袋壳体以及制造包括该袋壳体的袋型二次电池的方法

文档序号:914764 发布日期:2021-02-26 浏览:19次 >En<

阅读说明:本技术 袋壳体以及制造包括该袋壳体的袋型二次电池的方法 (Pouch case and method of manufacturing pouch type secondary battery including the same ) 是由 郑安秀 金尙旭 于 2019-11-13 设计创作,主要内容包括:根据本公开内容示例性实施方式的制造袋型二次电池的方法包括以下步骤:将电极组件容纳在上壳体与下壳体之间的空间中;和将上壳体和下壳体的边缘部分彼此热熔合,其中上壳体和下壳体的各个边缘部分包括顺序地堆叠的基底层、金属层和密封层,并且其中在热熔合步骤之前,该方法进一步包括在上壳体和下壳体中的至少一个密封层的一个表面上形成多个凹槽。(The method of manufacturing a pouch type secondary battery according to an exemplary embodiment of the present disclosure includes the steps of: accommodating the electrode assembly in a space between the upper case and the lower case; and thermally fusing edge portions of the upper and lower cases to each other, wherein the respective edge portions of the upper and lower cases include a base layer, a metal layer, and a sealing layer, which are sequentially stacked, and wherein the method further includes forming a plurality of grooves on one surface of at least one sealing layer in the upper and lower cases, before the thermally fusing step.)

袋壳体以及制造包括该袋壳体的袋型二次电池的方法

技术领域

相关申请的交叉引用

本申请要求于2018年11月13日提交的韩国专利申请第10-2018-0139104号的优先权的权益,通过引用将上述专利申请的整个公开内容结合在此。

本公开内容涉及一种袋壳体以及制造包括该袋壳体的袋型二次电池的方法。

背景技术

随着技术发展和对移动装置的需求的增加,对作为能源的电池的需求也迅速增加,因此,出现了能够满足各种需求的电池的诸多研究。

作为用于诸如电动自行车、电动车辆和混合电动车辆之类的电力驱动装置的能量源以及用于诸如移动电话、数码相机和笔记本电脑之类的移动装置的能量源,二次电池引起相当大的关注。

安装有单个电池单元的小尺寸电池组用于诸如手机、数码相机等之类的小型装置,而安装有彼此并联和/或串联连接的两个以上电池单元的中大尺寸电池组用于诸如笔记本电脑和电动车辆之类的中大型装置。

根据电池形状,能够应用于诸如移动电话之类的具有较薄厚度的产品的棱柱型二次电池和袋型二次电池显示出较高需求。在棱柱型锂二次电池的情况下,有利于保护电极组件免受外部冲击并且注入工序较容易,但是形状是固定的,这使得难以减小体积。另一方面,袋型锂二次电池的优点在于:由于其形状和尺寸不受限制而适于制造薄型电池单元,容易通过热熔合组装袋型锂二次电池,并且由于在异常行为情况下容易排出气体或液体而具有高稳定性。然而,不同于棱柱型二次电池,由于袋型二次电池使用薄的软性层压片作为其壳体,所以其物理和机械强度较弱,尤其是其密封可靠性较低,因此其抗外部冲击等的安全性会较低。

发明内容

技术问题

本公开内容致力于解决上述问题,因此本公开内容的目的是提供一种能够提高密封部的结合力从而增加密封可靠性的袋壳体、以及制造包括该袋壳体的袋型二次电池的方法。

然而,本公开内容的实施方式要解决的问题不限于上述问题,可在本公开内容中包括的技术构思的范围内进行各种扩展。

技术方案

根据本公开内容一示例性实施方式的袋壳体包括上壳体和下壳体,其中所述上壳体和所述下壳体的各个边缘部分包括顺序地堆叠的基底层、金属层和密封层,并且其中所述上壳体和所述下壳体中的至少一个密封层包括从所述密封层的一个表面凹进的多个凹槽。

所述凹槽的深度可以是所述密封层的厚度的6%至34%。

所述凹槽的宽度可以是0.1mm至1.0mm。

所述凹槽可形成为格子形状。

所述格子形状的间隔可以是0.1mm至1.0mm。

所述凹槽可形成为条带形状。

所述凹槽可形成为不规则的凹凸形状。

所述密封层可包括热塑性树脂。

根据本公开内容另一示例性实施方式的制造袋型二次电池的方法包括以下步骤:将电极组件容纳在上壳体与下壳体之间的空间中;和将所述上壳体和所述下壳体的边缘部分彼此热熔合,其中所述上壳体和所述下壳体的各个边缘部分包括顺序地堆叠的基底层、金属层和密封层,并且其中在热熔合步骤之前,所述方法进一步包括在所述上壳体和所述下壳体中的至少一个密封层的一个表面上形成多个凹槽。

形成所述多个凹槽的步骤可包括:通过第一按压部向所述密封层施加压力,所述第一按压部具有其上形成有突出形状的按压表面。

所述第一按压部施加的压力可以是0.01MPa至0.2MPa。

所述热熔合步骤可包括在通过具有平坦的按压表面的第二按压部施加压力的同时施加热量。

所述凹槽的深度可以是所述密封层的厚度的6%至34%。

所述凹槽的宽度可以是0.1mm至1.0mm。

所述凹槽可形成为格子形状。

所述格子形状的间隔可以是0.1mm至1.0mm。

所述凹槽可形成为条带形状。

所述凹槽可形成为不规则的凹凸形状。

所述密封层可包括热塑性树脂。

有益效果

根据实施方式,通过在袋壳体的密封层上添加多个凹槽,可在不显著改变制造工序并且不影响电池的外观的情况下制造具有提高的密封粘附性的袋型二次电池。

附图说明

图1是图解根据本公开内容示例性实施方式的袋壳体和包括该袋壳体的二次电池的分解透视图。

图2是图1中的部分A和B的放大剖面图。

图3是图解根据本公开内容示例性实施方式的制造袋型二次电池的方法的流程图。

图4a和图4b是图解按压部的按压工序的示图。

具体实施方式

下文中,将参照附图详细地描述本公开内容的各实施方式,使得本领域技术人员能够容易地实现它们。本公开内容可以以各种不同的方式修改,并且不限于在阐述的实施方式。

将省略与描述无关的部分,以清楚地描述本公开内容,并且在整个申请中相同的参考标记表示相同的元件。

此外,在附图中,为了便于描述,任意地示出了每个元件的尺寸和厚度,本公开内容不必受限于附图中所示出的那些。在附图中,为了清楚起见,放大了层、区域等的厚度。在附图中,为了便于描述,一些层和区域的厚度被放大。

此外,将理解的是,当诸如层、膜、区域或板之类的元件被称为在另一元件“上”或“上方”时,其可以直接在另一元件上或者也可存在中间元件。相反,当一元件被称为“直接在”另一元件“上”时,这意味着不存在其他中间元件。此外,词语“在…上”或“在…上方”是指布置在参考部分上或下方,并不必然是指设置在参考部分的朝向重力相反方向的上侧。

此外,在整个本申请中,当一部件被称为“包括”某一部件时,这是指它可以进一步包括其他部件,而不排除其他部件,除非另有说明。

此外,在整个本申请中,当称“在平面上”时,其是指从顶部观看目标部分的时候,当称“在剖面上”时,其是指从垂直切割的剖面的侧面观看目标部分的时候。

图1是图解根据本公开内容示例性实施方式的袋壳体和包括该袋壳体的二次电池的分解透视图。

如图1中所示,袋型二次电池具有作为基本结构的正极集流体、隔膜和负极集流体,并且包括:电极组件200,电极组件200设置有从正极集流体延伸的正极接片和从负极集流体延伸的负极接片;和用于容纳电极组件200的袋壳体100。

袋壳体100包括上壳体110和下壳体120。在图1中,上壳体110和下壳体120被示出为彼此分离形成,但是上壳体110和下壳体120可连接而一体形成。袋壳体100的形状不限于图1中所示的形状,可使用任何形状,只要是能够容纳和密封电极组件200的形状即可。图1中的上壳体110和下壳体120的每一个包括具有凹进的凹形形状的容纳部。电极组件200和电解质可容纳在容纳部中。

电极组件200可构造成其中正极板和负极板在之间插置有隔膜的情况下设置的形式。此时,电极组件200可具有其中一个正极板和一个负极板在之间插置有隔膜的情况下卷绕的结构、或者其中多个正极板和多个负极板可之间插置有隔膜的情况下堆叠的结构。正极板和负极板可分别形成为其中在电极集流体上涂布有活性材料浆料的结构。通常可通过在存在溶剂的情况下搅拌活性材料、导电材料、粘合剂、增塑剂等来形成浆料。

电极组件200可具有在电极板上未涂布浆料的未涂布部分,并且可在未涂布部分中形成对应于各个电极板的电极接片。此时,为了与外部端子或装置电连接,从正极接片延伸的正极引线210的一部分和从负极接片延伸的负极引线220的一部分可具有暴露到外部的形式。在这点上,根据示例性实施方式,可进一步使用粘合膜来将电极引线附接或结合至袋壳体100。

图2是图1中的部分A和B的放大剖面图。

参照图1和图2,构成根据本公开内容示例性实施方式的袋壳体的上壳110和下壳120分别包括密封部110a和120a,密封部110a和120a形成在袋壳体100的边缘部分,袋壳体100的边缘部分围绕其中容纳图1的电极组件200的容纳部。密封部110a和120a沿着袋壳体100的边缘部分形成,并且密封部110a和120a的全部或一部分可以是上壳体110和下壳体120进行结合的结合区域。上壳体110和下壳体120可被热熔合,以密封袋壳体100。

观察位于结合区域中的袋壳体100的剖面结构,上壳体110和下壳体120的每一个包括基底层111和121、金属层112和122、以及密封层113和123。上壳体110中包括的第一基底层111、第一金属层112和第一密封层113的堆叠方向与下壳体120中包括的第二基底层121、第二金属层122和第二密封层123的堆叠方向相反。具体地,如图2中所示,上壳体110包括从上壳体110的外部朝向内部顺序地定位的第一基底层111、第一金属层112和第一密封层113。下壳体120包括从下壳体120的外部朝向内部顺序地定位的第二基底层121、第二金属层122和第二密封层123。此时,第一密封层113和第二密封层123彼此接触并且被热熔合,从而形成密封结构。

也可在第一基底层111与第一金属层112之间、第一金属层112与第一密封层113之间、第二基底层121与第二金属层122之间、以及第二金属层122与第二密封层123之间分别设置粘合层(未示出)。

第一基底层111和第二基底层121可由诸如聚对苯二甲酸乙二醇酯(PET)树脂或尼龙树脂之类的绝缘材料制成,以便确保二次电池与外部之间的绝缘和可成形性。

第一金属层112和第二金属层122可包括选自由铜、铝、镍、铁、碳、铬、锰及它们的合金构成的群组中的任意一种。

根据本实施方式的第一密封层113和第二密封层123可包括热塑性树脂。热塑性树脂可包括聚丙烯(PP)。

第一密封层113和第二密封层123包括从第一密封层113的一个表面和第二密封层123的一个表面凹进的多个凹槽310和320。就是说,上壳体110和下壳体120彼此面对的表面,即,第一密封层113的一个表面和第二密封层123的一个表面形成分别沿朝向第一金属层112和第二金属层122的方向凹进的多个凹槽310和320。

多个凹槽310、320的形状没有特别限制。例如,可以以其中凹槽310和320布置成格子形状、条带形状或不规则形状的形状形成。其中,从易加工性等观点来看,可形成为格子形状,但是没有特别限制。此时,格子形状的交叉线可相对于袋壳体100的外周边以20度至70度、优选30度至50度、更优选45度的角度形成,并且这也没有特别限制。此外,可根据稍后描述的凹槽310和320的深度和厚度来适当地调整格子形状的交叉线之间的间隔,并且优选地,其可以是0.1mm至1.0mm。

多个凹槽310和320可具有相对于密封层113和123的厚度的6%至34%的深度d。优选地,凹槽310和320的深度d可以是密封层113和123的厚度的10%至30%,更优选20%至30%。

如果深度d小于6%,则未充分提高密封粘附性,如果深度大于34%,则不仅会对金属层112和122造成损坏,而且还使密封厚度变薄,密封层113和123的粘附力反而减小,这不是优选的。

此外,多个凹槽310和320可具有约0.1mm至约1.0mm的宽度w。如果宽度w小于0.1mm,则未充分提高密封粘附性并且可加工性不好。如果宽度为1.0mm以上,则会对金属层112和122造成损坏,还可能损坏密封层113和123,这不是优选的。

通过如上所述在密封层113和123中形成多个凹槽310和320,当上壳体110和下壳体120热熔合时,彼此接触的接触表面增加,因而粘附力增强,从而增加密封可靠性。此外,不是在形成上壳体110和下壳体120的所有层中形成凹槽,而是凹槽310和320仅形成在待热熔合的密封层113和123中,由此能够获得平坦的密封部110a、120a而外观没有弯曲,因而不会影响后续的折叠工序等。就是说,由于在密封部110a和120a中残留的弯曲或褶皱,在折叠期间会发生对袋等的损坏,或者会发生过度密封的问题。如上所述,仅在密封层113和123中形成用于提高密封粘附性的凹槽,不影响外观,由此防止了这些问题的发生。

下文中,将参照图3和图4描述根据本公开内容示例性实施方式的制造袋型二次电池的方法。

图3是图解根据本公开内容示例性实施方式的制造袋型二次电池的方法的流程图。图4a和图4b是图解按压部的按压工序的示图。

首先,将袋壳体100的下壳体120和电极组件200设置在按压板41上(S10)。此时,电极组件200的正极引线210的一部分和负极引线220的一部分设置成暴露到下壳体120的外部。

接下来,如图4a中所示,使用第一按压部40按压下壳体120的密封部120a,以形成多个凹槽320(S20)。就是说,通过使用具有其上形成有突出形状的按压表面的第一按压部(图4a中的放大部分)向位于密封部120a的上表面的第二密封层123施加压力,使得可形成从上表面凹进的凹槽320。此时,第一按压部40施加的压力可以是0.01MPa至0.2MPa,优选是0.1MPa。当第一按压部40施加的压力小于0.01MPa时,不能在第二密封层123的表面上形成具有足够深度的凹槽。当压力为0.2MPa以上时,位于第二密封层123下方的第二金属层122会被损坏,这是不优选的。

此外,尽管在本申请中未单独示出,但甚至在上壳体110中也可通过相同的工序形成凹槽310。就是说,可在上壳体110和下壳体120的至少一侧上形成凹槽。此外,上壳体110和下壳体120的凹槽310和320可仅形成在未形成电极引线210和220的一对侧上,如图4a中所示,并且凹槽也可如图1中所示形成在包括形成电极引线210和220的部分在内的袋壳体100的所有侧上,并没有特别限制。

接下来,如图4b中所示,上壳体110设置成覆盖下壳体120和电极组件200,并且在通过具有平坦的按压表面的第二按压部42施加压力的同时施加热量,由此将第一密封层113和第二密封层123热熔合(S30)。就是说,通过施加热量和压力,包含热塑性树脂的第一密封层113和第二密封层123被热熔合,从而形成一个一体的密封层(未示出)。因此,形成袋壳体的密封结构,从而制造出袋型二次电池。

如上所述,在密封层113和123的热熔合工序之前,通过增加第一按压部40的按压工序,在密封层113和123的上表面上形成凹槽310和320,然后通过第二按压部42执行热熔合工序,从而在热熔合工序期间,增加了第一密封层113与第二密封层123之间的接触面积,使得可获得具有增强的粘附性的密封结构。此外,即使以这种方式形成凹槽310和320,但由于仅简单地增加第一按压部40的按压步骤,所以仍可使用现有设备来提高密封性能。此外,通过第一按压部40仅在密封层113和123中形成凹槽310和320,可在不损坏袋壳体100的金属层112和122以及基底层111和121的情况下增强密封粘附性。

另一方面,下文中,将通过具体实施例和比较例详细地描述根据本公开内容的袋壳体。

实施例1:10%的凹槽深度

针对包含聚丙烯(PP)的第一密封层和第二密封层的每一个,制备各自具有设定为30μm、35μm和40μm的厚度的样品。

通过本公开内容的第一按压部向第一密封层和第二密封层的每一个施加0.01MPa至0.2MPa的压力,从而形成具有相对于第一密封层和第二密封层的厚度的10%的深度的多个凹槽。

接下来,通过使用本公开内容的第二按压部施加热量和压力,在160℃的密封温度下热熔合第一密封层和第二密封层,从而制造袋壳体。

实施例2:20%的凹槽深度

以与实施例1中相同的方式来制造袋壳体,不同之处在于,在具有30μm、35μm和40μm的厚度的第一密封层和第二密封层的每一个中形成具有相对于第一密封层和第二密封层的厚度的20%的深度的多个凹槽。

实施例3:30%的凹槽深度

以与实施例1中相同的方式来制造袋壳体,不同之处在于,在具有30μm、35μm和40μm的厚度的第一密封层和第二密封层的每一个中形成具有相对于第一密封层和第二密封层的厚度的30%的深度的多个凹槽。

比较例1:不形成凹槽

以与实施例1中相同的方式来制造袋壳体,不同之处在于,在具有30μm、35μm和40μm的厚度的第一密封层和第二密封层的每一个中不形成凹槽。

比较例2:40%的凹槽深度

以与实施例1中相同的方式来制造袋壳体,不同之处在于,在具有30μm、35μm和40μm的厚度的第一密封层和第二密封层的每一个中形成具有相对于第一密封层和第二密封层的厚度的40%的深度的多个凹槽。

实验例

针对实施例1至实施例3以及比较例1和比较例2的袋壳体,对每个样品执行粘附性测试。具体地,使用UTM(万能试验机,Universal Testing Machine)设备将每个样品切割成15mm的宽度,然后拉动两端以测量粘附力(kg/mm)。对于每个厚度测量十个样品,并且在下表1中显示了测量的粘附力的平均值、最小值和最大值(kg/mm)。

【表1】

接下来,基于表1的平均值,在下表2中显示出与其中不形成凹槽的比较例1相比,实施例1、实施例2、实施例3以及比较例2的粘附力的增加程度。

【表2】

比较例1 实施例1 实施例2 实施例3 比较例2
100% 103% 112% 131% 79%

参照表1和表2,当如实施例1至实施例3中那样形成具有相对于密封层的厚度的6%至34%的深度的凹槽时,能够确认与其中不形成凹槽的比较例1相比,密封层之间的接触表面增大,从而增强了粘附力。特别是,在实施例1至实施例3中,与比较例1相比,密封层的粘附力分别增加3%、12%和31%。

另一方面,当如比较例2中那样以相对于密封层的厚度的40%(超过34%)的凹槽深度形成凹槽时,能够确认密封厚度更薄,密封层之间的粘附力反而减小。特别是,与其中不形成凹槽的比较例1相比,粘附力减小了21%。

尽管上面已经详细描述了本公开内容的优选实施方式,但是本公开内容的范围不限于此,本领域技术人员使用以下权利要求中限定的本公开内容的基本构思进行的各种修改和改进也属于权利的范围。

【参考标记和符号的描述】

100:袋壳体

110:上壳体

120:下壳体

113:第一密封层

123:第二密封层

310、320:凹槽。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:可再充电电池和用于焊接可再充电电池的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!