Pigeon-derived Newcastle disease virus recombinant vaccine strain and construction method and application thereof

文档序号:336579 发布日期:2021-12-03 浏览:24次 中文

阅读说明:本技术 一种鸽源新城疫病毒重组疫苗株及其构建方法和应用 (Pigeon-derived Newcastle disease virus recombinant vaccine strain and construction method and application thereof ) 是由 于晓慧 王静静 刘华雷 舒波 李峥 李阳 蒋文明 于 2021-10-08 设计创作,主要内容包括:本发明提供一种鸽源新城疫病毒重组疫苗株,其中用于构建鸽源新城疫病毒重组疫苗株的过程中使用的基因片段包含了毒性致弱的鸽源新城疫病毒的囊膜糖蛋白F蛋白基因和HN蛋白基因。其中一种具体的鸽源新城疫病毒重组弱毒疫苗株的保藏编号为CGMCC No.21900。本发明提供的鸽源新城疫病毒重组疫苗株在鸡胚中具有高生长滴度和低致病力的生物学特性,遗传稳定,对鸽源新城病毒具有良好的免疫保护效果,并能有效抑制排毒,能够用于防控目前流行的鸽源新城疫病毒,填补了我国缺少鸽新城疫防控专用疫苗产品的空白。(The invention provides a pigeon-derived newcastle disease virus recombinant vaccine strain, wherein a gene fragment used in the process of constructing the pigeon-derived newcastle disease virus recombinant vaccine strain comprises an envelope glycoprotein F protein gene and a HN protein gene of a pigeon-derived newcastle disease virus with attenuated toxicity. The preservation number of one specific pigeon source newcastle disease virus recombinant attenuated vaccine strain is CGMCC No. 21900. The recombinant vaccine strain of the pigeon-derived newcastle disease virus provided by the invention has the biological characteristics of high growth titer and low pathogenicity in chicken embryos, is stable in heredity, has a good immune protection effect on the pigeon-derived newcastle disease virus, can effectively inhibit toxin expelling, can be used for preventing and controlling the existing popular pigeon-derived newcastle disease virus, and fills the gap that China lacks a special vaccine product for preventing and controlling the pigeon newcastle disease.)

1. A gene segment for constructing a recombinant attenuated vaccine strain of a pigeon-derived newcastle disease virus is characterized by comprising an envelope glycoprotein F protein gene and a HN protein gene of the attenuated pigeon-derived newcastle disease virus; the envelope glycoprotein F protein gene of the pigeon source newcastle disease virus with weakened toxicity is obtained by mutating a site 112R-R-Q-K-R-F117 of an F gene with an amino acid sequence of SEQ ID NO. 1 into 112G-R-Q-G-R-L117.

2. The gene fragment of claim 1, wherein the HN protein gene has the amino acid sequence of SEQ ID NO 2.

3. The gene fragment of claim 1, wherein the HN protein gene has the amino acid sequence of SEQ ID NO 3.

4. The gene fragment of claim 1, wherein the nucleotide sequence of the gene fragment is SEQ ID NO. 4.

5. The use of the gene fragment of any one of claims 1-4 in the construction of recombinant attenuated pigeon-derived newcastle disease virus vaccine strains.

6. A recombinant attenuated vaccine strain of pigeon-derived Newcastle disease virus, which is constructed by replacing the gene fragment of the corresponding part of the genome of the gene type II LaSota strain with the gene fragment according to any one of claims 1 to 4.

7. The recombinant attenuated pigeon-originated newcastle disease virus vaccine strain according to claim 6, wherein the nucleotide sequence of the genome of the genotype II LaSota strain is SEQ ID NO. 5.

8. The recombinant attenuated pigeon-originated newcastle disease virus vaccine strain according to claim 6 or 7, which is constructed by the method comprising the following steps:

1) constructing a recombinant plasmid containing the genome full-length cDNA of the gene II type Newcastle disease virus LaSota strain;

2) on the recombinant plasmid constructed in 1), replacing a corresponding partial fragment of the LaSota strain genome with the gene fragment of any one of claims 1-4 to obtain a full-length recombinant plasmid;

3) co-transfecting the full-length recombinant plasmid constructed in the step 2) and eukaryotic expression plasmids expressing genes NP, P and L of the Newcastle disease virus LaSota strain to cells capable of expressing T7 polymerase to obtain the pigeon-sourced Newcastle disease virus recombinant attenuated vaccine strain.

9. The recombinant pigeon derived newcastle disease virus attenuated vaccine strain according to claim 6, wherein the preservation number of the recombinant pigeon derived newcastle disease virus attenuated vaccine strain is CGMCC No. 21900.

10. A vaccine, wherein the antigen of said vaccine comprises the recombinant attenuated vaccine strain of pigeon-derived newcastle disease virus according to any of claims 6-9.

Technical Field

The invention belongs to the field of biological products for livestock, and particularly relates to a pigeon-derived Newcastle disease virus recombinant vaccine strain and a construction method and application thereof.

Background

Newcastle Disease (ND) is an important infectious disease caused by infection of birds with a virulent strain of Newcastle Disease Virus (NDV). The disease is a highly-contact acute septic infectious disease which is characterized by respiratory tract and digestive tract injuries as typical characteristics, has high transmission speed and high disease death rate, and causes huge economic loss to the poultry industry in the world. The world animal health Organization (OIE) ranks the Newcastle disease as an animal epidemic disease which is legally reported, and the national agricultural rural area ranks the Newcastle disease as a type of animal epidemic disease.

The NDV is a single-strand, negative-strand and nonsegmented RNA virus belonging to the family Paramyxoviridae and has a genome structure of 3 '-NP-P-M-F-HN-L-5'. The virus can infect more than 240 kinds of birds, and the domestic chicken and the guinea fowl are most susceptible to infection, but in recent years, the host range of Newcastle disease virus infection and pathogenesis tends to be expanded.

Pigeon Newcastle disease, commonly known as Pigeon plague, is a highly contagious disease caused by Pigeon paramyxovirus (1, PPMV-1, Gene type VI NDV) and has a clinical manifestation very similar to that of chicken Newcastle disease. The new castle disease of the pigeons is found in Germany in the last 60 th century, and is introduced into China in the 80 th century, and along with the vigorous development of the pigeon breeding industry in China, the new castle disease of the pigeons becomes a main disease threatening the pigeon breeding industry, and the healthy development of the pigeon breeding industry in China is seriously hindered.

Vaccine immunization is an important means for preventing newcastle disease, and currently widely used newcastle disease vaccines mainly comprise Mukuswwar I vaccine, B1 II vaccine, LaSota IV vaccine and V4 live vaccines, A-VII oil emulsion inactivated vaccine, LaSota oil emulsion inactivated vaccine and the like. The vaccines are developed for preventing and controlling the newcastle disease, but no vaccine product aiming at the newcastle disease exists in China at present, and the pigeon farm can only use the newcastle disease vaccines such as LaSota to immunize pigeon groups. However, the pigeon I-type paramyxovirus PPMV-1 belongs to gene VI type NDV, has a longer genetic distance with the vaccine strain, has obvious antigenic difference with the LaSota strain, and still can outbreak pigeon Newcastle disease in immune pigeon groups during production, which indicates that the risk of immune failure exists in the prevention and control of the pigeon Newcastle disease by using the chicken Newcastle disease vaccine. Therefore, in order to promote the healthy development of the pigeon industry in China, the development of the special vaccine for preventing and controlling the new castle disease of the pigeons has important significance.

Disclosure of Invention

The invention aims to construct and obtain a pigeon-derived Newcastle disease virus recombinant vaccine strain and a construction method and application thereof, thereby solving the problem that a pigeon Newcastle disease vaccine product is lacked in the prior art.

The invention firstly provides a gene segment for constructing a recombinant attenuated vaccine strain of the pigeon-derived newcastle disease virus, wherein the gene segment comprises an envelope glycoprotein F protein gene and a HN protein gene of the attenuated pigeon-derived newcastle disease virus;

the envelope glycoprotein F protein gene of the pigeon source newcastle disease virus with attenuated toxicity is obtained by mutating a site 112R-R-Q-K-R-F117 of an F gene with an amino acid sequence of SEQ ID NO. 1 into 112G-R-Q-G-R-L117;

the HN protein gene has an amino acid sequence of SEQ ID NO. 2;

furthermore, the length of HN protein is extended from 571aa to 577aa, and the amino acid sequence is SEQ ID NO. 3;

specifically, the sequence of the gene fragment containing the envelope glycoprotein F protein gene and HN protein gene of the attenuated pigeon-derived Newcastle disease virus is SEQ ID NO. 4;

furthermore, the LaSota strain genome is obtained by dividing the full-length genome into 5 fragments according to the characteristics of the full-length cDNA sequence of the LaSota strain, amplifying the 5 fragments, carrying out corresponding mutation modification on partial fragments of a primer pair so as to ensure the unicity of enzyme cutting sites used for cloning, introducing a T7 promoter sequence into the 5 'upstream of the first amplified fragment, introducing three continuous G bases behind a T7 promoter to enhance the transcription activity of the T7 promoter sequence, introducing a hepatitis D ribozyme (HdvRz) sequence and a T7 terminator sequence into the 3' end of the last amplified fragment, and sequentially connecting the fragments, wherein one specific nucleotide sequence is SEQ ID NO. 5;

the invention also provides a pigeon source Newcastle disease virus recombinant attenuated vaccine strain, and the construction method comprises the following steps:

1) constructing a recombinant plasmid containing the genome full-length cDNA of the gene II type Newcastle disease virus LaSota strain;

2) on the recombinant plasmid constructed in the step 1), replacing a corresponding partial fragment of a LaSota strain genome with the gene fragment for constructing the pigeon-derived Newcastle disease virus recombinant attenuated vaccine strain to obtain a full-length recombinant plasmid;

3) co-transfecting the full-length recombinant plasmid constructed in the step 2) and eukaryotic expression plasmids expressing genes NP, P and L of the LaSota strain of the newcastle disease virus with cells capable of expressing T7 polymerase to obtain a recombinant newcastle disease virus attenuated vaccine strain expressing genes VI type F and HN proteins;

the cells are BSR-T7/5 cells;

preferably, the recombinant attenuated vaccine strain of the pigeon-derived newcastle disease virus is a newcastle disease virus rLa-VI-QH17 strain, is preserved in the common microorganism center of China Committee for culture Collection of microorganisms, and has a preservation address of the institute of microorganisms of China academy of sciences No. 3, North Chen West Lu No. 1 of the Chao-Yangxi, Beijing, and a preservation date of: 2021, 7/9, with a deposit number: CGMCC No. 21900.

The invention also aims to provide the application of the recombinant vaccine strain of the pigeon-derived newcastle disease virus in the preparation of vaccines;

the vaccine is an inactivated vaccine, and is obtained by inactivating a low virulent strain through formaldehyde.

The recombinant pigeon-derived newcastle disease virus vaccine strain provided by the invention is obtained by replacing envelope glycoprotein F protein gene and HN protein gene fragments of attenuated pigeon-derived newcastle disease virus with corresponding partial genes of a LaSota strain genome on the basis of an established reverse genetic operation platform of a gene II type newcastle disease virus LaSota strain, and rescuing the attenuated pigeon-derived newcastle disease virus recombinant attenuated vaccine strain. The recombinant vaccine strain has the biological characteristics of high growth titer and low pathogenicity in chick embryos, is stable in heredity, has a good immune protection effect on the pigeon-derived newcastle disease virus, can effectively inhibit toxin expelling, can be used for preventing and controlling the existing popular pigeon-derived newcastle disease virus, and fills the gap that China lacks special vaccine products for preventing and controlling the pigeon newcastle disease.

Drawings

FIG. 1 is a schematic diagram of the construction of pOK-rLaSota full-length plasmid, in which the inverted triangle is the molecular marker (mutated single enzyme cutting site) introduced by the sequence different from the wild strain;

FIG. 2 is a diagram showing the sequencing result of the mutation position of the full-length cDNA of the rescued virus rLaSota strain;

FIG. 3 is a schematic diagram of the construction of full-length genomic plasmids pOK-rLa-VI-QH17 and pOK-rLa-VI-571-QH 17;

FIG. 4 shows the sequencing comparison of the F gene cleavage sites of candidate strains rLa-VI-QH17 and rLa-VI-571-QH17 of the first, second, third and fourth generations of recombinant vaccine of Pigeon Newcastle disease virus and Pigeon Newcastle disease virus QH 1344/2017;

FIG. 5 is a graph showing the elimination curve of antibodies against Pigeon Newcastle disease after pigeon is immunized by recombinant vaccine strain rLa-VI-QH17 of Pigeon Newcastle disease virus and LaSota strain; indicates that the antibody level of the group is significantly different from the rLa-VI-QH17 immune group; indicates that the antibody levels in this group are very significantly different from those in the rLa-VI-QH17 immune group; indicates that the antibody levels in this group are very significantly different from those in the rLa-VI-QH17 immune group;

FIG. 6 shows the HI antibody detection results 28 days and 35 days after pigeon immunization by the recombinant vaccine strain rLa-VI-QH17 and LaSota; indicates that the antibody level of the group is significantly different from the rLa-VI-QH17 immune group; indicates that the antibody levels in this group are very significantly different from those in the rLa-VI-QH17 immune group; indicates that the antibody levels in this group were very significantly different from those in the rLa-VI-QH17 immune group.

Detailed Description

The invention designs a construction method of a recombinant attenuated vaccine rLa-VI-QH17 for expressing pigeon-derived newcastle disease virus F and HN genes, which is characterized in that on the basis of establishing a reverse genetic operation platform of a gene II-type newcastle disease virus LaSota strain, the envelope glycoprotein F protein gene and HN protein gene fragments of a pigeon-derived newcastle disease virus gene VI.2.1.2.2 subtype isolate QH1344/2017 which is mainly popular in China are replaced with corresponding partial genes of a LaSota strain genome, meanwhile, a virulent cracking site (112R-R-Q-K-R-F117) of an F protein is mutated into an F protein cracking site (112G-R-Q-G-R-L117) of an attenuated strain LaSota, the length of the HN protein is prolonged from 571aa to 577aa, and a full-length cDNA pOK-rH-QH-17 plasmid for expressing the pigeon-derived newcastle disease virus gene F.2.1.2.2.2 subtype F and the HN genes is constructed, after co-transfecting BSR-T7/5 cells with helper plasmids, the recombinant pigeon-derived Newcastle disease virus attenuated vaccine strain rLa-VI-QH17 is rescued.

The invention also provides a construction method of the pigeon source newcastle disease virus recombinant attenuated vaccine strain rLa-VI-QH17, which comprises the following steps:

(1) constructing genome full-length cDNA plasmid pOK-rLaSota of gene II type Newcastle disease virus LaSota strain;

(2) constructing a recombinant plasmid pOK-rLa-VI-QH17, cutting a B fragment and a C fragment by Bgl II and Hind III restriction endonucleases on the basis of pOK-rLaSota, replacing an F gene and an HN gene fragment of a pigeon-derived Newcastle disease virus QH1344/2017 strain with a corresponding part of a gene of a LaSota strain genome by combining a homologous recombination method, mutating a virulent cleavage site (112R-R-Q-K-R-F117) of an F protein into an F protein cleavage site (112G-R-Q-G-R-L117) of a low virulent strain LaSota, and prolonging the length of the HN protein from 571aa to 577aa to obtain a recombinant plasmid pOK-rLa-VI-QH 17;

(3) rescuing the recombinant attenuated strain rLa-VI-QH17, co-transfecting BSR-T7/5 cells expressing T7 polymerase with full-length plasmids pOK-rLa-VI-QH17 and three eukaryotic expression plasmids including pCI-NP, pCI-P and pCI-L expressing NDV LaSota strain NP, P and L genes, adding TPCK pancreatin after 6h of transfection, incubating for 72h, repeatedly freezing and thawing the transfected samples, and inoculating 9-11-day-old SPF chick embryos to obtain the recombinant Newcastle disease virus attenuated vaccine strain rLa-VI-QH17 expressing gene VI type F and HN proteins.

In the method, pOK-rLaSota in the step (1) is constructed by the following method: according to the characteristics of the full-length cDNA sequence of LaSota strain, the full-length genome is divided into 5 segments of a, b, c, d and e. Designing a primer according to cloning requirements to perform corresponding mutation modification on a part of fragments so as to ensure the uniqueness of enzyme cutting sites used for cloning, wherein a mutated base sequence can be used as a molecular label for rescuing viruses, introducing a T7 promoter sequence at the 5 'upstream of a fragment, introducing three continuous G bases behind a T7 promoter to enhance the transcriptional activity of the fragment, and introducing a hepatitis B ribozyme (HdvRz) sequence and a T7 terminator sequence at the 3' end of an e fragment. The fragments were then cloned sequentially into pOK12 vector, and the full-length genome-constructing plasmid was designated pOK-rLaSota.

The invention further aims to provide application of the recombinant pigeon derived Newcastle disease virus vaccine strain rLa-VI-QH 17.

The biological product containing the expression pigeon source newcastle disease virus F and the prolonged HN protein gene recombinant attenuated vaccine strain rLa-VI-QH17 belongs to the protection scope of the invention.

The genetic stability of the recombinant vaccine strain rLa-VI-QH17 is analyzed, and the result shows that the rLa-VI-QH17 strain is continuously passaged to the 15 th generation in 9-11 day old SPF chick embryos, and the 1 st (F1), the 5 th (F5), the 10 th (F10) and the 15 th (F15) viruses all contain F (mutant cleavage site) and HN sequences of the pigeon-derived Newcastle disease virus through sequence determination, contain molecular tags introduced during construction, and have good virus genetic stability.

The recombinant vaccine strain rLa-VI-QH17 of the pigeon source newcastle disease virus is characterized in that a virulent cleavage site 112R-R-Q-K-R-F117 of a F protein of the pigeon source newcastle disease virus is mutated into an F protein cleavage site 112G-R-Q-G-R-L117 of a low virulent strain LaSota, the length of HN protein is prolonged from 571aa to 577aa, the sequence after mutation can reduce the virulence of the recombinant vaccine strain, and the safety of the virulent strain is better.

The pigeon source newcastle disease virus recombinant vaccine strain rLa-VI-QH17 designed by the invention uses NP, P, M and L genes of a chicken newcastle disease gene II type classical vaccine strain LaSota strain as a framework, the characteristic of high propagation titer of the LaSota virus strain is kept, and the recombinant vaccine strain shows excellent growth characteristic on a chicken embryo.

The vaccine is an inactivated vaccine, and is obtained by inactivating a low virulent strain through formaldehyde.

The immune protection experiment result shows that the inactivated vaccine prepared by the recombinant vaccine strain rLa-VI-QH17 is safe to pigeons and has no side reaction; high levels of protective antibodies were induced after immunization of 4-week-old squabs for 5 weeks. After immunization for 5 weeks, the pigeon Newcastle disease virus QH1344/2017 virulent strain is used for virus challenge, the immunized rLa-VI-QH17 pigeon only has no any disease symptoms or death, and the immune protection rate reaches 100%. On 3, 5, 7 and 10 days after immune challenge, the oropharynx and cloaca swab of the pigeon in the immune rLa-VI-QH17 group did not detect the detoxification, while the immune LaSota group and the challenge control group showed different degrees of morbidity, mortality and swab virus detoxification detection rate.

The present invention will be further described with reference to the following specific examples.

The specific experimental procedures described in the examples, unless otherwise specified, are all conventional procedures well known to those skilled in the art, and all starting materials are commercially available. The test materials used in the examples were purchased from conventional biochemicals, unless otherwise specified.

Example 1: rescue of LaSota Strain

1. Virus purification

The purification of the virus was carried out by limiting dilution method to purify the LaSota strain in order to obtain a single virus clone, and the detailed procedure was as follows: diluting the virus solution by 10 times, and respectively taking each titer of virus solution to inoculate SPF (specific pathogen free) chick embryos (100 mu L/embryo) of 9-11 days old after dilution, and inoculating 5 virus embryos at each dilution. Chick embryo allantoic fluid was harvested after 4d for HA activity. Allantoic fluid with the highest dilution of HA activity was selected as the next generation of purified virus fluid. The virus is continuously purified for 5 generations by the same method for multiple dilution and chick embryo inoculation, and the virus liquid of the 5 th generation is subpackaged and stored as the original seed virus for the next test.

2. Viral sequence determination

The purified cDNA of the viral reverse transcription genome was used as a template, and the LaSota genome was amplified by PCR using 13 pairs of primers (Table 1) designed to amplify the full-length sequence of the LaSota strain, and the two terminal sequences of the viral genome were determined using 3 '-RACE and 5' -RACE kits. The determined sequences were spliced by DNA Star biology software. The result shows that the total genome length of the NDV LaSota strain is 15186 bp.

Table 1: primer table for LaSota strain NDV whole genome sequencing

3. Construction of LaSota full-Length cDNA cloning plasmid

According to the sequence characteristics of the LaSota genome, the full-length genome is divided into 5 segments (segments a-e) by enzyme cutting site screening. Primers are designed to amplify the 5 segments (table 2), and three enzyme cutting sites on the P gene, the M gene and the L gene are mutated so as to ensure the unicity of the enzyme cutting sites of Bgl II and Hind III, and the mutated base sequence can be used as a molecular tag for rescuing viruses. The T7 promoter sequence is introduced into the 5 'upstream of the a fragment, three continuous G bases are introduced behind the T7 promoter to enhance the transcriptional activity, and the hepatitis D ribozyme (Hdvrz) sequence and the T7 terminator sequence are introduced into the 3' end of the e fragment. The individual fragments were then ligated sequentially into the pOK12 cloning vector to construct the strategy as shown in FIG. 1. After the cloning of the full-length genome is finished, carrying out sequence determination, wherein the nucleotide sequence is SEQ ID NO. 5; the constructed and sequenced correct viral genome plasmid was named pOK-rLaSota.

Table 2: primer table for construction of LaSota strain genome full-length cDNA clone

4. Construction of helper plasmids

According to the determined LaSota strain genome sequence, primers are designed to respectively amplify the open reading frames (table 3) of the encoded nucleocapsid protein NP, phosphoprotein P and polymerase protein L, 3 ORFs are respectively cloned to the downstream of a CMA promoter of a eukaryotic expression vector pCI-neo, 3 auxiliary plasmids pCI-NP, pCI-P and pCI-L are constructed, and no gene mutation is generated through sequencing verification.

Table 3: primer table for LaSota helper plasmid construction

5. Rescue of virus

The constructed full-length plasmid (pOK-rLaSota) and 3 helper plasmids (pCI-NP, pCI-P, and pCI-L) were co-transfected into BSR-T7/5 cells. After 6h of transfection, the medium was changed to DMEM medium containing 2% serum, 1% antibiotic, 5. mu.g/mL TPCK-Trypsin. And (3) after transfection for 72h, harvesting culture solution and cells, inoculating 9-11 day-old SPF (specific pathogen free) chick embryos (200 mu L/embryo), incubating at 37 ℃, harvesting chick embryo allantoic fluid after 3-4 days, and performing Hemagglutination (HA) test. The result shows that HA is positive, which preliminarily indicates that the virus rescue is successful.

6. Identification and biological characteristic analysis of rescued virus rLaSota

And extracting HA positive virus liquid RNA, and performing whole genome sequence determination on the rescued virus. The sequence comparison result shows that the rescued virus genome contains a molecular tag (mutated enzyme cutting site, figure 2) introduced during construction, which indicates that the LaSota strain genome cDNA clone is successfully rescued, and the rescued virus is named as rLaSota. Continuously conveying the eggs in SPF (specific pathogen free) chick embryos of 9-11 days oldTo generation 5. The hemagglutination titer of each generation can be detected to be 210~211In the meantime. Sequence determination is carried out on F5-generation virus liquid, and the result shows that the molecular label has no back mutation, which indicates that the rescued rLaSota has better stability. Determination of the amount of infection (EID) in half of the embryos of chickens that rescued the virus from the parental virus50) Average chick embryo Mortality (MDT) and intracerebral inoculation pathogenicity index (ICPI) for 1 day old chicks, table 4 shows that the rescued viruses have the same biological properties and pathogenicity as the parental viruses.

Table 4: biological characterization of rescued virus and parental strains

In conclusion, the reverse genetic operation platform of the Newcastle disease virus LaSota strain is successfully constructed, and can be used as a good vaccine vector.

EXAMPLE 2 rescue of recombinant Pigeon vaccine candidate seed Virus

1. Screening and purification of viruses

Selecting a gene VI.2.1.2.2 subtype Pigeon-derived Newcastle disease virus which is separated and stored in a laboratory and mainly prevails in the current Chinese pigeon group for reproduction and rejuvenation, and further purifying 5 strains by adopting a limiting dilution method, wherein the hemagglutination titer of each strain in different generations is shown in Table 5. Finally, the strain QH1344/2017 purified after 5 generations is selected as an original seed virus for construction of full-length cDNA clone.

Table 5: respective generation hemagglutination titer tables of different strains of pigeon-derived newcastle disease virus

2. Determination and analysis of full-length genome sequence of strain QH1344/2017

The purified QH1344/2017 virus reverse transcription genome cDNA is used as a template, 13 pairs of primers (shown in Table 6) for amplifying a VI type NDV full-length sequence are utilized to perform PCR amplification on the QH1344/2017 genome, and simultaneously, 3 'RACE and 5' RACE kits are used for determining two terminal sequences of a virus genome. The determined sequences were spliced by DNA Star biology software. The result shows that the total genome length of the strain QH1344/2017 is 15192 bp.

Table 6: primer table for sequencing type VI NDV whole genome

3. Construction of full-length cDNA of vaccine candidate strain genome

The method is characterized in that pOK-LaSota full-length plasmid is used as a platform to design and synthesize a new gene sequence QH17-571HN-bc in the middle of Bgl II enzyme cutting site to Hind III enzyme cutting site in the full-length sequence, wherein the 6539bp total comprises that envelope glycoprotein F protein gene and HN protein gene fragments of a pigeon source Newcastle disease virus QH1344/2017 strain are replaced with corresponding partial genes of LaSota strain genome, meanwhile, a virulent cleavage site (112R-R-Q-K-R-F117) of an F protein (SEQ ID NO:1) is mutated into an F protein cleavage site (112G-R-Q-G-R-L117) of a weak strain LaSota, other sequences are kept unchanged, and a recombinant virus rLa-VI-571-QH17 strain is designed.

Based on the above mutation, a recombinant virus rLa-VI-QH17 strain was designed by synthesizing a new gene sequence QH17-577HN-bc (SEQ ID NO:4) comprising the HN protein with a length extending from 571aa (SEQ ID NO:2) to 577aa (SEQ ID NO:3) for a total of 6539 bp.

The pOK-rLaSota full-length plasmid was double digested with Bgl II and Hind III restriction enzymes, and the original b and c fragments were cut off. Primers were designed to amplify the synthesized target genes QH17-571HN-bc and QH17-577HN-bc fragments (Table 7), and the target fragments QH17-571HN-bc and QH17-577HN-bc fragments recovered from the gel were ligated to the digested vector, respectively, to construct the strategy shown in FIG. 3. After the full-length genome cloning was completed, sequencing was performed, and the constructed and sequenced correct viral genome plasmids were named pOK-rLa-VI-571-QH17 and pOK-rLa-VI-QH17, respectively.

TABLE 7 primer set for amplification of QH17-571HN-bc and QH17-577HN-bc fragments

4. Rescue of vaccine candidate strains

Two full-length recombinant plasmids (pOK-rLa-VI-571-QH17 and pOK-rLa-VI-QH17) which have been constructed were co-transfected with 3 helper plasmids (pCI-NP, pCI-P and pCI-L) of LaSota virus to BSR-T7/5 cells, respectively. After 6h of transfection, the medium was changed to DMEM medium containing 2% serum, 1% antibiotic, 5. mu.g/mL TPCK-Trypsin. And (3) harvesting culture solution and cells 72h after transfection, inoculating 9-11 day-old SPF (specific pathogen free) chick embryos (200 mu L/embryo), incubating at 37 ℃, harvesting chick embryo allantoic fluid after 3-4 days, and performing Hemagglutination (HA) test. The results are all shown to be HA positive, which preliminarily shows that the virus rescue is successful.

5. Sequence identification and genetic stability of vaccine candidate strains

And (3) selecting HA positive virus liquid to extract RNA, carrying out reverse transcription, and then carrying out whole genome sequence determination. The sequence alignment result shows that the genome of the rescued virus rLa-VI-571-QH17 takes a LaSota strain as a framework, F and HN genes of a QH1344/2017 strain are embedded, and the F gene cleavage site is mutated; the genome of the rescued virus rLa-VI-QH17 takes a LaSota strain as a framework, F and HN genes of a QH1344/2017 strain are embedded, the F gene cleavage site is mutated, and the length of HN protein is prolonged from 571aa to 577aa, which indicates that two strains of viruses are successfully rescued.

Continuously carrying out continuous passage on the rescued virus in SPF chick embryos of 9-11 days old for 15 times. The hemagglutination titer of each generation of virus is 210~211In the meantime. F and HN genes of the 1 st, 5 th, 10 th and 15 th generation recombinant viruses were selected for sequence determination. Sequencing results show that the F and HN genes of the 1 st, 5 th, 10 th and 15 th generation recombinant viruses are allConsistent with the inserted sequence, the F protein cleavage site also did not undergo back mutation (fig. 4), indicating that the two recombinant viruses are genetically stable during passage.

6. Biological characterization of vaccine candidate strains

Selecting rLa-VI-QH17 and rLa-VI-571-QH17 vaccine candidate strains of the 15 th generation to measure EID thereof50MDT and ICPI, and comparing the virulence changes of the viruses by taking the Lasota virus strain and the QH1344/2017 virus strain as controls. The test data in Table 8 show that the rescued rLa-VI-QH17 and rLa-VI-571-QH17 vaccine candidate strains have obviously reduced virulence, and have the biological characteristics that the rLa-VI-QH17 vaccine candidate strain with the HN protein length prolonged has higher growth titer in chick embryos and lower pathogenicity in 1-day-old chicks compared with the rLa-VI-571-QH17 vaccine candidate strain. Therefore, the rLa-VI-QH17 vaccine candidate strain constructed by the invention can be used as a preferred vaccine strain for vaccine production.

Table 8: biological characterization of rescued virus and parental strains

Example 3 safety test and immune Effect test of rLa-VI-QH17 vaccine Strain on non-immune Pigeon

1. Preparation of inactivated vaccine

Diluting the rLa-VI-QH17 vaccine strain by 10000 times by using sterilized normal saline, inoculating SPF (specific pathogen free) chick embryos of 9-11 days old, inoculating 0.1mL of each embryo, and placing at 37 ℃ for continuous incubation. Discarding the dead embryos within 24h after inoculation, immediately placing the dead embryos for 24 h-120 h at 4 ℃, collecting the mixed sample, and determining the HA of the vaccine preparation poison to be 210.5Viral titer of 109.48EID500.1 mL. Introducing the newcastle disease virus solution with the determined titer into an inactivation tank, adding a formaldehyde solution with the final concentration of 0.1% to fully mix the newcastle disease virus solution, inactivating the newcastle disease virus solution at 4 ℃ for 48 hours, and shaking the newcastle disease virus solution once every 2 hours. Preparing the inactivated oil adjuvant inactivated vaccine by the inactivated virus stock solution according to a conventional method. The LaSota inactivated vaccine with the same dose is prepared simultaneously according to the same method.

2. Safety test of inactivated vaccine

In order to determine the safety of the rLa-VI-QH17 vaccine strain rescued in the embodiment 2 of the invention to non-immune pigeons, 10 non-immune pigeons with the age of 4 weeks are immunized by the prepared rLa-VI-QH17 inactivated vaccine, 0.2mL of vaccine is injected into each muscle, 5 control animals are set at the same time, the pigeons are raised under the same condition, the pigeons are continuously observed for 14 days, and the feeding, drinking and clinical conditions of the test pigeons are recorded. The result shows that the vaccine absorption effect is good after the pigeon is immunized, no local and systemic adverse reaction occurs in the immunized pigeon, and the state of the pigeon is completely normal.

3. Antibody monitoring of inactivated vaccines

In order to determine the law of antibody growth in the non-immune pigeons generated by the rLa-VI-QH17 vaccine strain rescued in the example 2, the non-immune pigeons raised in an isolator are randomly divided into two groups, wherein each group comprises 5 animals, one group is the rLa-VI-QH17 inactivated vaccine immune group prepared in the step 1 of the example 3, and the other group is the LaSota inactivated vaccine immune group prepared in the step 1 of the example 3. 0.2mL of vaccine is injected into pigeon intramuscular, and pigeon is subjected to wing vein blood collection to separate serum and determine antibody respectively at 1, 3, 5, 7, 9, 11 and 13 weeks after immunization. The results show that both groups of the immune groups can generate certain titer of antibodies from the end of the monitoring period of 13 weeks after the immunization, and the titer of the antibodies of the rLa-VI-QH17 inactivated vaccine immune group is obviously higher than that of the LaSota inactivated vaccine immune group, and the difference is obvious (figure 5). The rLa-VI-QH17 inactivated vaccine immunization group has the highest antibody level of the immunized pigeons at the 9 th week after immunization, and the average value of HI antibody titer is 8.5log2And it produces higher antibody levels from weeks 3 to 13 after immunization, indicating that the immune antibody protection period can be at least 3 months.

4. Immunoprotection assay for inactivated vaccines

To determine the immune protection effect of the rLa-VI-QH17 vaccine strain rescued in example 2 of the invention on non-immune pigeons, the non-immune pigeons raised in an isolator were randomly divided into three groups of 10 animals, one group was the rLa-VI-QH17 inactivated vaccine immune group prepared in step 1 of example 3, one group was the LaSota inactivated vaccine immune group prepared in step 1 of example 3, and the other group was a control group. Each pigeon in the immunized group was injected intramuscularly with 0.2mL of vaccine, and the control group was injected with the same dose of PBS. Respectively 28 days and 3 days after immunizationBlood was collected from the wing vein for 5 days to separate serum and measure antibodies. After 35 days of blood collection, the virulent strain QH1344/2017 of the clinically isolated gene VI wild strain is used for counteracting the virulent strain, and the quantity of the virulent strain is 10 for each pigeon6EID50The dose is subjected to virus counteracting through intramuscular injection, the pigeon is fed in an isolator, the morbidity and the mortality of the pigeon are recorded every day after 14 days of observation, the oropharynx swab and the cloaca swab of the pigeon are collected on 3 rd, 5 th, 7 th and 10 th days after virus counteracting, the chick embryo is inoculated for virus separation, and the detoxification condition is detected.

The results show that the immune group can generate antibodies with certain titer after being immunized for 28 days, the antibody titer is obviously improved after being immunized for 35 days, the antibody titer of the rLa-VI-QH17 inactivated vaccine immune group is obviously higher than that of the LaSota inactivated vaccine immune group, and the difference is obvious (figure 6).

After 35 days of immunization for virus challenge, all pigeons in the rLa-VI-QH17 inactivated vaccine immunization group have no morbidity or mortality, and the immune protection rate reaches 100%; two pigeons in the LaSota inactivated vaccine immunity group show Newcastle disease infection symptoms such as askew neck, vertical wings and the like, and no pigeons die; all pigeons in the PBS group were ill, and one pigeons died (table 9).

Table 9: toxicity attacking protective test result table of vaccine strain

The detoxification condition shows that the pigeons immunized with the rLa-VI-QH17 inactivated vaccine group have no detoxification phenomenon in 3, 5, 7 and 10 days after challenge, while the pigeons immunized with the LaSota inactivated vaccine group still have partial detoxification phenomenon, and the detoxification rate of the blank challenge control group is 100% (Table 10).

Table 10: toxin expelling detection result table for test pigeons in each group after toxin attack

In conclusion, the inactivated pigeon source newcastle disease virus recombinant vaccine strain rLa-VI-QH17 prepared by the invention has good safety and protection effect on immune pigeons and has wide application prospect.

The above description is only a preferred embodiment of the present invention, and the scope of the present invention should not be limited thereby, that is, all the simple changes, equivalents and modifications made to the above embodiment according to the claims and the description of the present invention are within the scope of the present invention.

Sequence listing

<110> China center for animal health and epidemiology

<120> pigeon-derived Newcastle disease virus recombinant vaccine strain and construction method and application thereof

<160> 5

<170> SIPOSequenceListing 1.0

<210> 1

<211> 553

<212> PRT

<213> Pigeon paramyxovirus type I (Pigeon paramyxovirus 1)

<400> 1

Met Asp Ser Lys Pro His Ile Arg Ile Pro Ala Ser Pro Thr Leu Ile

1 5 10 15

Thr Arg Ile Thr Leu Val Leu Ser Tyr Ile Cys Ser Thr Ser Ser Leu

20 25 30

Asp Gly Arg Pro Leu Ala Ala Ala Gly Ile Val Val Thr Gly Asp Lys

35 40 45

Ala Ile Asn Ile Tyr Thr Ser Ser Gln Thr Gly Ser Ile Ile Val Lys

50 55 60

Leu Leu Pro Asn Met Pro Lys Asp Lys Glu Ala Cys Ala Lys Ala Pro

65 70 75 80

Leu Glu Ala Tyr Asn Arg Thr Leu Thr Thr Leu Leu Thr Pro Leu Gly

85 90 95

Asp Ser Ile Arg Arg Ile Gln Gly Ser Val Ser Thr Ser Gly Gly Arg

100 105 110

Arg Gln Lys Arg Phe Ile Gly Ala Ile Ile Gly Ser Val Ala Leu Gly

115 120 125

Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Ala Ala Leu Ile Gln Ala

130 135 140

Asn Gln Asn Ala Ala Asn Ile Leu Arg Leu Lys Glu Ser Ile Ala Ala

145 150 155 160

Thr Asn Glu Ala Val His Glu Val Thr Asp Gly Leu Ser Gln Leu Ala

165 170 175

Val Ala Ile Gly Lys Met Gln Gln Phe Val Asn Asp Gln Phe Asn Asn

180 185 190

Thr Ala Arg Glu Leu Asp Cys Ile Lys Ile Ser Gln Gln Val Gly Ile

195 200 205

Glu Leu Asn Leu Tyr Leu Thr Glu Leu Thr Thr Val Phe Gly Pro Gln

210 215 220

Ile Thr Ser Pro Ala Leu Thr Gln Leu Thr Ile Gln Ala Leu Tyr Asn

225 230 235 240

Leu Ala Gly Gly Asn Met Asp Tyr Leu Leu Thr Lys Leu Gly Ile Gly

245 250 255

Asn Asn His Leu Ser Ser Leu Ile Gly Ser Gly Leu Ile Thr Gly Asn

260 265 270

Pro Ile Leu Tyr Asp Ser Gln Thr Gln Leu Leu Gly Ile Gln Val Asn

275 280 285

Leu Pro Ser Val Gly Asn Leu Asn Asn Met Arg Ala Thr Tyr Leu Glu

290 295 300

Thr Leu Ser Val Ser Thr Thr Lys Gly Phe Ala Ser Ala Leu Val Pro

305 310 315 320

Lys Val Val Thr Gln Val Gly Ser Val Ile Glu Glu Leu Asp Thr Ser

325 330 335

Tyr Cys Ile Glu Ser Asp Leu Asp Leu Tyr Cys Thr Arg Ile Val Thr

340 345 350

Phe Pro Met Ser Pro Gly Ile Tyr Ser Cys Leu Ser Gly Asn Thr Ser

355 360 365

Ala Cys Met Tyr Ser Lys Thr Glu Gly Ala Leu Asn Thr Pro Tyr Met

370 375 380

Ala Leu Lys Gly Ser Val Ile Ala Asn Cys Lys Ile Thr Thr Cys Arg

385 390 395 400

Cys Ala Asp Pro Pro Gly Ile Ile Ser Gln Asn Tyr Gly Glu Ala Val

405 410 415

Ser Leu Ile Asp Arg His Ser Cys Asn Val Leu Ser Leu Asp Gly Ile

420 425 430

Thr Leu Arg Leu Ser Gly Glu Phe Asp Ala Thr Tyr Gln Lys Asn Ile

435 440 445

Ser Ile Leu Asp Ser Gln Val Ile Val Thr Gly Asn Leu Asp Ile Ser

450 455 460

Thr Glu Leu Gly Asn Val Asn Asn Ser Ile Ser Asn Ala Leu Asp Arg

465 470 475 480

Leu Ala Glu Ser Asn Ser Lys Leu Asp Lys Val Asn Val Lys Leu Thr

485 490 495

Ser Thr Ser Ala Leu Ile Thr Tyr Ile Ile Leu Thr Ile Ile Ser Leu

500 505 510

Val Phe Gly Ala Leu Ser Leu Val Leu Ala Cys Tyr Leu Met Tyr Lys

515 520 525

Gln Arg Ala Gln Gln Lys Thr Leu Leu Trp Leu Gly Asn Asn Thr Leu

530 535 540

Asp Gln Met Arg Ala Thr Thr Arg Thr

545 550

<210> 2

<211> 571

<212> PRT

<213> Pigeon paramyxovirus type I (Pigeon paramyxovirus 1)

<400> 2

Met Asp His Ala Val Ser Arg Val Ala Leu Glu Asn Glu Glu Arg Glu

1 5 10 15

Ala Lys Ser Thr Trp Arg Leu Val Phe Arg Ile Ala Val Leu Leu Leu

20 25 30

Thr Val Val Thr Leu Ala Ile Ser Val Ala Ala Leu Val Tyr Ser Met

35 40 45

Gly Ala Ser Thr Pro Arg Asp Leu Val Gly Val Ser Thr Met Val Ser

50 55 60

Lys Val Glu Asp Lys Ile Thr Ser Ser Ile Ser Ser Ser Gln Asp Val

65 70 75 80

Val Asp Arg Ile Tyr Lys Gln Val Ala Leu Glu Ser Pro Leu Ala Leu

85 90 95

Leu Asn Thr Glu Ser Ile Ile Met Asn Ala Ile Thr Ser Leu Ser His

100 105 110

Gln Ile Asn Gly Ala Ala Asn Asn Ser Arg Cys Gly Ala Pro Ile His

115 120 125

Asp Pro Asp Tyr Ile Gly Gly Ile Gly Lys Glu Leu Ile Val Asp Asp

130 135 140

Ile Ser Gly Val Thr Ser Phe Tyr Pro Ser Ala Tyr Gln Glu His Leu

145 150 155 160

Asn Phe Ile Pro Ala Pro Thr Thr Gly Ser Gly Cys Thr Arg Ile Pro

165 170 175

Ser Phe Asp Met Ser Ala Thr His Tyr Cys Tyr Thr His Asn Val Ile

180 185 190

Leu Ser Gly Cys Ile Asp His Ser His Ser His Gln Tyr Leu Ala Leu

195 200 205

Gly Val Leu Arg Thr Ser Ala Thr Gly Arg Val Phe Phe Ser Thr Leu

210 215 220

Arg Ser Ile Asn Leu Asp Asp Asn Gln Asn Arg Lys Ser Cys Ser Val

225 230 235 240

Ser Ala Thr Pro Leu Gly Cys Asp Ile Leu Cys Ser Lys Val Thr Glu

245 250 255

Ala Glu Glu Glu Asp Tyr Lys Ser Val Ala Pro Thr Ser Met Val His

260 265 270

Gly Arg Leu Gly Phe Asp Gly Gln Tyr His Glu Lys Asp Leu Asp Thr

275 280 285

Thr Val Leu Phe Lys Asp Trp Val Ala Asn Tyr Pro Gly Val Gly Ser

290 295 300

Gly Ser Phe Ile Asp Asp Arg Val Trp Phe Pro Val Tyr Gly Gly Leu

305 310 315 320

Lys Pro Asn Ser Pro Ser Asp Thr Ala Gln Glu Gly Lys Tyr Ile Ile

325 330 335

Tyr Lys Arg Tyr Asn Asn Thr Cys Pro Asp Gly Gln Glu Tyr Gln Ile

340 345 350

Arg Met Ala Lys Ser Ser Tyr Lys Pro Gly Arg Phe Ser Gly Lys Arg

355 360 365

Val Gln Gln Ala Ile Leu Ser Ile Lys Val Ser Thr Ser Leu Gly Glu

370 375 380

Asp Pro Val Leu Thr Val Pro Pro Asn Thr Ile Thr Leu Met Gly Ala

385 390 395 400

Glu Gly Arg Val Leu Thr Val Gly Thr Ser His Phe Leu Tyr Gln Arg

405 410 415

Gly Ser Ser Tyr Phe Ser Pro Ala Leu Leu Tyr Pro Met Thr Val His

420 425 430

Asn Lys Thr Ala Thr Leu His Asn Pro Tyr Thr Phe Asn Ala Phe Thr

435 440 445

Arg Pro Gly Ser Val Pro Cys Gln Ala Ser Ala Arg Cys Pro Asn Pro

450 455 460

Cys Ile Thr Gly Val Tyr Thr Asp Pro Tyr Pro Leu Val Phe Tyr Arg

465 470 475 480

Asn His Thr Leu Arg Gly Val Phe Gly Thr Met Leu Asp Asp Glu Gln

485 490 495

Thr Arg Leu Asn Pro Val Ser Ala Val Phe Asp Asn Ile Ser Arg Ser

500 505 510

Arg Val Thr Arg Val Ser Ser Ser Ser Thr Lys Ala Ala Tyr Thr Thr

515 520 525

Ser Thr Cys Phe Lys Val Val Lys Thr Asn Lys Val Tyr Cys Leu Ser

530 535 540

Ile Ala Glu Ile Ser Asn Thr Leu Phe Gly Glu Phe Arg Ile Val Pro

545 550 555 560

Leu Leu Val Glu Ile Leu Lys Asp Glu Arg Ala

565 570

<210> 3

<211> 577

<212> PRT

<213> Pigeon paramyxovirus type I (Pigeon paramyxovirus 1)

<400> 3

Met Asp His Ala Val Ser Arg Val Ala Leu Glu Asn Glu Glu Arg Glu

1 5 10 15

Ala Lys Ser Thr Trp Arg Leu Val Phe Arg Ile Ala Val Leu Leu Leu

20 25 30

Thr Val Val Thr Leu Ala Ile Ser Val Ala Ala Leu Val Tyr Ser Met

35 40 45

Gly Ala Ser Thr Pro Arg Asp Leu Val Gly Val Ser Thr Met Val Ser

50 55 60

Lys Val Glu Asp Lys Ile Thr Ser Ser Ile Ser Ser Ser Gln Asp Val

65 70 75 80

Val Asp Arg Ile Tyr Lys Gln Val Ala Leu Glu Ser Pro Leu Ala Leu

85 90 95

Leu Asn Thr Glu Ser Ile Ile Met Asn Ala Ile Thr Ser Leu Ser His

100 105 110

Gln Ile Asn Gly Ala Ala Asn Asn Ser Arg Cys Gly Ala Pro Ile His

115 120 125

Asp Pro Asp Tyr Ile Gly Gly Ile Gly Lys Glu Leu Ile Val Asp Asp

130 135 140

Ile Ser Gly Val Thr Ser Phe Tyr Pro Ser Ala Tyr Gln Glu His Leu

145 150 155 160

Asn Phe Ile Pro Ala Pro Thr Thr Gly Ser Gly Cys Thr Arg Ile Pro

165 170 175

Ser Phe Asp Met Ser Ala Thr His Tyr Cys Tyr Thr His Asn Val Ile

180 185 190

Leu Ser Gly Cys Ile Asp His Ser His Ser His Gln Tyr Leu Ala Leu

195 200 205

Gly Val Leu Arg Thr Ser Ala Thr Gly Arg Val Phe Phe Ser Thr Leu

210 215 220

Arg Ser Ile Asn Leu Asp Asp Asn Gln Asn Arg Lys Ser Cys Ser Val

225 230 235 240

Ser Ala Thr Pro Leu Gly Cys Asp Ile Leu Cys Ser Lys Val Thr Glu

245 250 255

Ala Glu Glu Glu Asp Tyr Lys Ser Val Ala Pro Thr Ser Met Val His

260 265 270

Gly Arg Leu Gly Phe Asp Gly Gln Tyr His Glu Lys Asp Leu Asp Thr

275 280 285

Thr Val Leu Phe Lys Asp Trp Val Ala Asn Tyr Pro Gly Val Gly Ser

290 295 300

Gly Ser Phe Ile Asp Asp Arg Val Trp Phe Pro Val Tyr Gly Gly Leu

305 310 315 320

Lys Pro Asn Ser Pro Ser Asp Thr Ala Gln Glu Gly Lys Tyr Ile Ile

325 330 335

Tyr Lys Arg Tyr Asn Asn Thr Cys Pro Asp Gly Gln Glu Tyr Gln Ile

340 345 350

Arg Met Ala Lys Ser Ser Tyr Lys Pro Gly Arg Phe Ser Gly Lys Arg

355 360 365

Val Gln Gln Ala Ile Leu Ser Ile Lys Val Ser Thr Ser Leu Gly Glu

370 375 380

Asp Pro Val Leu Thr Val Pro Pro Asn Thr Ile Thr Leu Met Gly Ala

385 390 395 400

Glu Gly Arg Val Leu Thr Val Gly Thr Ser His Phe Leu Tyr Gln Arg

405 410 415

Gly Ser Ser Tyr Phe Ser Pro Ala Leu Leu Tyr Pro Met Thr Val His

420 425 430

Asn Lys Thr Ala Thr Leu His Asn Pro Tyr Thr Phe Asn Ala Phe Thr

435 440 445

Arg Pro Gly Ser Val Pro Cys Gln Ala Ser Ala Arg Cys Pro Asn Pro

450 455 460

Cys Ile Thr Gly Val Tyr Thr Asp Pro Tyr Pro Leu Val Phe Tyr Arg

465 470 475 480

Asn His Thr Leu Arg Gly Val Phe Gly Thr Met Leu Asp Asp Glu Gln

485 490 495

Thr Arg Leu Asn Pro Val Ser Ala Val Phe Asp Asn Ile Ser Arg Ser

500 505 510

Arg Val Thr Arg Val Ser Ser Ser Ser Thr Lys Ala Ala Tyr Thr Thr

515 520 525

Ser Thr Cys Phe Lys Val Val Lys Thr Asn Lys Val Tyr Cys Leu Ser

530 535 540

Ile Ala Glu Ile Ser Asn Thr Leu Phe Gly Glu Phe Arg Ile Val Pro

545 550 555 560

Leu Leu Val Glu Ile Leu Lys Asp Glu Arg Ala Arg Glu Ala Arg Ser

565 570 575

Gly

<210> 4

<211> 6539

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 4

agatcttgtc ttgaaacaga catcctccat ccctatgatg cggaccgaaa tccaacagct 60

gaaaacatct gttgcagtca tggaagccaa cttgggaatg atgaagattc tggatcccgg 120

ttgtgccaac atttcatctc tgagtgatct acgggcagtt gcccgatctc acccggtttt 180

agtttcaggc cctggagacc cctctcccta tgtgacacaa ggaggcgaaa tggcacttaa 240

taaactttcg caaccagtgc cacatccatc tgaattgatt aaacccgcca ctgcatgcgg 300

gcctgatata ggagtggaaa aggacactgt ccgtgcattg atcatgtcac gcccaatgca 360

cccgagttct tcagccaagc tcctaagcaa gttagatgca gccgggtcga tcgaggaaat 420

caggaaaatc aagcgccttg ctctaaatgg ttaattacta ctgccacacg tagcgggtcc 480

ctgtccactc ggcatcacac ggaatctgca ccgagttccc ccccgcagac ccaaggtcca 540

actctccaag cggcaatcct ctctcgcttc ctcagcccca ctgaatgatc gcgtaaccgt 600

aattaatcta gctacattta agattaagaa aaaatacggg tagaattgga gtgccccaat 660

tgtgccaaga tggactcatc taggacaatt gggctgtact ttgattctgc ccattcttct 720

agcaacctgt tagcatttcc gatcgtccta caagacacag gagatgggaa gaagcaaatc 780

gccccgcaat ataggatcca gcgccttgac ttgtggactg atagtaagga ggactcagta 840

ttcatcacca cctatggatt catctttcaa gctgggaatg aagaagccac tgtcggcatg 900

atcgatgata aacccaagcg cgagttactt tccgctgcga tgctctgcct aggaagcgtc 960

ccaaataccg gagaccttat tgagctggca agggcctgtc tcactatgat agtcacatgc 1020

aagaagagtg caactaatac tgagagaatg gttttctcag tagtgcaggc accccaagtg 1080

ctgcaaagct gtagggttgt ggcaaacaaa tactcatcag tgaatgcagt caagcacgtg 1140

aaagcgccag agaagattcc cgggagtgga accctagaat acaaggtgaa ctttgtctcc 1200

ttgactgtgg taccgaagaa ggatgtctac aagatcccag ctgcagtatt gaaggtttct 1260

ggctcgagtc tgtacaatct tgcgctcaat gtcactatta atgtggaggt agacccgagg 1320

agtcctttgg ttaaatctct gtctaagtct gacagcggat actatgctaa cctcttcttg 1380

catattggac ttatgaccac cgtagatagg aaggggaaga aagtgacatt tgacaagctg 1440

gaaaagaaaa taaggagcct tgatctatct gtcgggctca gtgatgtgct cgggccttcc 1500

gtgttggtaa aagcaagagg tgcacggact aagctcttgg cacctttctt ctctagcagt 1560

gggacagcct gctatcccat agcaaatgct tctcctcagg tggccaagat actctggagt 1620

caaaccgcgt gcctgcggag cgttaaaatc attatccaag caggtaccca acgcgctatc 1680

gcagtgaccg ccgaccacga ggttacctct actaagctgg agaaggggca cacccttgcc 1740

aaatacaatc cttttaagaa ataagctgcg tctctgagat tgcgctccgc ccactcaccc 1800

agatcatcat gacacaaaaa actaatctgt cttgattatt tacagttagt ttacctgtct 1860

atcaagttag aaaaaacacg ggtagaagat tctggatccc ggttggcgcc ctccaggtgc 1920

aagatggact ccaaacccca catcaggatc ccggcatctc cgacgctgat cactcgaatc 1980

actctggtac tgagctacat ctgctcgacg agctctcttg atggcaggcc acttgcagct 2040

gcggggattg tggtaacagg agataaagca atcaatatat acacctcatc ccagacaggg 2100

tcaatcatag tcaagttgct cccgaatatg cccaaggaca aagaggcatg tgcgaaagcc 2160

ccactagagg catacaacag aacactgacc actttactca cccccctcgg tgattccatc 2220

cgcaggatac aaggatctgt gtccacatca ggaggaggga gacaggggcg ccttataggt 2280

gccattatag gcagtgtagc tcttggggtt gcgacatcgg cacagataac agcagctgcg 2340

gccctaatac aagctaacca gaatgccgcc aacatcctcc ggcttaagga gagcatcgct 2400

gcgaccaatg aagctgtgca tgaggtcact gacggattat cgcaactagc agtggcaatt 2460

gggaagatgc aacagtttgt aaacgaccaa tttaataata cagcgcggga attggactgt 2520

ataaaaattt cacaacaagt cggtatagaa ctcaacttat acctaactga actgactaca 2580

gtgttcgggc cacaaatcac ttcccctgcc ctaactcagc tgaccatcca agcgctttat 2640

aatttagctg gcggtaatat ggattaccta ttgactaaat taggtatagg gaacaatcat 2700

ctcagctcat taataggcag tggcttgatc acaggcaacc ctatactgta tgactcacag 2760

actcaactct tgggcatcca ggtaaattta ccctccgtcg ggaaccttaa taatatgcgt 2820

gccacctacc tggaaacttt atctgtaagc acaaccaaag ggtttgcctc agcacttgtc 2880

ccgaaggtag tgacacaagt cggctccgtg atagaagaac ttgacacctc atactgtata 2940

gaatctgatc tggatttata ctgtacaagg atagtgacat tccctatgtc tccaggaatt 3000

tattcttgtc tgagcggtaa tacatcagct tgcatgtact caaagactga aggcgcactc 3060

aatacgccat acatggccct caaaggctca gtcattgcca attgcaaaat aacaacctgc 3120

agatgtgcag accccccagg tatcatatcg caaaattatg gagaagctgt atctcttata 3180

gataggcatt catgcaatgt cttatcatta gatgggataa ccctgaggct cagtggggag 3240

tttgatgcaa cttatcaaaa gaatatctca atactagatt ctcaagtcat cgtgacaggc 3300

aaccttgata tatcaaccga gcttggaaat gtcaacaatt caataagcaa tgctctggac 3360

aggttagcag agagtaacag caaactagac aaagtcaatg tcaaattaac cagcacatct 3420

gctctcatta cctatatcat cctaaccatc atatctcttg tttttggtgc acttagcttg 3480

gttttagcat gctatctaat gtacaaacaa agggcacaac aaaagaccct actgtggctt 3540

gggaacaaca ccctcgatca gatgagagcc actacaagaa catgaacaca gatgaggaac 3600

gaaggtttcc ctaatagtaa tttatgtgaa agttctggta gtctgtcagt tcagagagtt 3660

aagaaaaaac taccggttgt agatgaccaa aggacgatat acgggtagaa cggtaagaga 3720

ggccgcccct caattgcgag ccaggcttca caacctccgt tctaccgctt caccgacaac 3780

agtcctcaat catggaccat gcagtcagca gagttgcgtt agagaatgag gaaagagaag 3840

cgaagagcac atggcgcttg gttttccgga tcgcggtttt acttttaaca gtggtgacct 3900

tagctatctc tgtagctgcc ttggtataca gcatgggggc cagtacgccc cgcgacctcg 3960

taggcgtatc gactatggtc tctaaggtgg aagacaagat tacgtcctca atcagttcga 4020

gtcaagatgt agtagacagg atatacaaac aagtagctct tgaatctccg ctggcactgc 4080

taaatactga atctataatt atgaatgcaa taacgtctct ctctcatcag attaatgggg 4140

ctgcaaacaa tagcaggtgt ggggcgccta ttcatgaccc agattatatc ggggggatag 4200

gtaaagaact catagtagac gacatcagtg gtgttacatc attctaccca tctgcatacc 4260

aagaacacct gaattttatc ccagcgccca ccacaggatc aggctgcact cggataccct 4320

catttgatat gagtgctacc cactactgtt atactcataa cgtgatattg tctggctgca 4380

tagaccactc acattcacat caatacttag cacttggtgt gcttcggaca tccgcaacag 4440

ggagggtatt cttttctact ctacgttcca tcaacttaga tgacaaccaa aatcggaagt 4500

cctgcagtgt gagtgcaact cctctaggtt gtgatatcct gtgctctaaa gtcacggagg 4560

ctgaagaaga ggattataag tcagttgccc ctacatcaat ggtgcacgga agattaggtt 4620

ttgacggtca gtaccatgag aaggacttag acaccacagt cttatttaag gattgggtag 4680

caaattaccc gggggttggg agcggatctt ttattgatga ccgtgtctgg ttcccagttt 4740

acggagggtt gaaacctaat tcgcccagcg acactgcaca agaagggaaa tatataatat 4800

acaagcgcta taataacaca tgccctgatg gacaggagta tcaaatccgg atggctaagt 4860

cttcatacaa gcctgggcgt ttcagtggaa agcgtgtaca gcaagccatc ttatctatca 4920

aagtgtcgac atctttgggt gaggacccgg tgctgactgt tccacccaat acaattacac 4980

tcatgggggc cgaaggaaga gtcctcacgg tagggacgtc tcacttcttg tatcaacgag 5040

ggtcttcata tttctcccct gccttattat atcctatgac agtccataac aaaacagcta 5100

ctcttcataa tccttataca tttaatgcct tcacccggcc aggtagtgtc ccttgtcagg 5160

catcagcaag atgccccaac ccgtgtatca ctggagtcta tactgatccg taccctctgg 5220

tcttctacag gaaccacact ttgcgagggg tattcgggac aatgcttgat gatgaacaaa 5280

caagactcaa ccccgtatct gcagtattcg acaatatatc tcgcagtcgt gtaaccagag 5340

taagttcaag cagcaccaag gcagcataca cgacatcaac atgcttcaaa gttgtcaaga 5400

ccaataaagt ttattgcctc agcattgccg aaatatccaa caccctattt ggggaattca 5460

gaatcgttcc tttgttagtt gagatcctaa aggatgaaag ggctagagaa gctagatctg 5520

gttagttgag tcaattataa aggagttgga aagatggcat tgtatcacct atcctctgcg 5580

acatcaagaa tcaaaccgaa tgccggcgcg tgctcgaatt ccatgttgcc agttgaccac 5640

aatcagccag tgctcatgcg atcagattaa gccttgtcaa tagtctcttg atttagaaaa 5700

aatgtaagtg gcaatgagat acaaggcaaa acagctcatg gtaaataata cgggtaggac 5760

atggcgagct ccggtcctga aagggcagag catcagatta tcctaccaga gtcacacctg 5820

tcttcaccat tggtcaagca caaactactc tattactgga aattaactgg gctaccgctt 5880

cctgatgaat gtgacttcga ccacctcatt ctcagccgac aatggaaaaa aatacttgaa 5940

tcggcctctc ctgatactga gagaatgata aaactcggaa gggcagtaca ccaaactctt 6000

aaccacaatt ccagaataac cggagtgctc caccccaggt gtttagaaga actggctaat 6060

attgaggtcc cagattcaac caacaaattt cggaagattg agaagaagat ccaaattcac 6120

aacacgagat atggagaact gttcacaagg ctgtgtacgc atatagagaa gaaactgctg 6180

gggtcatctt ggtctaacaa tgtcccccgg tcagaggagt tcagcagcat tcgtacggat 6240

ccggcattct ggtttcactc aaaatggtcc acagccaagt ttgcatggct ccatataaaa 6300

cagatccaga ggcatctgat ggtggcagct aggacaaggt ctgcggccaa caaattggtg 6360

atgctaaccc ataaggtagg ccaagtcttt gtcactcctg aacttgtcgt tgtgacgcat 6420

acgaatgaga acaagttcac atgtcttacc caggaacttg tattgatgta tgcagatatg 6480

atggagggca gagatatggt caacataata tcaaccacgg cggtgcatct cagaagctt 6539

<210> 5

<211> 15342

<212> DNA

<213> Newcastle disease virus (Newcastle disease virus)

<400> 5

taatacgact cactataggg accaaacaga gaatccgtga gttacgttaa aaggcgaagg 60

agcaattgaa gtcgcacggg tagaaggtgt gactctcgag tgcgagcccg aagcacaaac 120

tcgagaaagc cttctgccaa catgtcttcc gtatttgatg agtacgaaca gctcctcgcg 180

gctcagactc gccccaatgg agctcatgga gggggagaaa aagggagtac cttaaaagta 240

gacgtcccgg tattcactct taacagtgat gacccagaag atagatggag ctttgtggta 300

ttctgcctcc ggattgctgt tagcgaagat gccaacaaac cactcaggca aggtgctctc 360

atatctcttt tatgctccca ctcacaggta atgaggaacc atgttgccct tgcagggaaa 420

cagaatgaag ccacattggc cgtgcttgag attgatggct ttgccaacgg cacgccccag 480

ttcaacaata ggagtggagt gtctgaagag agagcacaga gatttgcgat gatagcagga 540

tctctccctc gggcatgcag caacggaacc ccgttcgtca cagccggggc cgaagatgat 600

gcaccagaag acatcaccga taccctggag aggatcctct ctatccaggc tcaagtatgg 660

gtcacagtag caaaagccat gactgcgtat gagactgcag atgagtcgga aacaaggcga 720

atcaataagt atatgcagca aggcagggtc caaaagaaat acatcctcta ccccgtatgc 780

aggagcacaa tccaactcac gatcagacag tctcttgcag tccgcatctt tttggttagc 840

gagctcaaga gaggccgcaa cacggcaggt ggtacctcta cttattataa cctggtaggg 900

gacgtagact catacatcag gaataccggg cttactgcat tcttcttgac actcaagtac 960

ggaatcaaca ccaagacatc agcccttgca cttagtagcc tctcaggcga catccagaag 1020

atgaagcagc tcatgcgttt gtatcggatg aaaggagata atgcgccgta catgacatta 1080

cttggtgata gtgaccagat gagctttgcg cctgccgaat atgcacaact ttactccttt 1140

gccatgggta tggcatcagt cctagataaa ggtactggga aataccaatt tgccagggac 1200

tttatgagca catcattctg gagacttgga gtagagtacg ctcaggctca gggaagtagc 1260

attaacgagg atatggctgc cgagctaaag ctaaccccag cagcaaggag gggcctggca 1320

gctgctgccc aacgggtctc cgaggagacc agcagcatag acatgcctac tcaacaagtc 1380

ggagtcctca ctgggcttag cgaggggggg tcccaagctc tacaaggcgg atcgaataga 1440

tcgcaagggc aaccagaagc cggggatggg gagacccaat tcctggatct gatgagagcg 1500

gtagcaaata gcatgaggga ggcgccaaac tctgcacagg gcactcccca atcggggcct 1560

cccccaactc ctgggccatc ccaagataac gacaccgact gggggtattg atggacaaaa 1620

cccagcctgc ttccacaaaa acatcccaat gccctcaccc gtagtcgacc cctcgatttg 1680

cggctctata tgaccacacc ctcaaacaaa catccccctc tttcctccct ccccctgctg 1740

tacaactccg cacgccctag ataccacagg cacaatgcgg ctcactaaca atcaaaacag 1800

agccgaggga attagaaaaa agtacgggta gaagagggat attcagagat cagggcaagt 1860

ctcccgagtc tctgctctct cctctacctg atagaccagg acaaacatgg ccacctttac 1920

agatgcagag atcgacgagc tatttgagac aagtggaact gtcattgaca acataattac 1980

agcccagggt aaaccagcag agactgttgg aaggagtgca atcccacaag gcaagaccaa 2040

ggtgctgagc gcagcatggg agaagcatgg gagcatccag ccaccggcca gtcaagacaa 2100

ccccgatcga caggacaggt ctgacaaaca accatccaca cccgagcaaa cgaccccgca 2160

tgacagcccg ccggccacat ccgccgacca gccccccacc caggccacag acgaagccgt 2220

cgacacacag ctcaggaccg gagcaagcaa ctctctgctg ttgatgcttg acaagctcag 2280

caataaatcg tccaatgcta aaaagggccc atggtcgagc ccccaagagg ggaatcacca 2340

acgtccgact caacagcagg ggagtcaacc cagtcgcgga aacagtcagg aaagaccgca 2400

gaaccaagtc aaggccgccc ctggaaacca gggcacagac gtgaacacag catatcatgg 2460

acaatgggag gagtcacaac tatcagctgg tgcaacccct catgctctcc gatcaaggca 2520

gagccaagac aatacccttg tatctgcgga tcatgtccag ccacctgtag actttgtgca 2580

agcgatgatg tctatgatgg aggcgatatc acagagagta agtaaggttg actatcagct 2640

agatcttgtc ttgaaacaga catcctccat ccctatgatg cggaccgaaa tccaacagct 2700

gaaaacatct gttgcagtca tggaagccaa cttgggaatg atgaagattc tggatcccgg 2760

ttgtgccaac atttcatctc tgagtgatct acgggcagtt gcccgatctc acccggtttt 2820

agtttcaggc cctggagacc cctctcccta tgtgacacaa ggaggcgaaa tggcacttaa 2880

taaactttcg caaccagtgc cacatccatc tgaattgatt aaacccgcca ctgcatgcgg 2940

gcctgatata ggagtggaaa aggacactgt ccgtgcattg atcatgtcac gcccaatgca 3000

cccgagttct tcagccaagc tcctaagcaa gttagatgca gccgggtcga tcgaggaaat 3060

caggaaaatc aagcgccttg ctctaaatgg ttaattacta ctgccacacg tagcgggtcc 3120

ctgtccactc ggcatcacac ggaatctgca ccgagttccc ccccgcagac ccaaggtcca 3180

actctccaag cggcaatcct ctctcgcttc ctcagcccca ctgaatgatc gcgtaaccgt 3240

aattaatcta gctacattta agattaagaa aaaatacggg tagaattgga gtgccccaat 3300

tgtgccaaga tggactcatc taggacaatt gggctgtact ttgattctgc ccattcttct 3360

agcaacctgt tagcatttcc gatcgtccta caagacacag gagatgggaa gaagcaaatc 3420

gccccgcaat ataggatcca gcgccttgac ttgtggactg atagtaagga ggactcagta 3480

ttcatcacca cctatggatt catctttcaa gctgggaatg aagaagccac tgtcggcatg 3540

atcgatgata aacccaagcg cgagttactt tccgctgcga tgctctgcct aggaagcgtc 3600

ccaaataccg gagaccttat tgagctggca agggcctgtc tcactatgat agtcacatgc 3660

aagaagagtg caactaatac tgagagaatg gttttctcag tagtgcaggc accccaagtg 3720

ctgcaaagct gtagggttgt ggcaaacaaa tactcatcag tgaatgcagt caagcacgtg 3780

aaagcgccag agaagattcc cgggagtgga accctagaat acaaggtgaa ctttgtctcc 3840

ttgactgtgg taccgaagaa ggatgtctac aagatcccag ctgcagtatt gaaggtttct 3900

ggctcgagtc tgtacaatct tgcgctcaat gtcactatta atgtggaggt agacccgagg 3960

agtcctttgg ttaaatctct gtctaagtct gacagcggat actatgctaa cctcttcttg 4020

catattggac ttatgaccac cgtagatagg aaggggaaga aagtgacatt tgacaagctg 4080

gaaaagaaaa taaggagcct tgatctatct gtcgggctca gtgatgtgct cgggccttcc 4140

gtgttggtaa aagcaagagg tgcacggact aagctcttgg cacctttctt ctctagcagt 4200

gggacagcct gctatcccat agcaaatgct tctcctcagg tggccaagat actctggagt 4260

caaaccgcgt gcctgcggag cgttaaaatc attatccaag caggtaccca acgcgctatc 4320

gcagtgaccg ccgaccacga ggttacctct actaagctgg agaaggggca cacccttgcc 4380

aaatacaatc cttttaagaa ataagctgcg tctctgagat tgcgctccgc ccactcaccc 4440

agatcatcat gacacaaaaa actaatctgt cttgattatt tacagttagt ttacctgtct 4500

atcaagttag aaaaaacacg ggtagaagat tctggatccc ggttggcgcc ctccaggtgc 4560

aagatgggct ccagaccttc taccaagaac ccagcaccta tgatgctgac tatccgggtt 4620

gcgctggtac tgagttgcat ctgtccggca aactccattg atggcaggcc tcttgcagct 4680

gcaggaattg tggttacagg agacaaagcc gtcaacatat acacctcatc ccagacagga 4740

tcaatcatag ttaagctcct cccgaatctg cccaaggata aggaggcatg tgcgaaagcc 4800

cccttggatg catacaacag gacattgacc actttgctca ccccccttgg tgactctatc 4860

cgtaggatac aagagtctgt gactacatct ggagggggga gacaggggcg ccttataggc 4920

gccattattg gcggtgtggc tcttggggtt gcaactgccg cacaaataac agcggccgca 4980

gctctgatac aagccaaaca aaatgctgcc aacatcctcc gacttaaaga gagcattgcc 5040

gcaaccaatg aggctgtgca tgaggtcact gacggattat cgcaactagc agtggcagtt 5100

gggaagatgc agcagtttgt taatgaccaa tttaataaaa cagctcagga attagactgc 5160

atcaaaattg cacagcaagt tggtgtagag ctcaacctgt acctaaccga attgactaca 5220

gtattcggac cacaaatcac ttcacctgct ttaaacaagc tgactattca ggcactttac 5280

aatctagctg gtggaaatat ggattactta ttgactaagt taggtgtagg gaacaatcaa 5340

ctcagctcat taatcggtag cggcttaatc accggtaacc ctattctata cgactcacag 5400

actcaactct tgggtataca ggtaactcta ccttcagtcg ggaacctaaa taatatgcgt 5460

gccacctact tggaaacctt atccgtaagc acaaccaggg gatttgcctc ggcacttgtc 5520

ccaaaagtgg tgacacaggt cggttctgtg atagaagaac ttgacacctc atactgtata 5580

gaaactgact tagatttata ttgtacaaga atagtaacgt tccctatgtc ccctggtatt 5640

tattcctgct tgagcggcaa tacgtcggcc tgtatgtact caaagaccga aggcgcactt 5700

actacaccat acatgactat caaaggttca gtcatcgcca actgcaagat gacaacatgt 5760

agatgtgtaa accccccggg tatcatatcg caaaactatg gagaagccgt gtctctaata 5820

gataaacaat catgcaatgt tttatcctta ggcgggataa ctttaaggct cagtggggaa 5880

ttcgatgtaa cttatcagaa gaatatctca atacaagatt ctcaagtaat aataacaggc 5940

aatcttgata tctcaactga gcttgggaat gtcaacaact cgatcagtaa tgctttgaat 6000

aagttagagg aaagcaacag aaaactagac aaagtcaatg tcaaactgac tagcacatct 6060

gctctcatta cctatatcgt tttgactatc atatctcttg tttttggtat acttagcctg 6120

attctagcat gctacctaat gtacaagcaa aaggcgcaac aaaagacctt attatggctt 6180

gggaataata ctctagatca gatgagagcc actacaaaaa tgtgaacaca gatgaggaac 6240

gaaggtttcc ctaatagtaa tttatgtgaa agttctggta gtctgtcagt tcagagagtt 6300

aagaaaaaac taccggttgt agatgaccaa aggacgatat acgggtagaa cggtaagaga 6360

ggccgcccct caattgcgag ccaggcttca caacctccgt tctaccgctt caccgacaac 6420

agtcctcaat catggaccgc gccgttagcc aagttgcgtt agagaatgat gaaagagagg 6480

caaaaaatac atggcgcttg atattccgga ttgcaatctt attcttaaca gtagtgacct 6540

tggctatatc tgtagcctcc cttttatata gcatgggggc tagcacacct agcgatcttg 6600

taggcatacc gactaggatt tccagggcag aagaaaagat tacatctaca cttggttcca 6660

atcaagatgt agtagatagg atatataagc aagtggccct tgagtctccg ttggcattgt 6720

taaatactga gaccacaatt atgaacgcaa taacatctct ctcttatcag attaatggag 6780

ctgcaaacaa cagtgggtgg ggggcaccta tccatgaccc agattatata ggggggatag 6840

gcaaagaact cattgtagat gatgctagtg atgtcacatc attctatccc tctgcatttc 6900

aagaacatct gaattttatc ccggcgccta ctacaggatc aggttgcact cgaataccct 6960

catttgacat gagtgctacc cattactgct acacccataa tgtaatattg tctggatgca 7020

gagatcactc acattcatat cagtatttag cacttggtgt gctccggaca tctgcaacag 7080

ggagggtatt cttttctact ctgcgttcca tcaacctgga cgacacccaa aatcggaagt 7140

cttgcagtgt gagtgcaact cccctgggtt gtgatatgct gtgctcgaaa gtcacggaga 7200

cagaggaaga agattataac tcagctgtcc ctacgcggat ggtacatggg aggttagggt 7260

tcgacggcca gtaccacgaa aaggacctag atgtcacaac attattcggg gactgggtgg 7320

ccaactaccc gggagtaggg ggtggatctt ttattgacag ccgcgtatgg ttctcagtct 7380

acggagggtt aaaacccaat tcacccagtg acactgtaca ggaagggaaa tatgtgatat 7440

acaagcgata caatgacaca tgcccagatg agcaagacta ccagattcga atggccaagt 7500

cttcgtataa gcctggacgg tttggtggga aacgcataca gcaggctatc ttatctatca 7560

aggtgtcaac atccttaggc gaagacccgg tactgactgt accgcccaac acagtcacac 7620

tcatgggggc cgaaggcaga attctcacag tagggacatc tcatttcttg tatcaacgag 7680

ggtcatcata cttctctccc gcgttattat atcctatgac agtcagcaaa aaaacagcca 7740

ctcttcatag tccttataca ttcaatgcct tcactcggcc aggtagtatc ccttgccagg 7800

cttcagcaag atgccccaac tcgtgtgtta ctggagtcta tacagatcca tatcccctaa 7860

tcttctatag aaaccacacc ttgcgagggg tattcgggac aatgcttgat ggtgtacaag 7920

caagacttaa ccctgcgtct gcagtattcg atagcacatc ccgcagtcgc attactcgag 7980

tgagttcaag cagtaccaaa gcagcataca caacatcaac ttgttttaaa gtggtcaaga 8040

ctaataagac ctattgtctc agcattgctg aaatatctaa tactctcttc ggagaattca 8100

gaatcgtccc gttactagtt gagatcctca aagatgacgg ggttagagaa gccaggtctg 8160

gctagttgag tcaattataa aggagttgga aagatggcat tgtatcacct atcctctgcg 8220

acatcaagaa tcaaaccgaa tgccggcgcg tgctcgaatt ccatgttgcc agttgaccac 8280

aatcagccag tgctcatgcg atcagattaa gccttgtcaa tagtctcttg atttagaaaa 8340

aatgtaagtg gcaatgagat acaaggcaaa acagctcatg gtaaataata cgggtaggac 8400

atggcgagct ccggtcctga aagggcagag catcagatta tcctaccaga gtcacacctg 8460

tcttcaccat tggtcaagca caaactactc tattactgga aattaactgg gctaccgctt 8520

cctgatgaat gtgacttcga ccacctcatt ctcagccgac aatggaaaaa aatacttgaa 8580

tcggcctctc ctgatactga gagaatgata aaactcggaa gggcagtaca ccaaactctt 8640

aaccacaatt ccagaataac cggagtgctc caccccaggt gtttagaaga actggctaat 8700

attgaggtcc cagattcaac caacaaattt cggaagattg agaagaagat ccaaattcac 8760

aacacgagat atggagaact gttcacaagg ctgtgtacgc atatagagaa gaaactgctg 8820

gggtcatctt ggtctaacaa tgtcccccgg tcagaggagt tcagcagcat tcgtacggat 8880

ccggcattct ggtttcactc aaaatggtcc acagccaagt ttgcatggct ccatataaaa 8940

cagatccaga ggcatctgat ggtggcagct aggacaaggt ctgcggccaa caaattggtg 9000

atgctaaccc ataaggtagg ccaagtcttt gtcactcctg aacttgtcgt tgtgacgcat 9060

acgaatgaga acaagttcac atgtcttacc caggaacttg tattgatgta tgcagatatg 9120

atggagggca gagatatggt caacataata tcaaccacgg cggtgcatct cagaagctta 9180

tcagagaaaa ttgatgacat tttgcggtta atagacgctc tggcaaaaga cttgggtaat 9240

caagtctacg atgttgtatc actaatggag ggatttgcat acggagctgt ccagctactc 9300

gagccgtcag gtacatttgc aggagatttc ttcgcattca acctgcagga gcttaaagac 9360

attctaattg gcctcctccc caatgatata gcagaatccg tgactcatgc aatcgctact 9420

gtattctctg gtttagaaca gaatcaagca gctgagatgt tgtgtctgtt gcgtctgtgg 9480

ggtcacccac tgcttgagtc ccgtattgca gcaaaggcag tcaggagcca aatgtgcgca 9540

ccgaaaatgg tagactttga tatgatcctt caggtactgt ctttcttcaa gggaacaatc 9600

atcaacgggt acagaaagaa gaatgcaggt gtgtggccgc gagtcaaagt ggatacaata 9660

tatgggaagg tcattgggca actacatgca gattcagcag agatttcaca cgatatcatg 9720

ttgagagagt ataagagttt atctgcactt gaatttgagc catgtataga atatgaccct 9780

gtcaccaacc tgagcatgtt cctaaaagac aaggcaatcg cacaccccaa cgataattgg 9840

cttgcctcgt ttaggcggaa ccttctctcc gaagaccaga agaaacatgt aaaagaagca 9900

acttcgacta atcgcctctt gatagagttt ttagagtcaa atgattttga tccatataaa 9960

gagatggaat atctgacgac ccttgagtac cttagagatg acaatgtggc agtatcatac 10020

tcgctcaagg agaaggaagt gaaagttaat ggacggatct tcgctaagct gacaaagaag 10080

ttaaggaact gtcaggtgat ggcggaaggg atcctagccg atcagattgc acctttcttt 10140

cagggaaatg gagtcattca ggatagcata tccttgacca agagtatgct agcgatgagt 10200

caactgtctt ttaacagcaa taagaaacgt atcactgact gtaaagaaag agtatcttca 10260

aaccgcaatc atgatccgaa aagcaagaac cgtcggagag ttgcaacctt cataacaact 10320

gacctgcaaa agtactgtct taattggaga tatcagacaa tcaaattgtt cgctcatgcc 10380

atcaatcagt tgatgggcct acctcacttc ttcgaatgga ttcacctaag actgatggac 10440

actacgatgt tcgtaggaga ccctttcaat cctccaagtg accctactga ctgtgacctc 10500

tcaagagtcc ctaatgatga catatatatt gtcagtgcca gagggggtat cgaaggatta 10560

tgccagaagc tatggacaat gatctcaatt gctgcaatcc aacttgctgc agctagatcg 10620

cattgtcgtg ttgcctgtat ggtacagggt gataatcaag taatagcagt aacgagagag 10680

gtaagatcag acgactctcc ggagatggtg ttgacacagt tgcatcaagc cagtgataat 10740

ttcttcaagg aattaattca tgtcaatcat ttgattggcc ataatttgaa ggatcgtgaa 10800

accatcaggt cagacacatt cttcatatac agcaaacgaa tcttcaaaga tggagcaatc 10860

ctcagtcaag tcctcaaaaa ttcatctaaa ttagtgctag tgtcaggtga tctcagtgaa 10920

aacaccgtaa tgtcctgtgc caacattgcc tctactgtag cacggctatg cgagaacggg 10980

cttcccaaag acttctgtta ctatttaaac tatataatga gttgtgtgca gacatacttt 11040

gactctgagt tctccatcac caacaattcg caccccgatc ttaatcagtc gtggattgag 11100

gacatctctt ttgtgcactc atatgttctg actcctgccc aattaggggg actgagtaac 11160

cttcaatact caaggctcta cactagaaat atcggtgacc cggggactac tgcttttgca 11220

gagatcaagc gactagaagc agtgggatta ctgagtccta acattatgac taatatctta 11280

actaggccgc ctgggaatgg agattgggcc agtctgtgca acgacccata ctctttcaat 11340

tttgagactg ttgcaagccc aaatattgtt cttaagaaac atacgcaaag agtcctattt 11400

gaaacttgtt caaatccctt attgtctgga gtgcacacag aggataatga ggcagaagag 11460

aaggcattgg ctgaattctt gcttaatcaa gaggtgattc atccccgcgt tgcgcatgcc 11520

atcatggatg caagctctgt aggtaggaga aagcaaattc aagggcttgt tgacacaaca 11580

aacaccgtaa ttaagattgc gcttactagg aggccattag gcatcaagag gctgatgcgg 11640

atagtcaatt attctagcat gcatgcaatg ctgtttagag acgatgtttt ttcctccagt 11700

agatccaacc accccttagt ctcttctaat atgtgttctc tgacactggc agactatgca 11760

cggaatagaa gctggtcacc tttgacggga ggcaggaaaa tactgggtgt atctaatcct 11820

gatacgatag aactcgtaga gggtgagatt cttagtgtaa gcggagggtg tacaagatgt 11880

gacagcggag atgaacaatt tacttggttc catcttccaa gcaatataga attgaccgat 11940

gacaccagca agaatcctcc gatgagggta ccatatctcg ggtcaaagac acaggagagg 12000

agagctgcct cacttgcaaa aatagctcat atgtcgccac atgtaaaggc tgccctaagg 12060

gcatcatccg tgttgatctg ggcttatggg gataatgaag taaattggac tgctgctctt 12120

acgattgcaa aatctcggtg taatgtaaac ttagagtatc ttcggttact gtccccttta 12180

cccacggctg ggaatcttca acatagacta gatgatggta taactcagat gacattcacc 12240

cctgcatctc tctacagggt gtcaccttac attcacatat ccaatgattc tcaaaggctg 12300

ttcactgaag aaggagtcaa agaggggaat gtggtttacc aacagatcat gctcttgggt 12360

ttatctctaa tcgaatcgat ctttccaatg acaacaacca ggacatatga tgagatcaca 12420

ctgcacctac atagtaaatt tagttgctgt atcagagaag cacctgttgc gattcctttc 12480

gagctacttg gggtggtacc ggaactgagg acagtgacct caaataagtt tatgtatgat 12540

cctagccctg tatcggaggg agactttgcg agacttgact tagctatctt caagagttat 12600

gagcttaatc tggagtcata tcccacgata gagctaatga acattctttc aatatccagc 12660

gggaagttga ttggccagtc tgtggtttct tatgatgaag atacctccat aaagaatgac 12720

gccataatag tgtatgacaa tacccgaaat tggatcagtg aagctcagaa ttcagatgtg 12780

gtccgcctat ttgaatatgc agcacttgaa gtgctcctcg actgttctta ccaactctat 12840

tacctgagag taagaggcct agacaatatt gtcttatata tgggtgattt atacaagaat 12900

atgccaggaa ttctactttc caacattgca gctacaatat ctcatcccgt cattcattca 12960

aggttacatg cagtgggcct ggtcaaccat gacggatcac accaacttgc agatacggat 13020

tttatcgaaa tgtctgcaaa actattagta tcttgcaccc gacgtgtgat ctccggctta 13080

tattcaggaa ataagtatga tctgctgttc ccatctgtct tagatgataa cctgaatgag 13140

aagatgcttc agctgatatc ccggttatgc tgtctgtaca cggtactctt tgctacaaca 13200

agagaaatcc cgaaaataag aggcttaact gcagaagaga aatgttcaat actcactgag 13260

tatttactgt cggatgctgt gaaaccatta cttagccccg atcaagtgag ctctatcatg 13320

tctcctaaca taattacatt cccagctaat ctgtactaca tgtctcggaa gagcctcaat 13380

ttgatcaggg aaagggagga cagggatact atcctggcgt tgttgttccc ccaagagcca 13440

ttattagagt tcccttctgt gcaagatatt ggtgctcgag tgaaagatcc attcacccga 13500

caacctgcgg catttttgca agagttagat ttgagtgctc cagcaaggta tgacgcattc 13560

acacttagtc agattcatcc tgaactcaca tctccaaatc cggaggaaga ctacttagta 13620

cgatacttgt tcagagggat agggactgca tcttcctctt ggtataaggc atctcatctc 13680

ctttctgtac ccgaggtaag atgtgcaaga cacgggaact ccttatactt agctgaaggg 13740

agcggagcca tcatgagtct tctcgaactg catgtaccac atgaaactat ctattacaat 13800

acgctctttt caaatgagat gaaccccccg caacgacatt tcgggccgac cccaactcag 13860

tttttgaatt cggttgttta taggaatcta caggcggagg taacatgcaa agatggattt 13920

gtccaagagt tccgtccatt atggagagaa aatacagagg aaagtgacct gacctcagat 13980

aaagcagtgg ggtatattac atctgtagtg ccctacaggt ctgtatcatt gctgcattgt 14040

gacattgaaa ttcctccagg gtccaatcag agcttactag atcaactagc tatcaattta 14100

tctctgattg ccatgcattc tgtaagggag ggcggggtag taatcatcaa agtgttgtat 14160

gcaatgggat actactttca tctactcatg aacttgtttg ctccgtgttc cacaaaagga 14220

tatattctct ctaatggtta tgcatgtcga ggagatatgg agtgttacct ggtatttgtc 14280

atgggttacc tgggcgggcc tacatttgta catgaggtgg tgaggatggc aaaaactctg 14340

gtgcagcggc acggtacgct tttgtctaaa tcagatgaga tcacactgac caggttattc 14400

acctcacagc ggcagcgtgt gacagacatc ctatccagtc ctttaccaag attaataaag 14460

tacttgagga agaatattga cactgcgctg attgaagccg ggggacagcc cgtccgtcca 14520

ttctgtgcgg agagtctggt gagcacgcta gcgaacataa ctcagataac ccagatcatc 14580

gctagtcaca ttgacacagt tatccggtct gtgatatata tggaagctga gggtgatctc 14640

gctgacacag tatttctatt taccccttac aatctctcta ctgacgggaa aaagaggaca 14700

tcacttaaac agtgcacgag acagatccta gaggttacaa tactaggtct tagagtcgaa 14760

aatctcaata aaataggcga tgtaatcagc ctagtgctta aaggcatgat ctccatggag 14820

gaccttatcc cactaaggac atacttgaag catagtacct gccctaaata cttgaaggct 14880

gtcctaggta ttaccaaact caaagaaatg tttacagaca cttctgtact gtacttgact 14940

cgtgctcaac aaaaattcta catgaaaact ataggcaatg cagtcaaagg atattacagt 15000

aactgtgact cttaacgaaa atcacatatt aataggctcc ttttttggcc aattgtattc 15060

ttgttgattt aatcatatta tgttagaaaa aagttgaacc ctgactcctt aggactcgaa 15120

ttcgaactca aataaatgtc ttaaaaaaag gttgcgcaca attattcttg agtgtagtct 15180

cgtcattcac caaatctttg tttggtgggt cggcatggca tctccacctc ctcgcggtcc 15240

gacctgggca tccgaaggag gacgcacgtc cactcggatg gctaagggag ggcgctagca 15300

taaccccttg gggcctctaa acgggtcttg aggggttttt tg 15342

33页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:mRNA及包含其的新冠病毒mRNA疫苗

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!