碳的含量高,使用时在有机溶剂中再分散效果好,特别是非极性和弱极性有机溶剂中再分散效果好,制备工艺简单,可通过活性粉末状态进行储藏运输和销售,与传统的液体状态的微细纳米碳必须采用大量的溶剂进行储存和运输相比,储存和运输的成本更低,安全性能更好,更加经济环保。(The invention discloses active nano carbon powder which is easily dispersed in an organic solvent and a preparation method thereof, the obtained nano carbon powder has high content of nano carbon, good redispersion effect in the organic solvent during use, particularly good redispersion effect in nonpolar and weak polar organic solvents, simple preparation process, and can be stored, transported and sold in an active powder state.)

易于分散的活性纳米碳粉末及其制备方法

技术领域

本发明属于应用在极性、弱极性和非极性溶剂的纳米碳分散浆料,具体涉及一种易分散的活性纳米碳粉末的表面改性技术及其制备方法。

背景技术

微细纳米碳粉极难分散,现有技术中只能使用将生产好的微细纳米碳粉分散在溶剂形成浆料中进行销售和运输,这种方式获得的微细纳米碳粉导电浆料中碳纳米管含量少,溶剂含量超过90%,极大的限制了微细纳米碳粉的应用范围与领域。含量超过90%的溶剂也造成了运输的困难与客户使用成本的增加。传统分散纳米碳粉通常是在溶剂为水的介质中,类似发明专利CN111247095-A公布的制备结果。而中国发明专利申请CN111747400-A提供了一种提高单分散的碳纳米管分散液浓度的方法,相对传统分散浓度只能达到1mg/mL,该方法也只能提高到1.5-4mg/mL,与碳纳米管活性粉末相比依然较低。中国发明专利申请CN110591787-A本发明涉及一种无溶剂碳纳米管类流体的应用,该无溶剂碳纳米管类流体是指以碳纳米管作为纳米内核,经超声处理、硅烷偶联剂和端氨基嵌段共聚物接枝来获得的,但此类分散流体其实质为端氨基嵌段共聚物分散液具有运输上的困难。

发明内容

针对现有技术存在的不足,本发明所要解决的技术问题是,提供一种易分散的活性纳米碳粉末,实现纳米碳粉末与溶剂分开运输,等到需要使用时再将易分散的活性纳米碳粉末与溶剂混合制备成为导电浆料,从而降低导电浆料的运输和保存成本。

为了实现分散和运输保存性的目标,本发明采用了活性纳米碳粉策略:

S1.采用球磨及纳米研磨的方式,将纳米碳与分散剂相混合,其中,所述纳米碳含有质量百分比含量为50-95%,所述分散剂含有质量百分比含量为5-50%,加入0-5%稳定剂,得到含有微细纳米碳浆料;

S2.对步骤(1)制备得到的微细纳米碳浆料进行干燥和二次研磨得到固体活性碳粉末,此时活性碳粉末为在强极性溶剂中具有较好的分散性;

S3.若要得到能在非极性或低极性溶剂的良好分散的活性碳粉末,可采用步骤(2)所述的固体活性碳粉末与多巴胺混合反应生成一层聚多巴胺包覆层,在充分洗涤干燥后,得到所述纳米碳粉表面包覆有一层具有反应活性的聚多巴胺包覆层,含有其聚多巴胺质量百分比含量为5-50%,由于聚多巴胺洗涤过程中会产生部分损失,实际纳米碳粉占比含量将会更高(60-95%),此步骤制备的到的纳米碳粉具有很好的亲水性,易于在水中分散;

S4.为增加步骤(1、2、3)制备得到的活性纳米碳粉末的油溶性,采用含2-18碳原子的含有巯基或氨基链烃化合物在聚多巴胺表面进行接枝改性,得到活性纳米碳分散浆料;

S5.对步骤(3、4)制备得到的活性纳米碳浆料进行干燥。

进一步的,所述活性纳米碳浆料包括纳米碳、分散剂和溶剂,其中,所述溶剂的质量含量为80-99%,所述分散剂的质量含量为0.5-10%,所述纳米碳的质量含量为0.5-10%。

进一步的,所述纳米碳包括:单壁碳纳米管(SWCNT)、双壁碳纳米管(DWCNT)、多壁碳纳米管(MWCNT)、石墨(GR)、富勒烯(C60)、石墨烯(Graphene)或炭黑材料(CB)的一种或几种混合物。

进一步的,分散剂包括但不限于牌号为Disponer 983、FA 196、FX 9086、聚丙烯酸酯、聚丙烯酰胺、聚丙烯酸、聚乙烯醇、聚丙烯酸钠、胆酸钠(及其衍生物、化学结构相似化学药品等)、胆酸、胆汁酸(及其衍生物、化学结构相似化学药品等)、硫代甜菜碱及其衍生物、聚乙烯吡咯烷酮(及其衍生物、不同分子量)、聚乙烯基己内酰胺、聚乙烯基乙酰胺等及其衍生物(平均分子量为8000-700000)、聚氧乙烯基阴离子聚合物(平均分子量为10000-120000)、十二烷基苯磺酸钠,长链烷烃十八醇中一种或多种。

进一步的,所述稳定剂DNA、RNA、纤维素及其衍生物、羧甲基纤维素钠的一种或多种。

进一步的,所述胆酸钠包括但不限于,甘胆酸钠、甘氨脱氧胆酸钠、鹅去氧胆酸钠、牛磺胆酸钠和脱氧胆酸钠。

进一步的,所述溶剂为以下至少之一,水、N-甲基吡咯烷酮(NMP)、乙醇、异丙醇、甲苯、苯、乙酸乙酯、乙酸丁酯、丁酮、正丁醇、环己烷、甲乙酮。

本发明的有益效果:采用该制备方法制得的活性纳米碳粉末再次分散于溶剂中的效果良好,因此可通过固体碳粉末的状态进行储藏运输和销售,与传统的分散微细纳米碳必须采用大量的液体溶剂进行储存和运输相比,储存和运输的成本更低,安全性能更好。

附图说明

此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。

图1为实施例流程示意图;

图2CNT-PDA-NDM-8,(A)球磨处理2天,(B)取出后细胞破碎10min,(C)12000rpm离心后上层液体;

图3聚多巴胺改性碳纳米管红外光谱图;

图4活性碳纳米管在乙酸乙酯中再分散SEM图;

图5活性碳纳米管在正丁醇中再分散SEM图;

图6活性碳纳米管在NMP中再分散SEM图;

具体实施方式

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

实施例一

首先,配制60或100mL,浓度为10mmol/L的Tris溶液:首先将72.6或121ml分别溶解到60或100mL的去离子水中,用pH进行测量,此时pH≈10,再用1mol/L的盐酸进行滴加,将pH调到8.5左右。再将CNT、多巴胺同时,或分步加入Tris溶液中,使用细胞破碎机超声5-10min,后在室温,磁力搅拌2~24h,进行多巴胺包覆实验。而后,经4000rpm离心5min后倒去上清液,在抽滤中洗涤反应产物,将洗净的反应产物保留。然后进行接枝实验,在烧杯中加入100mL去离子水,然后用2M的NaOH溶液将pH调到大于12,加入洗净的CNT-PDA产物,再次进行细胞破碎机超声处理10min,再加入十二硫醇(NDM),由于十二硫醇(NDM)为油溶性物质,加入时会浮在水表面,再使用磁力搅拌反应10h以上,得到接枝有十二硫醇(NDM)的产物,洗涤干燥后的活性碳纳米管粉末具有油溶性,此处为命名为CNT-PDA-NDM-8,此时的碳纳米管粉末具有在中低极性溶剂易于再分散的活性粉末。

分散性测试:如图2,此时溶剂为乙酸乙酯,改性后的碳纳米管粉末在球磨罐中预分散2天时间,取出后,左边一组未进行进一步处理,而右边一组使用细胞破碎机20%功率,破碎10min,设置为开2s,停2s的模式。将两组产物进行离心处理,并进行对比,可以发现,处理后的改性碳纳米管粉末在乙酸乙酯溶剂中具有较好的稳定性,在离心转速为12000rpm下离心5min,依然保持有较高的浓度。

如图3是聚多巴胺改性碳纳米管的活性粉末的红外光谱图,在图中3400cm-1和1700cm-1左右具有明显的两个羟基峰,对应的聚多巴胺中较多的酚羟基,在2900cm-1和2750cm-1附近的两个峰对应着C-H键,而在1400cm-1和1300cm-1附近对应的是S=O键,这个峰的出现说明,十二硫醇已经成功接枝到聚多巴胺包覆层表面。

实施例二

取活性碳纳米管粉末加入到乙酸乙酯中,通过细胞破碎机,超声10min,浆料中活性碳纳米管粉末含量为1wt%,取浆料进行抽滤,对得到的薄膜进行扫描电镜SEM观测如图4所示,用抽滤的方法得到的碳纳米管浆料膜可以看出,其表面较为平整,没有出现明显块状或束状团聚,因此由碳纳米管活性粉末得到的碳纳米管乙酸乙酯分散浆料具有单根分散特性。

取活性碳纳米管粉末加入到正丁醇中,通过细胞破碎机,超声10min,浆料中活性碳纳米管粉末含量为1wt%,取浆料进行抽滤,对得到的薄膜进行扫描电镜SEM观测如图5所示,用抽滤的方法得到的碳纳米管浆料膜可以看出,其表面较为平整,没有出现明显块状或束状团聚,因此由碳纳米管活性粉末得到的碳纳米管正丁醇分散浆料具有单根分散特性。

取活性碳纳米管粉末加入到NMP中,通过细胞破碎机,超声10min,浆料中活性碳纳米管粉末含量为1wt%,取浆料进行抽滤,对得到的薄膜进行扫描电镜SEM观测如图6所示,与水分散浆料类似,用浆料进行抽滤得到的碳纳米管薄膜也具有较为均匀的特性,并且没有明显团聚,说明碳纳米管活性粉末在NMP体系中依然可以做到单根分散。

实施例三

使用类似方法可以扩展到整个碳粉体系,由于多巴胺苯环的存在,很容易跟碳材料形成π-π相互作用,从而较为均匀的在碳材料表面形成包覆层。取1g微细纳米碳包括单壁碳纳米管(SWCNT)、双壁碳纳米管(DWCNT)、多壁碳纳米管(MWCNT)、石墨(GR)、富勒烯(C60)、石墨烯(Graphene)或炭黑材料(CB)的一种或几种混合物于250mL烧杯中,加入100mL去离子水或乙醇,将pH值调至8.5左右,加入0.5-1g盐酸多巴胺粉末,超声10min,在空气中磁力搅拌自聚合反应24h。得到包覆有聚多巴胺的微细纳米碳,抽滤洗涤3-5次,洗去残留的未包覆的聚多巴胺小颗粒和三羟甲基氨基甲烷,冷冻干燥备用,将其分别命名为纳米碳(SWCNT、DWCNT……)-PDA。进一步将纳米碳-PDA分散于100mL Tris缓冲溶液(10mM,pH=8.5)中。然后将1g polyPEGMA加入混合物中,在室温下反应过夜。这些合成的CNT-PDA-PEGMA复合材料通过重复离心和洗涤去除未反应的聚合物。得到的活性微细纳米碳粉末具有较好的弱/非极性有机溶剂分散性和生物相容性。

本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种利用焦耳热转化废弃塑料制备石墨烯和氢气的方法及装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!