一种铝塑膜的设计方法及一种铝塑膜

文档序号:194376 发布日期:2021-11-02 浏览:59次 >En<

阅读说明:本技术 一种铝塑膜的设计方法及一种铝塑膜 (Design method of aluminum-plastic film and aluminum-plastic film ) 是由 付绪望 余小玉 沈丽梅 范开成 于 2021-07-12 设计创作,主要内容包括:本发明属于锂电池外包装技术领域,具体公开了一种铝塑膜的设计方法及一种铝塑膜,所述设计方法包括以下步骤:步骤1.铝塑膜设计;步骤2.基于步骤1设计的铝塑膜通过公式S=(T-(A)*D-(A)+T-(B)*D-(B)*3)/(T-(C)*D-(C)*2)计算卷曲指数来进行铝塑膜冲压卷曲度预测;步骤3.如果步骤2预测铝塑膜不发生冲压卷曲则设计结束,否则回到步骤1重新设计铝塑膜。本发明通过卷曲指数进行冲压卷曲度预测,能够在冲壳前预判铝塑膜的卷曲性能,从而减少不必要的设计和生产,有效降低试验成本和时间损耗,快速设计出冲壳不卷的铝塑膜。(The invention belongs to the technical field of lithium battery external packaging, and particularly discloses a design method of an aluminum-plastic film and the aluminum-plastic film, wherein the design method comprises the following steps: step 1, designing an aluminum plastic film; and 2, passing the aluminum plastic film designed based on the step 1 through a formula S = (T) A *D A &#43;T B *D B *3)/(T C *D C 2) calculating a curling index to predict the stamping curling degree of the aluminum plastic film; and 3, if the step 2 predicts that the aluminum-plastic film does not have stamping curling, finishing the design, and otherwise, returning to the step 1 to redesign the aluminum-plastic film. According to the invention, the stamping crimpness prediction is carried out through the crimping index, and the crimping performance of the aluminum-plastic film can be predicted before the shell stamping, so that unnecessary design and production are reduced, the test cost and time loss are effectively reduced, and the aluminum-plastic film which is not crimped after the shell stamping is rapidly designed.)

一种铝塑膜的设计方法及一种铝塑膜

技术领域

本发明属于锂电池外包装技术领域,具体涉及一种铝塑膜的设计方法及利用此方法设计的铝塑膜。

背景技术

软包锂电池外包装的铝塑膜是由多层薄膜构成,其中最常见的结构是从外到内依次层叠设置保护层、金属箔层和热塑性树脂层,层间通过胶黏剂粘合。铝塑膜制作完成后对锂电池进行包装,其使用步骤如下:一、先将铝塑膜冲壳形成壳体;二、在壳体中放入电芯进行顶侧热封;三、热封完毕后化成、注液、二封;四、固化。

铝塑膜的保护层普遍使用尼龙或聚对苯二甲酸乙二醇酯(PET)材料,在冲壳以后,尼龙或PET的应力拉伸导致壳体出现向外的卷曲,这种卷曲在裁边、放电芯、顶封、侧封过程中会增加员工操作难度,也影响电池良品率;而且这种卷曲在未经冲壳前并不能发现,每次都需等产品生产出来冲壳后才能判断卷曲情况,对于铝塑膜的结构设计试验成本高,耗时久。

发明内容

为解决上述问题,本发明提供了一种铝塑膜的设计方法,能够在冲壳前预判铝塑膜的卷曲性能,降低试验成本,快速设计出冲壳不卷的铝塑膜。

为达到上述目的,本发明采用的具体技术方案如下:

一种铝塑膜的设计方法,包括以下步骤:

步骤1.铝塑膜设计:所述铝塑膜包括热塑性树脂层、保护层以及设置在所述

热塑性树脂层和保护层之间的铝箔层;选择聚酰胺薄膜、聚酯薄膜中的至少一种作为所述铝塑膜的保护层;选择聚烯烃膜作为所述铝塑膜的热塑性树脂层;

步骤2.基于步骤1设计的铝塑膜进行铝塑膜冲压卷曲度预测,所述步骤2包括:

步骤21.采用下述公式计算铝塑膜的卷曲指数:

S=(TA*DA+TB*DB*3)/(TC*DC*2),其中TA、TB、TC分别为聚酰胺薄膜、聚酯薄膜、聚烯烃膜的拉伸强度,DA、DB、DC分别为聚酰胺薄膜、聚酯薄膜、聚烯烃膜的厚度;

步骤22.如果S小于阈值等于S1,则预测铝塑膜不会发生冲压卷曲;否则,

则预测铝塑膜会发生冲压卷曲;

步骤3.如果步骤2预测铝塑膜不发生冲压卷曲则设计结束,否则回到步骤1

重新设计铝塑膜。

本发明根据卷曲指数S的大小来评价判铝塑膜的卷曲性能,在电池型号和冲壳设备相同的前提下,卷曲指数S与铝塑膜的卷曲性能呈正相关关系,S值越小,铝塑膜即壳体向外卷曲的能力越弱。

优选的,冲压使用双坑126090型号电池冲深模具时,所述阈值S1的值为1.5;冲压使用双坑802030型号电池冲深模具时,所述阈值S1的值为1.67。电池型号和冲壳设备的差异也会对卷曲性能产生较大的影响,因此不同的冲深模具下,阈值S1有所不同。

优选的,所述聚酰胺薄膜选自聚己内酰胺、聚己二酸己二胺、聚己二酰间苯二甲胺、聚癸二酰己二胺等;所述聚脂薄膜选自聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等;所述聚烯烃膜选自聚乙烯、聚丙烯、烯烃系共聚物、烯烃系酸改性物等。

优选的,所述铝箔层的表面经钝化处理。经过钝化处理铝箔层表面具有一层钝化膜,可以提高铝箔层与热塑性树脂层和保护层之间连接的牢固性,避免冲壳过程因粘结不牢固导致分层或者单层翘曲对铝塑膜卷曲性能的评判造成影响,提高本发明方法的准确性。

优选的,所述铝塑膜的层与层之间通过胶黏剂粘接,所述胶黏剂为聚氨酯或者丙烯酸类胶水。进一步的,所述铝箔层与保护层通过聚氨酯类胶水粘接,所述铝箔层与热塑性树脂层之间通过丙烯酸类胶水粘接。通过这样的胶黏剂选择也可以提高铝箔层与热塑性树脂层和保护层之间连接的牢固性,避免因粘结不牢固导致的卷曲性能无法准确体现的问题,提高本发明方法的准确性。

本发明还提供利用上述铝塑膜的设计方法设计得到的冲壳不卷的铝塑膜。具体的,所述铝塑膜包括热塑性树脂层、保护层以及设置在所述热塑性树脂层和保护层之间的铝箔层;所述铝塑膜的保护层为聚酰胺薄膜、聚酯薄膜中的至少一种;所述铝塑膜的热塑性树脂层;所述铝塑膜满足以下条件:S=(TA*DA+TB*DB*3)/(TC*DC*2),S小于等于阈值S1,其中TA、TB、TC分别为聚酰胺薄膜、聚酯薄膜、聚烯烃膜的拉伸强度,DA、DB、DC分别为聚酰胺薄膜、聚酯薄膜、聚烯烃膜的厚度;冲压使用双坑126090型号电池冲深模具时,所述阈值S1的值为1.5;冲压使用双坑802030型号电池冲深模具时,所述阈值S1的值为1.67。

本发明具有以下有益效果:

1、本发明提出了铝塑膜的设计方法,通过设计出冲壳不卷的铝塑膜从根本上解决铝塑膜冲壳卷曲的问题,确保铝塑膜冲壳质量,进而有效提升软包电池的良品率。

2、本发明针对“包括热塑性树脂层、保护层以及设置在所述热塑性树脂层和保护层之间的铝箔层,所述保护层为聚酰胺薄膜、聚酯薄膜中的至少一种,所述保护层为聚烯烃膜”这一类型的铝塑膜提出了卷曲指数计算公式,卷曲指数S与铝塑膜的卷曲性能呈正相关关系,通过卷曲指数能够预判铝塑膜是否会发生冲压卷曲,无需在冲壳后再进行卷曲判断,从而减少不必要的设计和生产,有效降低试验成本和时间损耗,快速设计出冲壳不卷的铝塑膜。

附图说明

图1:本发明实施例1中铝塑膜A-1的结构示意图。

图2:本发明实施例1中铝塑膜B-1的结构示意图。

图中:1-聚烯烃膜,2-第一粘结层,3-铝箔层,4-第二粘结层,5-聚酰胺薄膜,6-第三粘结层,7-聚酯薄膜。

具体实施方式

以下结合附图和具体实施例对本发明进行进一步的说明。

实施例

本实施例提供一种铝塑膜的设计方法,包括以下步骤:

步骤1.铝塑膜设计:所述铝塑膜包括热塑性树脂层、保护层以及设置在所述热塑性树脂层和保护层之间的铝箔层;选择聚酰胺薄膜、聚酯薄膜中的至少一种作为所述铝塑膜的保护层;选择聚烯烃膜作为所述铝塑膜的热塑性树脂层;所述铝箔层的表面经钝化处理;所述铝箔层与保护层通过聚氨酯类胶水粘接,所述铝箔层与热塑性树脂层之间通过丙烯酸类胶水粘接。

步骤2.基于步骤1设计的铝塑膜进行铝塑膜冲压卷曲度预测;具体包括:

步骤21.采用下述公式计算铝塑膜的卷曲指数:

S=(TA*DA+TB*DB*3)/(TC*DC*2),其中TA、TB、TC分别为聚酰胺薄膜、聚酯薄膜、聚烯烃膜的拉伸强度,DA、DB、DC分别为聚酰胺薄膜、聚酯薄膜、聚烯烃膜的厚度;

步骤22.如果S小于等于阈值S1,则预测铝塑膜不会发生冲压卷曲;否则,则预测铝塑膜会发生冲压卷曲;当冲压使用双坑126090型号电池冲深模具时,所述阈值S1的值为1.5;当冲压使用双坑802030型号电池冲深模具时,所述阈值S1的值为1.67。

步骤3.如果步骤2预测铝塑膜不发生冲压卷曲则设计结束,否则回到步骤1通过改变卷曲指数公式中的参数值对应重新设计铝塑膜。

本实施例还提供根据上述铝塑膜的设计方法进行铝塑膜设计的应用实例。

一、铝塑膜设计(具体设计了以下10种铝塑膜)

A-1:一种锂电池软包装铝塑膜,如图1所示,包括依次层叠设置的聚烯烃膜1、第一粘结层2、铝箔层3、第二粘结层4、聚酰胺薄膜5;所述的聚烯烃膜1的材质为聚丙烯,厚度为50μm,拉伸强度为30 MPa;所述聚酰胺薄膜5的材质为尼龙6,厚度为20μm,拉伸强度为200MPa;所述第一粘结层2为丙烯酸类胶水固化形成,所述第二粘结层4为聚氨酯类胶水固化形成,所述铝箔层3的上下表面经过钝化处理;

该锂电池软包装铝塑膜采用常规的制备方法,具体过程如下:

a. 在厚度为40μm的铝箔层3内外两面上涂覆铬酸盐处理液(固体质量分数为3%),在180 ℃烘箱烘干,从而在铝箔层3的两表面上形成铬含量为10mg/m2的钝化膜;

b. 在铝箔层3的一面涂布聚氨酯类胶水,80℃烘箱烘干,形成第二粘结层4,将厚度为20μm的聚酰胺薄膜5与第二粘结层4通过压辊复合;

c. 在铝箔层3的另一面涂布丙烯酸类胶水,110℃烘箱烘干,形成第一粘结层2,将厚度为50μm的聚烯烃膜1与第一粘结层2通过压辊复合;

d. 将该层叠体在60℃环境下熟化6天,得到锂电池软包装铝塑膜。

A-2:一种锂电池软包装铝塑膜,其构造基本同实施例A-1,区别仅在于:所述聚酰胺薄膜5的厚度为15μm,拉伸强度为180MPa;所述聚烯烃膜1的厚度为30μm。

A-3:一种锂电池软包装铝塑膜,其构造基本同实施例A-1,区别仅在于:所述聚酰胺薄膜5的厚度为15μm,拉伸强度为180MPa;所述聚烯烃膜1的厚度为40μm。

A-4:一种锂电池软包装铝塑膜,其构造基本同实施例A-1,区别仅在于:所述聚酰胺薄膜5的厚度为15μm,拉伸强度为180MPa。

A-5: 一种锂电池软包装铝塑膜,其构造基本同实施例A-1,区别仅在于:所述聚烯烃膜1的拉伸强度为24 MPa。

A-6: 一种锂电池软包装铝塑膜,其构造基本同实施例A-1,区别仅在于:所述聚酰胺薄膜5的厚度为25μm,所述聚烯烃膜1的厚度为40μm。

B-1:一种锂电池软包装铝塑膜,如图2所示,包括依次层叠的聚烯烃膜1、第一粘结层2、铝箔层3、第二粘结层4、聚酰胺薄膜5、第三粘结层6、聚酯薄膜7;所述的聚烯烃膜1的材质为聚丙烯,厚度为80μm,拉伸强度为30 MPa;所述聚酰胺薄膜5的材质为尼龙6,厚度为15μm,拉伸强度为200 MPa;所述聚酯薄膜7的材质为PET,厚度为6μm,拉伸强度为200 MPa;所述第一粘结层2为丙烯酸类胶水固化形成,所述第二粘结层4和第三胶粘层6为聚氨酯类胶水固化形成,所述铝箔层3的上下表面经过钝化处理;

该锂电池软包装铝塑膜采用常规的制备方法,具体过程如下:

a. 在厚度为40μm的铝箔层3内外两面上涂覆铬酸盐处理液(固体质量分数为3%),在180 ℃烘箱烘干,从而在金属箔层3的两表面上形成铬含量为10mg/m2的钝化膜;

b. 在铝箔层3的一面涂布聚氨酯类胶水,80℃烘箱烘干,形成第二粘结层4,将厚度为15μm的聚酰胺薄膜5与第二粘结层4通过压辊复合;

c. 在上述层叠体聚酰胺薄膜5上涂布聚氨酯类胶水,80℃烘箱烘干,形成第三粘结层6,再将厚度为6μm的聚酯薄膜7与第三粘结层6通过压辊复合;

d. 在铝箔层3的另一面涂布丙烯酸类胶水,110℃烘箱烘干,形成第一粘结层2,将厚度为80μm的聚烯烃膜1与第一粘结层2通过压辊复合;

e. 将该层叠体在60℃环境下熟化6天,得到锂电池软包装铝塑膜。

B-2:一种锂电池软包装铝塑膜,其构造基本同实施例B-1,区别仅在于:所述聚酰胺薄膜5的厚度为25μm。

B-3:一种锂电池软包装铝塑膜,其构造基本同实施例B-1,区别仅在于:所述聚烯烃膜1的厚度为40μm。

B-4:一种锂电池软包装铝塑膜,其构造基本同实施例B-1,区别仅在于:所述聚烯烃膜1的厚度为40μm,所述聚酯薄膜7的厚度为9μm。

二、根据卷曲指数判定铝塑膜是否会发生冲壳卷曲

按照S=(TA*DA+TB*DB*3)/(TC*DC*2)公式计算上述铝塑膜的弯曲指数,如表所示:

当冲压使用双坑126090型号电池冲深模具时:铝塑膜A-1、A-2、A-3、A-4、B-1、B-2的卷曲指数≤1.5,判断冲壳不卷,设计结束,可直接生产这些铝塑膜;铝塑膜A-5、A-6、B-3、B-4的卷曲指数超过1.5,判断会发生冲壳卷曲,不能投入生产,需要重新设计铝塑膜。

当冲压使用双坑802030型号电池冲深模具时,铝塑膜A-1、A-2、A-3、A-4、A-5、B-1、B-2的卷曲指数≤1.67,判断冲壳不卷,设计结束,可直接生产这些铝塑膜;铝塑膜A-6、B-3、B-4的卷曲指数超过1.67,判断会发生冲壳卷曲,不能投入生产,需要重新设计铝塑膜。

本实施例同时将上述铝塑膜进行冲壳试验,冲壳试验方法如下:将锂电池软包装铝塑膜分切成60mm宽度、120mm宽度的试样分别在双坑126090、双坑802030型号电池模具冲深测试,记录卷曲角度,即卷边与水平面形成的角度。测试结果如下表所示,可以看到,卷曲角度的测试结果与上述根据S值判定的卷曲结果一致,说明本发明卷曲指数可正确反映出铝塑膜的冲壳卷曲情况,本发明设计方法可靠性好,可快速设计出冲壳不卷的铝塑膜。

本具体实施方式仅仅是对本发明的解释,并不是对本发明的限制,本领域技术人员在阅读了本发明的说明书之后所做的任何改变,只要在本发明权利要求书的范围内,都将受到专利法的保护。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:分体式盖板及电池组

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!