一种航空发动机叶片的加工成型方法

文档序号:1929673 发布日期:2021-12-07 浏览:12次 >En<

阅读说明:本技术 一种航空发动机叶片的加工成型方法 (Machining and forming method of aero-engine blade ) 是由 田向洋 武鹏飞 周林 裴聪 陈勇 蔡典祥 刘定坤 唐波 任凤英 于 2021-09-29 设计创作,主要内容包括:本发明公开了一种航空发动机叶片的加工成型方法,属于航空发动机零部件加工技术领域。本发明通过对粗铣工艺进行改进,使刀具分层等高的进行横向加工,避免单层加工时连续螺旋走刀的方式导致叶片颤动过大;可以减少刀具的轴向切削力,有效避免加工过程中随着余量去除导致的叶片刚性不足。在热处理时在叶片底部悬挂重物,可加快叶片内应力的消除,降低处理过程中的因内应力消除而产生的变形量;并且叶片受到重物拉力的方向与自身延伸方向一致,避免因外力作用产生额外的变形量。精铣时则由中间位置下刀向两端进行铣削,并通过渐进式接刀避免下刀处的加工变形,从而有效地解决了铝制叶片加工成型时存在变形量较大,导致合格率较低的问题。(The invention discloses a machining and forming method of an aero-engine blade, and belongs to the technical field of machining of parts of aero-engines. According to the invention, the rough milling process is improved, so that the cutters are transversely processed in a layered and equal height manner, and the phenomenon that the blade vibrates too much due to a continuous spiral feed mode in single-layer processing is avoided; the axial cutting force of the cutter can be reduced, and the problem that the rigidity of the blade is insufficient due to the removal of the allowance in the machining process is effectively avoided. During heat treatment, a heavy object is hung at the bottom of the blade, so that the elimination of the internal stress of the blade can be accelerated, and the deformation generated by the elimination of the internal stress in the treatment process can be reduced; and the direction of the blade under the tension of the heavy object is consistent with the extending direction of the blade, so that the extra deformation caused by the action of external force is avoided. During finish milling, the lower cutter at the middle position is used for milling towards two ends, and the progressive cutter connection is used for avoiding the machining deformation at the lower cutter, so that the problem that the yield is low due to the fact that the deformation is large during the machining and forming of the aluminum blade is effectively solved.)

一种航空发动机叶片的加工成型方法

技术领域

本发明涉及航空发动机零部件加工技术领域,具体涉及一种航空发动机叶片的加工成型方法。

背景技术

航空发动机作为飞机的心脏,为了满足发动机的各项性能,其各零部件材料有钛合金,高温合金,铝合金以及现代复合材料等,而铝合金作为一种密度小,比强较高,导热系数小的材料被广泛应用于航空发动机零部件上。但铝合金叶片等薄壁件在加工过程易变形,合格率极低。

目前发动机压气机叶片的加工工艺主要采用复合制造工艺,需要分别对叶片进行粗加工、精加工以及消应力热处理,铝合金叶片叶型在这三道工序都存在较大变形,变形量最大可达2.5mm,且变形方向不一致。

在粗铣完成后叶型中间截面容易偏移变形,最大可达2.5mm,呈现一种“拱形”,且变形趋势不一致,为了减少变形粗铣通常分4层进行,加工时间长,是其他材料同等大小叶片加工时间的近5倍。在消应力处理时:零件平放放入热处理炉子,消应力热处理温度155±5℃,保温3h。消应力完成后部分叶片因变形在精铣时已无加工余量,会直接导致叶片报废。精铣时的刀具为D16R1.6两齿圆鼻铣刀,低转速低进给,叶身分一层直接加工到位。精铣叶型完成后变形主要为叶型叶尖截面扭转变形,而中间截面为偏移变形。因此,现有技术中航空发动机的铝制叶片加工成型时存在变形量较大,导致合格率较低的问题

发明内容

本发明的目的在于提供一种航空发动机叶片的加工成型方法,以解决现有航空发动机的叶片加工成型时存在变形量较大,导致合格率较低的问题。

本发明解决上述技术问题的技术方案如下:

一种航空发动机叶片的加工成型方法,其特征在于,包括以下步骤:

S1:对叶片进行粗铣,从叶尖至叶根方向进行分层等高横向加工,保留合适的粗加工余量;

S2:对叶片进行消应力热处理,将多个叶片悬吊在热处理夹具上,并在叶片下方悬挂重物,热处理温度为:170~180℃,热处理时间为:3~5H;

S3:对叶片进行精铣,采用中间下刀,向叶尖和叶根两个方向进行铣削,并在下刀处用渐进式接刀。

本发明通过对粗铣工艺进行改进,使刀具分层等高的进行横向加工,避免单层加工时连续螺旋走刀导致叶片颤动过大而造成不同位置加工余量不均的问题,并且可以减少刀具的轴向切削力,有效避免加工过程中随着余量去除导致的叶片刚性不足而造成变形不一致。在热处理时在叶片底部悬挂重物,可加快叶片内应力的消除,而提高热处理效率,降低处理过程中的因内应力消除而产生的变形量;并且叶片受到重物拉力的方向与自身延伸方向一致,在消除自身内应力的同时不会因外力作用产生额外的变形量。精铣时则由中间位置下刀向两端进行铣削,并通过渐进式接刀避免下刀处的加工变形,从而有效地解决了铝制叶片加工成型时存在变形量较大,导致合格率较低的问题。

进一步地,上述在步骤S1之前,通过对现有技术中叶片的粗铣余量和最终变形量进行数据收集,并通过建模分析得出相关数学函数。

本发明通过对现有叶片的粗铣余量和最终变形量进行收集统计,用数据做出线性回归或非线性回归参数与变形量趋势函数,得出最优机加加工参数,使变形量减少;并在粗铣时给消应力热处理一个预先的变形量,使得消应力热处理时变形后的叶片盆背余量更加均匀。

进一步地,上述粗铣的加工余量范围为:0.7~0.9mm时,变形量范围最低为:0.25~0.35mm。

本发明通过变形量趋势函数得出最低变形量范围时对应的粗铣加工余量,从而对应地对粗铣加工参数进行调整,采用反推的方法降低粗铣的变形量。

进一步地,上述在步骤S1和S3中,通过夹具对靠近叶根处的榫头进行定位,对靠近叶尖处的工艺圆台通过三爪夹具自然夹持。

本发明通过三爪夹具的自然夹持可以有效减小因叶尖工艺太顶紧导致的叶片中间截面存在的“拱形”问题。

进一步地,上述在步骤S1中,刀具分层加工时的层距范围为0.3~0.5mm,并且刀轴方向与叶片曲面的法向方向垂直。

本发明通过对粗铣时的加工量进行合理规划,并确保刀轴方向,避免因粗铣余量过大以及方向倾斜而导致叶片内部产生过多的局部集中应力。

进一步地,上述在步骤S2中,对叶片的榫头进行夹持悬吊,工艺圆台上开设工艺孔方便悬挂重物。

本发明通过在工艺圆台上开设工艺孔对重物进行悬挂,既能避免悬挂的重物发生滑落还能避免长时间悬挂对叶片造成损伤。

进一步地,上述在步骤S2中,重物的重量为叶片自重的1.2~1.6倍。

本发明对悬挂重物的重量的范围进行限定,从而方便在有效时间内协助叶片消除自身内应力。

进一步地,上述在步骤S3中,根据精铣首件的变形量数据,采用逆向误差补偿法对后续加工件的误差值进行反向补偿。

本发明在精加工时,对同一批次叶片的首件变形量数据采集后,再调整相应的加工程序和参数,通过逆向补偿法再对后续的加工件进行继续加工,从而便于降低调试时间,提高生产效率。

本发明具有以下有益效果:

(1)本发明通过对粗铣工艺进行改进,使刀具分层等高的进行横向加工,避免单层加工时连续螺旋走刀的方式导致叶片颤动过大而造成不同位置加工余量不均的问题,并且可以减少刀具的轴向切削力,有效避免加工过程中随着余量去除导致的叶片刚性不足而造成变形不一致;并在粗铣时给消应力热处理一个预先的变形量,使得消应力热处理时变形后的叶片盆背余量更加均匀。

(2)热处理时在叶片下方悬挂重物,可加快叶片内应力的消除,而提高热处理效率,降低处理过程中的因内应力消除而产生的变形量;并且叶片受到重物拉力的方向与自身延伸方向一致,在消除自身内应力的同时不会因外力作用产生额外的变形量。

(3)精铣时则由中间位置下刀向两端进行铣削,并通过渐进式接刀避免下刀处的加工变形,从而有效地解决了铝制叶片加工成型时存在变形量较大,导致合格率较低的问题。

附图说明

图1为本发明刀具粗铣时的走刀路径示意图;

图2为本发明工件叶片的结构示意图;

图3为本发明粗铣加工余量与变形量关系示意图。

图中:10-叶片;20-榫头;30-工艺圆台;40-刀具。

具体实施方式

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

实施例

一种航空发动机叶片的加工成型方法,包括以下步骤:

S1:对叶片10进行粗铣,从叶尖至叶根方向进行分层等高横向加工,保留合适的粗加工余量。通过对粗铣工艺进行改进,使刀具40分层等高的进行横向加工,避免单层加工时连续螺旋走刀的方式导致叶片10颤动过大而造成不同位置加工余量不均的问题,并且可以减少刀具40的轴向切削力,有效避免加工过程中随着余量去除导致的叶片10刚性不足导致的变形不一致问题。

参照图2,叶片10的左端为榫头20,榫头20上开设有装配圆孔,可通过此装配圆孔在叶片10在热处理时悬吊在夹具上;右端为工艺圆台30,起到加工时对叶片10进行夹紧定位的作用。工艺圆台30上开设有工艺孔,方便在叶片10热处理时细线穿过,从而通过细线将重物悬挂在底部。

在粗铣加工之前,通过对现有技术中叶片10的粗铣余量和最终变形量进行数据收集,通过建模分析得出相关数学函数,即用数据做出线性回归或者非线性回归参数与变形量趋势函数,从而得出最优机加加工参数,使变形量减少。并通过对相应的数学函数图像进行分析,选择粗铣的加工余量范围为:0.7~0.9mm,此时对应的变形范围最小,为:0.25~0.35mm。并以此为根据对粗铣加工参数和程序进行调整,采用反推的方法降低了粗铣的变形量。

在步骤S1中,刀具40分层加工时的层距范围为0.3~0.5mm,并且刀轴方向与叶片10曲面的法向方向垂直,通过对粗铣时的加工量进行合理规划,并确保刀轴方向,避免因粗铣余量过大以及方向倾斜而导致叶片10内部产生过多的局部集中应力。粗铣的刀具40采用小R角的两刃圆鼻铣刀,刀具40转速控制在9000~12500r/min的范围内,进给速度控制在4500~6500mm/min范围内。粗铣叶型过程中,使用逆向补偿给消应力热处理一个反向补偿值,保证消应力完成后叶型余量的均匀性。

S2:对叶片10进行消应力热处理,将多个叶片10悬吊在热处理夹具上,并在叶片10下方悬挂重物,热处理温度为:170~180℃,热处理时间为:3~5H。在热处理时在叶片10下方悬挂重物,可加快叶片10内应力的消除,而提高热处理效率,降低处理过程中的因内应力消除而产生的变形量;并且叶片10受到重物拉力的方向与自身延伸方向一致,在消除自身内应力的同时不会因外力作用产生额外的变形量。热处理的温度范围也比铝合金叶片10固溶时效温度低20℃作用,从而不会导致铝制叶片10发生固溶。

在步骤S2中,对叶片10的榫头20进行夹持悬吊,工艺圆台30上开设工艺孔方便悬挂重物。通过在工艺圆台30上开设工艺孔对重物进行悬挂,既能避免悬挂的重物发生滑落还能避免长时间悬挂对叶片10造成损伤。并且,悬挂的重物的重量为叶片10自重的1.2~1.6倍,通过悬挂重物的重量的范围进行限定,从而方便在有效时间内协助叶片10消除自身内应力。

S3:对叶片10进行精铣,采用中间下刀,向叶尖和叶根两个方向进行铣削,并在下刀处用渐进式接刀。通过渐进式接刀避免下刀处的加工变形,从而有效地解决了铝制叶片10加工成型时存在变形量较大,导致合格率较低的问题。加工刀具40采用小R角铝合金专用合金铣刀,刀具40转速控制在12000~15000r/min的范围内,而切削速度控制在2500~3500r/min的范围内,而进给量为0.3~0.5mm/r,采用了小切削,大进给的方式,加工时间可以缩短数倍

在步骤S1和S3中,通过夹具对靠近叶根处的榫头20进行定位,对靠近叶尖处的工艺圆台30通过三爪夹具自然夹持,可以有效减小因叶尖工艺太顶紧导致的叶片10中间截面存在的“拱形”问题。并通过加工设备的程序指令施加一个叶片10延伸方向中心线方向的拉力。在步骤S3中,对同一批次叶片10的首件变形量数据采集后,再调整相应的加工程序和参数,通过逆向补偿法再对后续的加工件进行继续加工,从而便于降低调试时间,提高生产效率。并补偿值的多少建立程序分组数据库,减少调试时间。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种卧式离心机螺旋的加工工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!