一种风力发电机叶片及该风力发电机叶片的制造方法

文档序号:260830 发布日期:2021-11-16 浏览:21次 >En<

阅读说明:本技术 一种风力发电机叶片及该风力发电机叶片的制造方法 (Wind driven generator blade and manufacturing method thereof ) 是由 詹斯·格鲁德 吉安卡洛·吉罗洛米尼 拉尔斯·欧佛高 于 2020-04-22 设计创作,主要内容包括:一种风力发电机叶片(5)及制造该风力发电机叶片(5)的方法,其中,风力发电机叶片(5)包括复合结构(15,15’,15",15"’)及环绕层。复合结构(15,15’,15",15"’)包括拉挤成型元件(19)堆叠,其中相邻的拉挤成型元件(19)对之间设置有促进灌注层(23,23’,23",23"’,24)。促进灌注层(23,23’,23",23"’,24)比环绕层具有更高的渗透率,使得树脂在堆叠结构内的流动速度高于在环绕层中的流动速度。(A wind turbine blade (5) and a method of manufacturing the wind turbine blade (5), wherein the wind turbine blade (5) comprises a composite structure (15,15&#39;,15&#34;,15&#34;&#39;) and a surrounding layer. The composite structure (15,15&#39;,15&#34;,15&#34;&#39;) comprises a stack of pultruded elements (19), wherein between adjacent pairs of pultruded elements (19) a perfusion-promoting layer (23,23&#39;,23&#34;,23&#34;&#39;,24) is arranged. The perfusion-promoting layer (23,23&#39;,23&#34;,23&#34;&#39;,24) has a higher permeability than the surrounding layer, so that the flow velocity of the resin within the stacked structure is higher than the flow velocity in the surrounding layer.)

一种风力发电机叶片及该风力发电机叶片的制造方法

技术领域

本发明涉及一种风力发电机叶片,其包括由堆叠的拉挤成型元件形成的主梁帽,其中,该堆叠中相邻的拉挤成型元件之间设置有促进灌注层。所述堆叠结构通过一系列注入通道在宽度方向注入树脂,并通过一系列的出口通道将多余的树脂排出所述堆叠结构。

背景技术

众所周知,制造风力发电机叶片需要形成预成型件,所述预成型件使用拉挤成型工艺或挤压成型工艺制造。随后将所述预成型件布置形成堆叠结构,然后注入树脂以形成叶片部件,例如主梁帽。这种堆叠结构使得使用非破坏性测试(NDT)难以检测任何内部缺陷。

因此,可以相对于所述堆叠结构中布置促进灌注层,以控制围绕所述堆叠结构的树脂流动。此外,促进灌注层可布置于相邻的预成型件之间,以控制贯穿所述堆叠结构的树脂流动。进而可降低在堆叠结构中出现回填和干斑的风险。

WO 2015/096840 A1公开了一种布置于堆叠结构和芯材元件弦向边缘的可渗透纤维层。树脂通过一组入口通道引入,并进一步通过弦向边缘进入堆叠结构。所述可渗透纤维层的面积重量为100-700克/平方米(gsm),其限制了沿翼展方向的树脂流动,并提供沿弦向的受控的树脂流动。

WO 2016/015736 A1公开了布置于相邻拉挤成型元件之间的促进灌注层及布置于相邻拉挤成型元件堆叠之间的另一促进灌注层。所述促进灌注层为具有交织捻线的编织双轴纤维层。所述纤维层的面积重量为100-300gsm,且其纤维以0/90度或+/-45度排列。其声称,通过所述促进灌注层的灌注速度可选择为与其他叶片部件的灌注速度相匹配,或者选择为其他叶片部件的灌注速度的5-15%以内。

WO 2018/029240 A1同样公开了布置于相邻拉挤成型元件之间的促进灌注层。在该专利中,所述促进灌注层为单向(UD)纤维层,且所述纤维与堆叠结构的轴向对齐。所述纤维层的面积重量为800gsm。

WO 20147/108685 A1公开了布置于相邻的GFRP或CFRP材料层之间的多个促进流动条。所述促进流动条之间存在间隔,以形成供树脂流动的内部通道。所述促进流动条与堆叠结构的纵向成90度或40-45度夹角。

发明内容

本发明的一个目的在于提供一种替代的复合结构及通过所述复合结构控制树脂流动的方法。

本发明的另一个目在于提供一种能够使用无损测试方法来检查灌注质量的复合结构及方法。

本发明的再一个目的在于提供一种具有改进的促进树脂性能的复合结构和方法。

本发明的一个目的通过一种用于风力发电机的风力发电机叶片实现,包括:

-至少一个复合结构,其具有长度、宽度和厚度,所述至少一个复合结构包括布置于至少一个堆叠结构中的多个拉挤成型元件,其中,所述至少一个堆叠结构的至少两个相邻的拉挤成型元件之间设置有至少一个促进灌注层,所述至少一个促进灌注层在宽度方向上具有第一渗透率参数K1,并且在长度方向上具有另一渗透率参数K2,其中K2小于K1

-至少一个环绕层,其相对于所述至少一个复合结构布置,所述至少一个环绕层在宽度方向上具有第二渗透率参数K1a,其特征在于:

-K1大于K1a,以及

-其中,树脂通过所述至少一个促进灌注层的第一灌注速度V1大于树脂通过所述至少一个环绕层的第二灌注速度V1a

这提供了一种复合结构,其在弦向具有高树脂渗透率,因此在弦向可具有高灌注速度。本复合结构在堆叠内的局部灌注速度大于邻近所述复合结构的叶片部件的局部灌注速度。这确保了堆叠结构的正确灌注并防止了中间层的回填。此外,其还可以防止在堆叠内部形成潜在的干斑,进而使得可以使用非破坏性测试来检查所述复合结构。

在此,术语“中间层”被定义为布置在堆叠内的任何层。此外,术语“环绕层”被定义为与堆叠的一个或两个边缘或侧面相邻或接近的任何层。此外,术语“叶片部件”被定义为风力发电机叶片的气动外壳或其他结构部件。所述环绕层可以形成所述复合结构或叶片部件的一部分。

所述复合结构包括布置为一个或多个行和/或列的堆叠拉挤成型元件。优选地,所有或部分行和/或列中包括两个或更多的沿宽度方向和/或长度方向布置的拉挤成型元件。所述堆叠包括布置于第一边缘与第二边缘之间的第一侧和第二侧,其中,每一边缘和侧在长度方向上延伸。因此,拉挤成型元件的数量可适应于风力发电机叶片的几何尺寸和/或风力发电机叶片的叶片壳以及主梁帽的厚度。

优选地,所述拉挤成型元件包括在纵向延伸的圆角。这降低了夹住环绕层和/或中间层的风险,从而提供更稳健的灌注过程。因此,能够防止在环绕层和/或中间层中形成褶皱。

根据一个实施例中,所述至少一个促进灌注层为具有单向纤维的织物。

发明人发现,由具有单向纤维的织物形成的促进灌注层对复合结构的机械性能具有惊人的影响。单向纤维织物提升了堆叠结构中各个拉挤成型元件之间的界面处的断裂韧性。例如,所述界面可能具有大约1100J/m2的能量释放率。断裂韧性测试表明,捻线的纤维织物在较低的力下会失效。

所述纤维可以由玻璃、碳、芳纶、金属、聚酯或尼龙制成。因此,所述织物在沿维方向上的渗透率(K1)可高于横跨纤维方向的渗透率(K2)。因此,所述织物可用于在灌注过程中引导树脂沿所述纤维流动,从而提供受控的树脂流动。这使得织物的渗透率比值(K1/K2)最大化。

WO 2016/015736 A1中提到的TF970的机织纤维织物,是一种纤维取向为0/90°的双轴织物。不同于此,该纤维为对称排列,因此它们在纵向和宽度方向上具有相等的渗透率。这种纤维织物常用于风力发电机叶片的生产。

优选地,所述织物可以为非卷曲织物,其中单向纤维设置在多个多层中。可以使用缝合线在厚度方向上将所述多层单向纤维缝合在一起。由于高纤维伸直度,织物具有良好的机械性能。这种织物还可具有比卷曲织物更高的渗透率。此外,由于其优异的悬垂性,所述织物能够更好地顺应堆叠结构的形状。

替代地,织物可以为卷曲织物,其中单向纤维与纬纱交织成一层或多层。可根据机械性能和织物完整性之间的最佳折衷选择编织式样。这使得所述织物具有良好的剪切强度,且可能具有与非卷曲织物相比,具有竞争力的价格优势。

根据一个实施例,所述纤维与长度方向之间存在85-95度的夹角。

优选地,所述纤维可相对于织物的长度方向定向。纤维可以相对于所述长度方向存在85到95度的夹角,例如在88到92度之间。可根据所需的流速选择纤维方向。宽度方向的高渗透率使得树脂主要沿该方向流动。

根据一个实施例,织物包括无捻线。

所述织物可以有利地包括无捻线,与捻线相比,无捻线在改进树脂流动上具有惊人效果。这反过来促进了纤维桥接,并使得两个相邻拉挤成型元件之间界面的机械性能得到改善。与WO 2016/015736 A1的捻线相比,其减小了相邻拉挤成型元件之间的间距。

发明人发现,使用无捻线可以进一步提高使用单向纤维的效果。因此,单向纤维和捻线的使用具有增强的综合效果。

根据一个实施例,至少一个促进层的面积重量为50-300克/平方米。

促进灌注层的面积重量可以为每平方米50-300克(gsm)之间,优选地为100-200gsm,例如150-180gsm。这提供了贯穿中间层的最佳树脂注入。市面销售的单向玻璃织物的面积重量远高于300gsm,由于高面积重量,其不适合用作树脂促进层。

根据一个实施例,至少一个促进灌注层在厚度方向上还具有第三渗透率参数K3,且K1大于K3

所述堆叠结构可包括在相邻拉挤成型元件或相邻拉挤成型元件堆叠之间的厚度方向上延伸的一个或多个促进灌注层。或者,一个或多个促进灌注层可以部分地在厚度方向上并且部分地在宽度方向上延伸。所述促进灌注层还可以在厚度方向上具有渗透率参数K3,其中K3小于K1。这降低了厚度方向的局部灌注速度,并降低了回填的风险。

进一步地,所述堆叠结构还可以包括在一个或多个堆叠中的相邻拉挤成型元件之间在长度方向上延伸的一个或多个促进灌注层。或者,所述一个或多个促进灌注层可以部分地在长度方向上和/或部分地在宽度方向上延伸。所述促进灌注层还可以在长度方向上具有渗透率参数K2,其中K2小于K1。这实现了长度方向的受控树脂流动。

进一步地,一个或多个环绕层可以部分地或完全地在宽度方向和/或长度方向上延伸。例如,所述环绕层可以布置于所述堆叠的第一侧和/或第二侧上。或者,一个或多个环绕层可以部分地或全部地在宽度方向和/或厚度方向上延伸。例如,所述环绕层可以布置在所述堆叠的第一和/或第二边缘上。例如,所述环绕层可以布置在所述堆叠的第二侧的第一和第二边缘上。例如,环绕层可以在宽度平面中围绕或包围所述堆叠,并且部分地或完全地沿所述堆叠的长度方向延伸。在灌注过程中,所述环绕层可以充当树脂分布层。

进一步地,所述环绕层可以在长度方向上具有渗透率参数K2a,在厚度方向上还可以有渗透率参数K3a。优选地,所述环绕层的渗透率参数K2a小于促进灌注层的渗透率参数K1。此外,所述环绕层的渗透率参数K3a小于促进灌注层的渗透率参数K3。这可以确保所述堆叠结构灌注正确,从而避免内部干斑或气穴。

根据一个实施例,至少一个促进灌注层的局部宽度对应于至少一个堆叠结构或一个拉挤成型元件的局部宽度。

每一促进灌注层的宽度和/或长度可以适配于复合结构和/或风力发电机叶片的几何尺寸和形状。

例如,促进灌注层的局部宽度可对应于一个或一行拉挤成型元件的宽度。这使得促进灌注层能够延伸堆叠的整个宽度。类似地,促进灌注层的局部长度可以对应于一个或一个阵列拉挤成型元件的长度。这使得促进灌注层能够延伸所述堆叠的整个长度。

例如,促进灌注层可以在宽度方向上沿着一个或多个拉挤成型元件延伸并且进一步在厚度方向上沿一列拉挤成型元件延伸。进而使得所述促进灌注层的局部宽度能够适配于所述堆叠结构的宽度和厚度。

所述拉挤成型元件在所述堆叠结构内可按行和列排列。或者,所述拉挤成型元件可以在所述堆叠结构内以锯齿形图案布置。或者,所述拉挤成型元件可以相对于彼此偏移以形成具有平行四边形或梯形横截面轮廓的复合结构。

根据一个实施例,至少一个环绕层构成所述复合结构的一部分或风力发电机叶片的气动外壳。

环绕层可以布置在所述复合结构的第一侧和/或第二侧上。例如,第一树脂分布层可以在叠层或放置所述复合结构之后布置在第一侧上。此外,第二树脂分布层可以布置在气动外壳的凹槽中,使得其面向所述复合结构的第二侧。这使得树脂在灌注过程中能够分布于所述复合结构上。

或者,可以部分或完全地围绕所述堆叠结构延伸附加促进灌注层。所述附加促进灌注层可以形成位于气动外壳的内表面上的突出凸缘。这实现了围绕所述堆叠结构的受控树脂流动。

或者,所述堆叠可以包括布置于所述堆叠的第一侧的多个环绕层。所述堆叠还可包括布置在所述堆叠的第二侧的多个环绕层。这些环绕层可以充当所述复合结构的内皮和/或外皮。在外皮和最外侧一行的拉挤成型元件之间可以布置一层促进灌注层。在所述内皮和最内侧一行的拉挤成型元件之间可以进一步布置一层促进灌注层。

根据一个实施例,复合结构构成风力发电机叶片的主梁帽。

本复合结构作为主梁帽是有利的,但也可以构成风力发电机叶片的另一结构部件的一部分,例如抗剪腹板。

本发明的一个目的还通过一种制造风力发电机叶片的方法实现,包括:

-提供多个拉挤成型元件

-进一步提供至少一个环绕层,所述至少一个环绕层在宽度方向上具有第二渗透率参数K1a

-将所述多个拉挤成型元件布置于至少一个堆叠结构中,其中,在所述至少一个堆叠结构内的相邻拉挤成型元件之间布置有至少促进灌注层,所述至少一个促进灌注层具有在宽度方向上的第一渗透率参数K1,在长度方向上的渗透率参数K2,其中K2小于K1,

-使用灌注工艺将树脂引入所述至少一个堆叠结构和所述至少一个环绕层中,

-使用树脂固化所述至少一个堆叠结构以形成复合结构,所述复合结构具有长度、宽度和厚度,

其特征在于,K1大于K1a,这使得树脂能够以第一灌注速度V1流过所述至少一个促进灌注层,并进一步以第二灌注速度V1a流过所述至少一个周围层,其中V1大于V1a

本方法使得树脂在所述堆叠结构的中间层比在所述环绕层中流动更快,从而降低了在所述堆叠结构内部形成回填和干斑的风险。这使得所述复合结构能够进行非破坏性测试。

树脂以预定的灌注速度引入入口通道,然后分布在于复合结构上。然后,所述树脂经由中间层在流过所述堆叠结构的内部,并进一步围绕所述堆叠结构流动。所述复合结构的渗透率指的是所述树脂在流过所述堆叠结构时比围绕所述堆叠结构流动得更快。这确保了所述堆叠结构的正确灌注。

根据一个实施例,所述树脂沿弦向引入。

在所述堆叠结构铺设完成之后,可以在堆叠结构和/或气动外壳上设置所述注入通道。所述注入通道可以在长度方向上延伸并且使得树脂能够在宽度方向上引入到堆叠结构中。这实现了更简单和快速的灌注过程。

本发明可适当地用于引入不同类型的树脂,例如环氧树脂、聚酯、乙烯基酯或聚氨酯。

根据一个实施例,所述多个拉挤成型元件和促进灌注层在叶片模具或单独的模具中铺设,并且在放置于叶片模具或单独的模具中时固化。

本复合结构可以直接在叶片模具中制造,其中所述拉挤成型元件和促进灌注层铺设于气动外壳的凹槽中。然后,在一个步骤中将堆叠结构与气动外壳的其余部分一起灌注,并进行固化。这使得所述复合结构能够集成到气动外壳中。

或者,拉挤成型元件和促进灌注层可以铺设在单独的模具中,其中树脂可以被引入到所述堆叠结构中。然后可以将具有树脂的堆叠结构固化以形成复合结构。然后可以将固化的复合结构提升到位并使用粘合剂或树脂灌注结合到气动外壳。这使得复合结构能够与叶片模具分开制造。

或者,干燥的堆叠结构可被提升到气动外壳上的位置,然后再注入树脂。具有树脂的堆叠结构可以进行固化。这使得复合结构在放置在叶片模具中时进行灌注。

本发明的一个目的还通过使用具有单向玻璃纤维,优选具有无捻线的织物作为风力发电机叶片的复合结构中的树脂促进层来实现。

发明人发现,与诸如WO 2016/015736 A1中提到的常规树脂促进层相比,所述复合结构内的内部灌注速度可以显著增加。这实现了所述复合结构能够比所述环绕层更快地被灌注的有利效果,从而确保了所述复合结构被正确灌注。

发明人还发现,通过使用无捻线可以进一步改善单向玻璃织物中的树脂流动。与传统的加捻玻璃纤维织物(如TF970)相比,使用无捻线还使所述复合结构具有更高的断裂韧性。

附图说明

本发明仅通过示例并参照附图进行描述,其中:

图1示出风力发电机的示例实施例,

图2示出风力发电机叶片的第一实施例,

图3示出风力发电机叶片的第二实施例,

图4示出复合结构的第一实施例,

图5示出复合结构的第二实施例,

图6示出树脂灌注过程中的复合结构和气动外壳,

图7示出复合结构的第一实施例,

图8示出复合结构的第二实施例,

图9示出复合结构的第三实施例,

图10示出复合结构的第四实施例,

图11a-e示出灌注过程中树脂流过复合结构,以及

图12示出用于确定促进灌注层的渗透率参数的测试装置。

在下文中,将对附图进行一一描述,并且在不同的附图中将以相同的数字对在附图中看到的不同部分和位置进行编号。图中指示的所有部件和位置并非都必须与该图一起讨论。

其中,

1 风力发电机

2 风力发电机塔架

3 机舱

4 偏航机构

5 风力发电机叶片

6 转子轮毂

7 变桨机构

8 尖端、第二端

9 叶根、第一端

10 前缘

11 后缘

12 主梁帽

13 第二端

14 第一端

15 复合结构

16 凹槽

17 气动外壳

18 抗剪腹板

19 拉挤成型元件

20 气动外壳内皮

21 气动外壳外皮

22 芯材元件

23 促进灌注层

24 促进灌注层

25 注入通道

25a 出口通道

26 宽度方向

27 长度方向

28 厚度方向

29 复合结构内皮

30 复合结构外皮

31 基板、托盘

32 罩、盖子

33 密封件

34 真空通道

35 出口

36 注入口

V0 树脂注入速度

V1 促进灌注层的灌注速度

V1a 环绕层的灌注速度

K1 促进灌注层宽度方向的渗透率参数

K1a 环绕层宽度方向的渗透率参数

K2 促进灌注层长度方向的渗透率参数

K2a 环绕层长度方向的渗透率参数

K3 促进灌注层厚度方向的渗透率参数

K3a 环绕层厚度方向的渗透率参数

具体实施方式

图1示出了风力发电机1,其包括风力发电机塔架2以及通过偏航机构4布置于风力发电机塔架2顶部的机舱3。偏航机构4被配置为将机舱3偏航成偏航角。转子包括至少两个风力发电机叶片5,其通过变桨机构7安装到转子轮毂6。变桨机构7被配置为使得风力发电机叶片5变桨成桨距角。转子轮毂6通过转子轴可旋转地连接到设置在风力发电机1中的发电机。

每一风力发电机叶片5包括尖端8和叶根9,其中,风力发电机叶片5包括限定前缘10和后缘11的空气动力学轮廓。

图2示出了风力发电机叶片5的第一实施例,在该实施例中,所述风力发电机叶片5为全展叶片。风力发电机叶片5包括主梁帽12,该主梁帽12从朝向叶根9的局部第一端延伸至朝向尖端8的局部第二端。

图3示出了风力发电机叶片5的第二实施例,在该实施例中,风力发电机叶片5为模块化叶片。风力发电机叶片5包括内叶片段,该内叶片段从第一端延伸至第二端13,并进一步从前缘10'延伸至后缘11',其中,所述第一端例如可为所述叶根9。所述风力发电机叶片5还包括外叶片段,该外叶片段从第一端14延伸至第二端,并进一步从前缘10'延伸至后缘11',其中,所述第二端例如可为所述尖端8。

类似地,主梁帽12'被分成布置在内叶片段中的内部部分以及布置在外叶片段中的外部部分。包括主梁帽12'部分的两个叶片段,在所述第一和第二端13、14交界面处连接。

风力发电机叶片5也可以为部分变桨距叶片,其中,所述变桨机构7布置于所述第二端13。在这一结构中,所述变桨机构7被配置为使外叶片段相对于内叶片段变桨。

图4示出了由复合结构15形成的主梁帽12、12'的第一实施例。此处,所述复合结构15在单独的模具(未示出)中制造,然后放置于风力发电机叶片5的气动外壳17的凹槽16中。所述复合结构15后续将通过粘合剂或树脂灌注与所述气动外壳17结合。

此处,所述复合结构15和气动外壳17在宽度方向上没有曲率。然而,所述复合结构15和气动外壳17都可以在宽度方向上弯曲。

图5示出了复合结构15'的第二实施例,所述复合结构15'直接在气动外壳17的凹槽16中制造。此处,在所述凹槽16中铺设堆叠结构,并注入树脂。然后将具有树脂的堆叠结构固化,以将所述复合结构15'结合到气动外壳17。

随后结构部件以抗剪腹板18的形式布置在所述主梁帽12上,例如在所述复合结构15'上。

图6示出了树脂灌注期间的复合结构15和气动外壳17。图中示出了包括六个拉挤成型元件19的堆叠。

多个纤维层形成所述风力发电机叶片5的内皮20。此外,多个纤维层形成所述风力发电机叶片5的外皮21。多个芯材元件22布置于内、外皮20、21之间,形成夹层结构。

所述堆叠布置于如图6所示的芯材元件22之间,以形成一体化复合结构。多个促进灌注层23、24布置于相邻的拉挤成型元件19之间。此处,部分促进灌注层23在宽度方向26上延伸,且其局部宽度对应于拉挤成型元件19的宽度。其他促进灌注层24在厚度方向28上延伸,且局部其宽度等于所述堆叠的厚度。

如图6所示,所述复合结构15中的例如所述拉挤成型元件19和促进灌注层进一步在长度方向27上延伸。

所述促进灌注层23、24在宽度方向上具有渗透率参数K1,在长度方向上具有渗透率参数K2,以及在厚度方向上具有渗透率参数K3

树脂被注入气动外壳17上设置的一系列注入通道25,可选地,所述注入通道25设置于所述复合结构15上。树脂以注入速度V0注入所述注入通道25中。然后,树脂被引入到所述气动外壳17中,并且沿宽度方向上进入到所述复合结构15中。

树脂以灌注速度V1流经所述促进灌注层23,进而流经所述堆叠结构。此外,所述树脂以灌注速度V1a流经所述环绕层,所述环绕层例如可为内皮20。在此结构中,所述灌注速度V1大于灌注速度V1a,这确保所述堆叠结构被正确灌注。

图7示出了复合结构15的第一实施例,在该实施例中,拉挤成型元件19按行和列布置。促进灌注层23布置于每列中的相邻拉挤成型元件19之间。此外,促进灌注层24布置在相邻的拉挤成型元件19的列之间。

图8示出了复合结构15”的第二实施例,在该实施例中,所述拉挤成型元件19的堆叠的第一侧上设置有内皮29。此外,所述拉挤成型元件19的堆叠的第二侧上设置有外皮30。所述内皮29和外皮30各自包括在宽度方向及长度方向上延伸的多个纤维层。

所述内皮29与所述堆叠之间还设置有另一促进灌注层23。类似地,还可在所述外皮30与所述堆叠之间设置另一促进灌注层23。在此,促进灌注层23布置于所述堆叠的一列与外皮30之间,同时另一促进灌注层23'布置于所述堆叠的另一列与所述外皮30之间。该促进灌注层23'进一步在两列拉挤成型元件19之间沿厚度方向延伸。

图9示出了复合结构15”'的第三实施例,在该实施例中,所述拉挤成型元件19以锯齿形图案排列。如图9所示,第二行拉挤成型元件19相对于第一和第三行拉挤成型元件偏移。所述促进灌注层23”沿着一行拉挤成型元件19的整体宽度延伸,以确保复合结构正确灌注树脂。

图10示出了复合结构15””的第三实施例,在该实施例中,所述拉挤成型元件19以偏移图案排列。第二行拉挤成型元件19相对于第一行拉挤成型元件偏移。第三行拉挤成型元件19相对于第二行拉挤成型元件进一步偏移,依此类推,如图9所示。促进灌注层23”'沿着一行拉挤成型元件19的整体宽度延伸,以确保复合结构正确灌注树脂。

图11a-e示出在灌注过程中,树脂流经所述复合结构15及气动外壳17的示意图。图11a示出了在完成铺设过程之后,布置在风力发电机叶片5的上纤维层与下纤维层之间的所述复合结构15的横截面。

此处,下纤维层至少形成所述气动外壳17的外皮21。上纤维层由在所述复合结构15上延伸的内皮20形成。或者,上纤维层可以由附加纤维层形成,所述附加纤维层在所述复合结构15的顶部延伸,并且还沿着所述复合结构15两侧的内皮20的一部分延伸。

随后在内表面上放置注入通道和出口通道,并且通过密封各个边缘将整个结构封装在真空袋中。然后将树脂灌注系统连接到相应的注入口和出口,使得空气可从封闭空间中排出。

为便于说明,图11b-d中仅示出了一个出口通道25a。可选地,如图中虚线所示,所述复合结构上方可以放置多于一个的出口通道25a。

如图11b所示,树脂从侧边沿弦向引入。如图11b-d所示,在灌注过程中,在所述复合结构15内的树脂的前端流动比在所述上、下纤维层中更快。如图11b所示,所述促进灌注层23的渗透率参数K1高于上、下层纤维层的渗透率参数K1a,因此内部灌注速度V1大于外部灌注速度V1a

当树脂前沿到达设置于所述拉挤成型元件19的堆叠或列之间的树脂促进层24时,树脂在沿弦向继续流动的同时,还将在厚度方向上沿着所述树脂促进层24流动。如图11d所示,随后,树脂将进入设置于所述堆叠或列交界面处的上、下纤维层,并开始沿弦向的反方向流动。多余的树脂将从对侧进入所述出口通道25a。

类似地,当树脂前沿到达所述复合结构15的对侧边缘时,树脂将沿厚度方向流动。随后,树脂将进入侧边缘处的上、下纤维层,并开始沿弦向的反方向流向所述出口通道25a。树脂还可以继续沿着所述内、外皮20、21流动到气动外壳17上的出口通道(未示出)。

这防止了在纤维层压件中形成干斑,并确保了所述复合结构15正确地注入树脂。图11e显示了灌注后的复合结构15及上、下纤维层。为便于说明,省略了注入通道、出口通道以及真空袋。随后,对灌注完成的结构进行固化。

图12示出了用于确定促进灌注层23、24的渗透率参数的测试装置。此处,测试装置被配置为在平面内确定所述促进灌注层23、24的第一和第二渗透率参数k1及k2

所述促进灌注层23、24的测试样品23'、24'布置于基板31上,基板31例如可为玻璃盘或托盘。将罩或盖子32放置在所述测试样品23'、24'的顶部,所述基板31与盖子32之间通过密封件33密封。在该密封空间内设置有真空通道34,并且所述真空通道连接至出口35,用于所述密封空间的排气。

随后,将树脂从注入口36引入所述测试样品23'、24',所述注入口例如可位于所述测试样本23'、24'的中心。接下来,通过使用标准化测量技术在平面内测量所述测试样品23'、24'的渗透率。如图12所示,各个方向的第一和第二渗透率参数k1和k2基于所述测量确定。

根据测试结果可以看出,与具有捻线的常规玻璃纤维织物相比,本发明中具有无捻线的玻璃纤维织物的树脂流动性得到了改进。此外,根据测试结果还可以看出,相较于传统的双轴织物,本发明的单向织物的树脂流动性也有所改进。根据测试结果可知,通过单向玻璃纤维织物与无捻线的组合可实现最优结果。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于密封轮胎穿孔的可凝结混合物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类